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In early 2020, the global spread of the COVID-19 has presented the world with a serious health crisis. 

Due to the large number of infected patients, automatic segmentation of lung infections using computed 

tomography (CT) images has great potential to enhance traditional medical strategies. However, the seg- 

mentation of infected regions in CT slices still faces many challenges. Specially, the most core problem is 

the high variability of infection characteristics and the low contrast between the infected and the normal 

regions. This problem leads to fuzzy regions in lung CT segmentation. To address this problem, we have 

designed a novel global feature network(GFNet) for COVID-19 lung infections: VGG16 as backbone, we 

design a Edge-guidance module(Eg) that fuses the features of each layer. First, features are extracted by 

reverse attention module and Eg is combined with it. This series of steps enables each layer to fully ex- 

tract boundary details that are difficult to be noticed by previous models, thus solving the fuzzy problem 

of infected regions. The multi-layer output features are fused into the final output to finally achieve au- 

tomatic and accurate segmentation of infected areas. We compared the traditional medical segmentation 

networks, UNet, UNet++, the latest model Inf-Net, and methods of few shot learning field. Experiments 

show that our model is superior to the above models in Dice, Sensitivity, Specificity and other evaluation 

metrics, and our segmentation results are clear and accurate from the visual effect, which proves the ef- 

fectiveness of GFNet. In addition, we verify the generalization ability of GFNet on another “never seen”

dataset, and the results prove that our model still has better generalization ability than the above model. 

Our code has been shared at https://github.com/zengzhenhuan/GFNet . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since December 2019, a large number of novel coronavirus 

ases have been reported in Wuhan, Hubei Province, China, and 

he number of infections is increasing. Novel coronavirus can cause 
� This work is supported by Hunan Provincial Natural Science Foundation of 

hina (No. 2020JJ4587 ), Guangdong Basic and Applied Basic Research Foundation 

No. 2019A1515110423), Degree & Postgraduate Education Reform Project of Hu- 

an Province (No. 2019JGYB115), Scientific Research Project of Hunan Provincial 

epartment of Education (No. 21C0922), Open Fund Project of Fujian Provincial 

ey Laboratory of Data Intensive Computing (No. BD202004), Open Research Fund 

f AnHui Key Laboratory of Detection Technology and Energy Saving Devices (No. 

CKJ2021B05), Open Fund Project of Vehicle Measurement, Control and Safety Key 

aboratory of Sichuan Province (No. QCCK2021-006). 
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cute respiratory diseases in humans and may even cause fa- 

al acute respiratory distress syndrome (ARDS). The International 

ommittee on Taxonomy of Viruses (ICTV) named the novel coro- 

avirus SARS-CoV-2, and the World Health Organization (WHO) 

amed it COVID-19. The Novel Coronavirus has been confirmed as 

apable of human-to-human transmission. The Novel Coronavirus 

preads rapidly in China and the world due to massive traffic and 

opulation movement during the Spring Festival. The Novel Coron- 

virus has extremely high rates of morbidity and mortality. Accord- 

ng to the World Health Organization (WHO), as of 10 April 2020, 

here have been 1521, 252 confirmed cases globally [1] . As of 12 

uly 2021, there have been 180 million confirmed cases worldwide 

nd 4 million cumulative deaths [2] . 

Reverse transcription polymerase chain reaction (RT-PCR) is 

onsidered by the industry to be the gold standard for screening 

https://doi.org/10.1016/j.patcog.2022.108963
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108963&domain=pdf
https://github.com/zengzhenhuan/GFNet
https://doi.org/10.13039/501100001809
mailto:zzh9573@hotmail.com
mailto:xiaolyttkx@163.com
https://doi.org/10.1016/j.patcog.2022.108963
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Fig. 1. CT scan of COVID-19 patients with complex findings of pneumonia lesions 

(a-c) from three different patients, with some lesions highlighted by arrows.(d) Dis- 

play the labels made by different observers on item (c). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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or COVID-19. However, this has limited rapid and accurate detec- 

ion. In addition, RT-PCR testing has been reported to have a high 

ate of false negatives. As an important complement to RT-PCR 

esting, radiological imaging techniques such as X-ray and com- 

uted tomography (CT) have also played a role in current diagno- 

is, including follow-up evaluation and assessment of disease pro- 

ression [7,8] . A clinical study of 1014 patients from Wuhan, China, 

howed that chest CT analysis could achieve a sensitivity of 0.97, 

 specificity of 0.25, and an accuracy of 0.68 in detecting cases 

f neocoronary pneumonia, accompanied by RT-PCR test results 

s a reference [23] . Computed tomography (CT) imaging plays a 

rucial role in detecting the pulmonary manifestations of COVID- 

9 [3,4] , and the segmentation of infected lesions in CT scan is 

ery important for quantitative measurement of disease progres- 

ion [5,6] . Lung CT image segmentation is a necessary initial step 

or lung image analysis [37] . The segmentation of lesions can re- 

ove unnecessary background areas and assist doctors in diag- 

osis, which is an important step in CT image analysis. In con- 

rast to common pneumonia, COVID-19 presents with pulmonary 

round-glass opacity (GGO) and signs of pulmonary solidity. CT 

maging of COVID-19 in its early stages usually appears as one or 

ore GGO nodular, patchy or lamellar shadows and is generally 

istributed along the field 1/3 of the lung and under the pleura. 

s the disease progresses, most patients with COVID-19 will de- 

elop solid lung lesions. During the COVID-19 outbreak in Wuhan, 

 large number of patients, including suspected cases, confirmed 

ases and follow-up cases, required chest CT examinations to ob- 

erve the changes and severity of pneumonia. The qualitative eval- 

ation of infection and longitudinal changes in CT slices could 

hus provide useful and important information in fighting against 

OVID-19. So we need to segment the lesion regions separately. 

xisting papers [36] have shown that considering a real-world ap- 

lication, segmentation is an important step since it removes back- 

round information, reduces the chance of data leak, and forces the 

odel to focus only on important image areas. Under the current 

ircumstances, any missed cases will continue to lead to COVID-19 

ransmission. Therefore, a large amount of work and high diagnos- 

ic accuracy pose great challenges to radiologists. In addition, the 

adiologist’s eyestrain increases the potential risk of missing some 

mall lesions. In the face of such a serious epidemic, it is very nec- 

ssary to apply deep learning to disease diagnosis. Early, accurate 

nd rapid diagnosis of suspected cases is crucial to timely isolation 

nd medical treatment, and is of great significance to patient treat- 

ent, epidemic control and public health security. So, developing 

n artificial intelligence (AI) method for COVID-19 computer-aided 

iagnosis could be very helpful to radiologists. 

In Section 2 , we will introduce some recent examples of deep 

earning applied to lung CT segmentation, explain their shortcom- 

ngs, and then introduce the ideas and solutions of this paper. In 

ection 3 , we will introduce the network structure and its core 

odules and loss functions in detail. In Section 4 , we will in- 

roduce the experimental environment, dataset sources, evaluation 

etrics, and illustrate how to determine the optimal output of the 

etwork. Then we will present our experimental results qualita- 

ively and quantitatively and compare them with other methods, 

nd add ablation experiments to verify the effectiveness of the core 

odules. Finally, the conclusion is given in Section 5 . 

. Related work 

Recently, deep learning systems have been designed to examine 

atients infected with COVID-19 via radiological imaging [41,42] . In 

linical practice, automatic segmentation of lesions is highly desir- 

ble [6] . Although CT scans are important for diagnosis and treat- 

ent decisions, automatically segmenting COVID-19 pneumonia le- 

ions from CT scans is challenging for several reasons. First of all, 
2 
he infected lesions have a variety of complex manifestations, such 

s ground glass shadow (GGO), consolidation, etc. [9] . Second, the 

ize and location of pneumonia lesions vary greatly between differ- 

nt stages of infection and different patients. As shown in Fig. 1 (a–

) [10] , the lesions were irregular in shape and blurred in bound- 

ry. Some lesions, such as GGO, had low contrast with the sur- 

ounding region. In addition, radiologists’ labeling of infected re- 

ion is a highly subjective task, often subject to personal biases 

nd influenced by clinical experience. As shown in Fig. 1 (d). Due 

o the outbreak of COVID-19, it is difficult to collect enough labeled 

ata for deep model training in a short period of time. In addition, 

btaining high quality pixel-level lung infection annotations on CT 

lices is expensive and time consuming. These challenges make the 

ask of automatically segmenting lesions more difficult. 

Li et al. [4] used U-Net [12] to segment lung from CT scan. 

Net++ [13] is also used to detect [14] and segment [15] infected 

esions from CT scan. Liu et al. [21] propose a weakly supervised 

OVID-19 infection segmentation method with scribble supervi- 

ion. A et al. [37] design and evaluate an automatic tool for au- 

omatic COVID-19 Lung Infection segmentation and measurement 

sing chest CT images. An uncertainty-aware mean teacher frame- 

ork is incorporated into the proposed method to guide the model 

raining, encouraging the segmentation predictions to be consis- 

ent under different perturbations for an input image. With the 

ixel level uncertainty measure on the predictions of the teacher 

odel, the student model is guided with reliable supervision. Zhao 

t al. [22] proposed a new deep-learning-based method that inte- 

rates a 3D V-Net with shape priors for medical image segmen- 

ation. The shape prior was used to optimize the model weights 

n both V-Net input and output, which significantly improved the 

odel performance. Wang et al. [16] trained the lung segmenta- 

ion network by using ground-truth mask obtained by unsuper- 

ised method, designed an effective lightweight 3D residual net- 

ork and proposed a weakly supervised COVID-19 lesion detection 

ethod. Wang et al. [10] proposed a novel noise-robust-DICE loss 

unction and a noise robust learning framework based on CNNs 

elf-integration, which is robust to noise labels and Dice losses. 

an et al. [17] proposed an Inf-Net automatic segmentation of in- 

ected region from lung CT images and a semi-supervised segmen- 

ation framework based on random selection propagation strategy, 

hich only required a small number of labeled images and mainly 

sed unlabeled data to alleviate the shortage of high-quality la- 

eled data. Maghdid et al. [38] build a comprehensive dataset of 

-rays and CT scan images from multiple sources as well as pro- 
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Fig. 2. The position marked by the circle in the figure points out the problem of fuzzy boundary of segmentation results in an existing model [17] . In the two regions 

marked, it may be difficult for health care workers to determine from the naked eye whether these regions are infected or not. In image segmentation, these regions are 

difficult identify by previous methods because of their fuzzy boundaries and low contrast with normal tissues. Such areas of ambiguity may interfere with a health care 

provider’s perception of the infected region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3

ides a simple but an effective COVID-19 detection technique us- 

ng deep learning and transfer learning algorithms. Zhou et al. 

43] proposed an ensemble deep learning model for novel COVID- 

9 detection from CT images. Mu et al. [45] proposed a multi-scale 

ulti-level feature recursive aggregation (mmFRA) network which 

s used to integrate multi-scale features with multi-level features. 

atsamenis et al. [46] proposed a deep learning framework that 

an detect COVID-19 pneumonia in thoracic radiographs, as well 

s differentiate it from bacterial pneumonia infection. Voulodimos 

t al. [25,44] presented a few-shot learning paradigm for segment- 

ng COVID-19 infectious regions. The main difference of the pro- 

osed algorithm compared with the traditional approaches is that 

t is an online learning paradigm, not the static supervised learning 

f U-Net. 

However, all the above methods have a common deficiency, 

hat is, the fuzzy boundary problem of lesion segmentation is not 

olved completely, in other words, the fuzzy boundary is not ex- 

ctly segmented. So the segmentation results are still kind of am- 

iguous. As shown in Fig. 2 . If ambiguous, for segmenting the le- 

ion regions will affect the medical staff of judgment, if the nor- 

al tissue segmentation as the lesion regions, can make the pa- 

ient’s condition mistaken for serious, if the lesion regions seg- 

entation to normal tissue, may let the patient do not get proper 

reatment cases lead to misdiagnosis and even produce COVID-19 

urther spread. 

Therefore, the method proposed in this paper is mainly aimed 

t solving the problem of fuzzy boundary and the problem that 

ormal organizations are difficult to distinguish correctly. In clini- 

al practice, doctors first determine the location of the lesion and 

hen judge the results according to the characteristics of the dis- 

ased region when judging the patient’s condition according to CT 

mages. According to the above steps, we should focus on the lo- 

ation and boundary of the lesion region when we use the deep 

eural network for learning. 

To solve the above problems, we will carry out the following 

wo main operations successively: 1. Locate the lesion.2 Accurately 

xtract contour. As we all know, in the convolutional neural net- 

ork, the resolution of low-layer features is higher and contains 

ore detailed information, but because of less convolution, it has 

ower semantics and more noise. High-layer features have stronger 

emantic information, but the resolution is low and the perception 

f details is poor [11] . How to integrate them efficiently, take their 
n

3 
dvantages and discard their faults is the key to improving the 

egmentation model. Therefore, we designed a kind of framework. 

irst, aggregation high-level feature extracting rough estimate of 

he lesion region. We also designed a Edge-guidance module, used 

o provide guidance in the use of reverse attention modules for 

ccurate contour extraction of lesions after localization. Finally, by 

using feature at each layer, the accurate segmentation of the le- 

ion region was obtained. 

In short, our contributions in this paper are threefold: 

1. A novel deep learning network framework, GFNet, was pro- 

osed for the segmentation of infected region of COVID-19 in two- 

imensional CT images of lungs. By aggregating the high-layer fea- 

ures using the aggregation module, the aggregated features can 

apture context information and generate a global location map as 

n initial boot region for subsequent steps. In order to further dig 

he boundary information of the target, we use the reverse atten- 

ion module step by step from the high-layer to the low-layer, then 

urther extract the hidden details of each layer, and finally fuse the 

eatures of each layer, so that the network can fully extract the de- 

ails that are difficult to be noticed by the previous model. 

2. We design a Edge-guidance map that contains the bound- 

ry features of each layer to further extract the boundary informa- 

ion when the features of each layer are extracted. The experiment 

roves that this design is very effective. 

3. We applied the GFNet framework to VGG16 and used our 

ethod on two different datasets. One data set was “seen” to ver- 

fy learning ability, and the other was “not seen” to verify gener- 

lization ability. Experimental results show that GFNet has better 

earning ability and generalization ability than existing models. 

4. We conducted experiments with each model on training 

atasets of different sizes. Our model can achieve good perfor- 

ance when the training set is relatively small. In real-world case 

ecision making, our GFNet is fully capable of such tasks if it is put 

nto application under time constraints or with few training sam- 

les. Our GFNet can also be sufficiently trained to achieve max- 

mum performance if there is sufficient time or a large training 

ample. 

. Proposed method 

In this section, we will give a detailed introduction to the GFNet 

etwork structure, core network components, and loss functions. 
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Fig. 3. Structure diagram of GFNet model, f1 to f5 are the backbone of VGG16. GFNet contains one Eg, one aggregation module Sg, and five RA modules connected. The 

input image goes from F1 to F5, then from S5 back to S1 via Sg, Eg, RA modules. The final output result is the sum of each lateral output Si. See III. A for more details. 
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Table 1 

Detailed receptive field and stride sizes of standard VGG16 net. 

layer conv1 l conv1 2 pool 1 conv2 1 conv2 2 pool 2 

rf size 3 5 6 10 14 16 

stride 1 1 2 2 2 4 

layer conv3 1 conv3 2 conv3 3 pool 3 conv4 1 conv4 2 
rf size 24 32 40 44 60 76 

stride 4 4 4 8 8 8 

layer conv4 3 pool 4 conv5 1 conv5 2 conv5 3 pool5 

rf size 92 100 132 164 196 212 

stride 8 16 16 16 16 32 

e
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.1. Global-feature network(GFNet) 

Network overview: The framework of GFNet is shown in Fig. 3 . 

ith VGG16 as the backbone network, the whole network is di- 

ided into five layers, and the high-layers features are layer 3, layer 

, and layer 5. We use the aggregation module to aggregate the 

igh-layers features( f 3 , f 4 , f 5 ) to generate global location map S g 
17] . Then, starting from the S g , importing S g and f 5 into a reverse

ttention module (RA), meanwhile, under the guidance of Edge- 

uidance module(Eg). The output S 5 and f 4 go to the next RA. Re- 

eating the above operation to get S 1 finally, fuse n S i and get the

rediction graph through sigmoid output. Next, we will introduce 

he core modules in this network and the loss function in detail. 

.2. Edge guidance module 

We know that the deeper the feature, the coarser the informa- 

ion, while the low-layer feature contains a lot of useful details. 

n order to make good use of the features of each layer, based on 

he idea of edge detection [18] , we designed a Edge-guidance mod- 

le(Eg) fusing the features of each layer, it contains the boundary 

nformation of each layer and has rich edge features, which helps 

s to extract the boundary of the lesion region more effectively 

nd accurately in the subsequent feature extraction, so as to solve 

he problem of fuzzy boundary. The specific approach is as follows: 

or the VGG16, VGG16 network composes of 13 conv layers and 3 

ully connected layers. We cut all the fully connected layers and 

he pool5 layer. On the one hand, we remove the fully connected 

ayers due to the fact that they do not align with our design of a

ully convolutional network. On the other hand, adding pool5 layer 

ill increase the stride by two times, and it’s harmful for edge lo- 

alization. Its conv layers are divided into five stages, in which a 

ooling layer is connected after each stage. The useful information 

aptured by each conv layer becomes coarser with its receptive 

eld size increasing. Detailed receptive field sizes of different lay- 
4 
rs can be seen in Table 1 . Hence, we combine hierarchical features 

rom all the conv layers into a holistic framework, in which all 

f the parameters are learned automatically. Since receptive field 

izes of conv layers in VGG16 are different from each other, our 

etwork can learn multi-scale, including low-level and objectlevel, 

nformation that is helpful to extract more boundary information. 

ince our boundary guidance module combines all the accessible 

onv layers to employ richer features, it is expected to achieve a 

oost in accuracy. At the same time of obtaining the Edge-guidance 

ap, we compute the gradient of Ground-truth of the input image 

o obtain edge-Ground-truth of the boundary [17] . Then we con- 

uct deep supervision of the Edge-guidance map and let it further 

earn the boundary features from the rich features. In Fig. 4 , we 

how the Edge-guidance results after combination. The edge ob- 

ains strong response at the COVID-19 infection region. Details of 

his module are shown in Fig. 4 . 

We use the standard Binary Cross Entropy(BCE) loss function 

o measure the dissimilarity between the generated Edge-guidance 

ap ( E g ) and the edge-Ground-truth map ( G e ) calculated by using 

he gradient of the ground-truth (GT): 

 E g = −
w ∑ 

x =1 

h ∑ 

y =1 

[ G e log ( E g ) + ( 1 − G e ) log ( 1 − E g ) ] (1) 
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Fig. 4. A Edge-guidance map is generated by fusing every layer feature to rich edge features. See III. B for more details. 

Fig. 5. Aggregated high-layers features are used to generate a global location map. 
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here, (x, y ) the coordinates of each pixel in the Edge-guidance 

ap E g and edge-ground-truth map G e . In addition, w and h re- 

pectively represent the width and height of the corresponding 

eature map. 

.3. Aggregation module 

Many existing medical image segmentation networks [19,20] , 

se high and low level features in encoders to segment target or- 

ans and lesion regions. However, Wu et al. [35] pointed out that, 

ompared with high-level features, low-level features require more 

omputing resources due to their greater spatial resolution, but 

ontribute less to performance. Inspired by this, we using a Paral l el 

ar tial Decoder (P P D ) modules to aggregate high-layers features. 

pecifically, for the input 2d CT images, we first obtain three high- 

ayers features f i , i = 3, 4, 5 of the VGG16. Then, we use a novel

artial decoder pd() [17,35] to aggregate the high-layers features 

n a paralleled connection. The decoder produces a global location 

ap S g = pd( f 3 , f 4 , f 5 ) , which then serves as an initial guide in

he RA module. The details are shown in Fig. 5 . 
5

.4. Reverse attention module 

In clinical practice, clinicians usually use a two-step operation 

o segment the lung infection region, first roughly locate the in- 

ected region, and then accurately mark these region by examining 

he local tissue structure. Inspired by this process and [24] , we de- 

igned GFNet using five reverse attention modules(RA). 

First, the P P D module acts as a rough locator and generates 

 high-level global map S g with unstructured details to provide 

ough location information for the lung infection region. 

Secondly, our structure mine discriminative infection regions in 

n erasing manner [26,27] . Specifically, compared with simply ag- 

regating features from all layers [27] ,we propose to adaptively 

earn the reverse attention in all five layers features. Importing S g 
nd f 5 into a RA, meanwhile, under the guidance of Eg. The spe- 

ific approach is as follows: S i +1 goes through Sigmoid and reverse 

o get A i with reverse attention weight, and then A i is multiplied 

ith the feature f i of the lower layer. Before getting the RA fea- 

ure, we concatenate Eg with the result multiplied, so as to get R A i 
eature under the guidance of Eg. Finally, we add RA i with S i +1 to 

et lateral output S i of layer i . For each lateral output S i , we con-

uct deep supervised learning. The output S 5 and f 4 go to the next 

A. Repeating the above operation to get S 1 finally. Formula is as 

ollows: 

A i = C ( f i � A i , down ( E g ) ) (2) 

here C(·) represents concatenate, down (·) represents down sam- 

ling, followed by two two-dimensional convolution layers with 64 

lters. In fact, RA weights A i widely adopted design in the salient 

bject detection in computer vision [27] , it is defined as: 

 i = ε ( �( Sig ( up ( S i +1 ) ) (3) 

mong them up represents the upsampling operation, Sig repre- 

ents activate function for Sigmoid, � represents the reverse op- 
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Fig. 6. The reverse attention module is used to implicitly learn edge features. 
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ration of subtracting the input from a matrix of all 1s. The sym- 

ol ε represents the extension of the single-channel feature map 

o multi-channels, including the reversion of each channel of the 

andidate tensors in Eq. (2) . The final output of this layer S i is: 

 i = RA i + S i +1 (4) 

he details of this process are shown in Fig. 6 . It is worth noting

hat erasure strategies in RA can ultimately refine inaccurate and 

oarse prediction region into an accurate and complete prediction 

ap. 

In [17] , RA module is also used in Res2Net to extract features 

rom layer 5 to layer 3. We differ from them in that here we apply

he RA module to each layer and demonstrate that our approach is 

etter in subsequent ablation experiments. 

.5. Loss function 

We define the loss function L seg as the combination of the 

eighted IoU loss function L w 

seg and the weighted binary cross en- 

ropy (BCE) loss function L w 

BCE 
, namely: 

 seg = L w 

IO U + λL w 

BCE (5) 

here λ represents the weight, which was set to 1 in our ex- 

eriment. The two parts of L seg provide effective global (image- 

evel) and local (pixel-level) supervision to obtain accurate seg- 

entation effects. Unlike the standard IoU loss function, which is 

idely used in the segmentation task, the weighted IoU loss func- 

ion increases the weights at the sample points of the difficult 

ixel to highlight its importance. In addition, compared with the 

tandard BCE loss function, L w 

BCE 
pays more attention to the diffi- 

ult pixel sample points rather than assigning the same weight to 

ll pixels. The definitions of these losses are the same as those in 

31,32] , and their effectiveness has been validated in target detec- 

ion domain. We adopt deep supervision for the five lateral outputs 

 S i , i = 1 , 2 , 3 , 4 , 5 ) and the global location map S g , each of which is

psampled to the same size as the object-level segmented ground- 

ruth map G . Therefore, the total loss function is: 

 total = L seg ( G, S g ) + 

5 ∑ 

1 

L seg ( G, S i ) + L E g (6) 

. Experiment 

.1. Experimental environment and parameter setting 

Our model was configured with the PyTorch 1.10.0, cuda 11.6 

ramework and trained on a single NVIDIA RTX 3080 laptop 

PU. Before the training, we uniformly resize all the inputs to 

52 × 352, and a multi-scale training method with a scaling ratio 
6 
f [0.75, 1, 1.25] was used to train the datasets, so as to improve

he generalization performance of the model. The network is 

rained using the Adam optimizer. Set the Epoch to 100 with a 

atch size of 4 and the learning rate to 1e-4. 

.2. Baselines 

For the infected region experiment, we applied the GFNet 

ramework of this paper to VGG16. We first identify the best value 

or n of S out = 

∑ n 
i =1 S i . And compared with two classic segmen- 

ation models in the medical field, including U-Net [12] , U-Net++ 

13] , the latest model Inf-Net [17] , and two segmentation models 

Few-shot UNet” [25] and “SG-One” [39] based on few-shot learn- 

ng. 

.3. Datasets 

Currently, the number of CT images with segmentation labeling 

s very limited because manually segmenting areas of lung infec- 

ion is a difficult and time-consuming task, and the outbreak of 

he disease is in its early stages. To solve this problem, we use a 

emi-supervised learning strategy to improve GFNet, using a large 

umber of unlabeled CT images to effectively expand the training 

ata. This strategy refers to the method in [17] and is based on the 

andom sampling strategy to gradually expand the unlabeled data 

f the training dataset. See Algorithm 1 [17] for details. Specifi- 

lgorithm 1 

equire: Labeled training data D Labeled and unlabeled training data 

D Unl abel ed 

nsure: Trained GF Net

1: Construct a training dataset D T raining using all the labeled CT 

images from D l abel ed 

2: Training our model GF Net using D T raining 

3: repeat 

4: Perform testing using the trained model GF Net and K 

CT images randomly selected from D Unl abel ed , which yields 

network-labele data D Net−l abel ed , consisting of K CT images 

with pseudo labels 

5: Enlarge the training dataset using D Net−l abel ed , i.e. , D T raining = 

D T raining ∪ D Net−l abel ed 

6: Remove the K testing CTimages from D Unl abel ed 

7: Fine-tune GF Net using D T raining 

8: until D Unl abel ed is empty 

9: return Trained model GF Net 

ally, we generate the pseudo labels for unlabeled CT images using 

he procedure described in Algorithm 1 . The resulting CT images 
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Fig. 7. The value of n corresponds to the data change of [ Dice, Sen., Spe., S α, Em ]. 
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ith pseudo labels are then utilized to train our model. This semi- 

upervised approach is simple, it requires no measures to evalu- 

te the labels of predictions, and it has no threshold. Secondly, 

his strategy can provide better performance than other semi- 

upervised learning methods and prevent network overfitting. Re- 

ent research work [34] has confirmed this conclusion. We use the 

ame training settings as in [17] . We generate pseudo labels for un- 

abeled CT images using the protocol described in Algorithm 1 [17] . 

he number of randomly selected CT images is set to 5, i.e., K = 5.

ow there are 1600 unlabeled images, we need to perform 320 

terations with a batch size of 4. The unlabeled CT images are ex- 

racted from the COVID-19 CT Collection [33] dataset, which con- 

ists of 20 3D CT volumes from different COVID-19 patients. Fan 

t al. [17] had extracted 1600 2d CT axial slices from 3D volumes, 

emoved non-lung regions, and constructed an unlabeled training 

ataset D Unl abel ed f or effective semi supervised segment ation. After 

btaining a semi-supervised dataset with pseudo labels, our next 

raining phase consists of two steps: (i) Pre-training on 1600 CT 

mages with pseudo labels, which takes 7.5 h to converge over 100 

pochs with a batch size of 4. (ii) Fine tuning on 60 CT images

ith the ground-truth labels, which takes about 15 min to con- 

erge over 100 epochs with a batch size of 4. These 60 CT images

ere taken from COVID-19 CT Segmentation dataset [29] , which 

onsists of 100 axial CT images collected by the Italian Society 

f Medical and Interventional Radiology. A radiologist segmented 

he CT images using different labels to identify lung infections. Al- 

hough this is the first open-access COVID-19 dataset for lung in- 

ection segmentation, it suffers from a small sample size, i.e., only 

00 labeled images are available. We employ them as the labeled 

ata D Labeled , which consists of 60 CT images randomly selected as 

raining samples, 20 CT images for validation, and the remaining 

0 images for testing. We verify the model’s learning ability on this 

esting dataset. In addition, we found a public dataset “COVID-CS”

30] and tested the trained model directly on this dataset to verify 

ur model’s generalization ability to “never seen” data. For a fair 

omparison, we adopt the same training mode and setting for the 

aseline model. 

.4. Evaluation metrics 

According to Han et al. [5] , Huang et al. [26] , we used three

idely used metrics: Dice similarity coefficient, Sensitivity (Sen.), 

pecificity (Spec.) and Precision (Prec.). We also introduce three 

olden indicators from the object detection field, including Struc- 

ure Measure [27] , Enhanced-alignment Measure [28] , and Mean 

bsolute Error. In our evaluation, we choose S out with Sigmoid 

unction as the final prediction Seg. The seven metrics used to 

easure the performance of a model can be expressed as: 

.4.1. Dice coefficient 

Dice is mainly used to calculate the similarity of two sets, and 

ts definition is as follows: 

Dice = 

2 

∗| Seg ∩ GT | 
| Seg | + | GT | (7) 

.4.2. Sensitivity ( Sen. ) 

Sen. reflects the percentage of lung infections that were cor- 

ectly segmented. It is defined as follows: 

Sen. = 

| Seg ∩ GT | 
| GT | (8) 

.4.3. Specificity ( Spec. ) 

Spec. reflects the percentage of lung non-infections that were 

orrectly segmented. It is defined as follows: 

Spec. = 

| I − Seg ∪ GT | 
| I − GT | (9) 
7 
mong them is the pixel set of the entire CT. 

.4.4. Structural measure ( S α): 

This metric is more consistent with the human visual system 

nd is used to measure the structural similarity between the pre- 

iction map and the ground-truth mask: 

 α = (1 − α) × S o ( Seg , G ) + α × S r ( Seg , G ) (10)

here α is the balance factor used to control object-aware simi- 

arity S o and region-aware similarity S r . In this paper, we set the 

ame metric value as the original text with the default setting 

 α= 0.5). 

.4.5. Enhanced-alignment measure ( E mean 
φ

) 

This is a recently proposed metric that measures both local and 

lobal similarity between two binary graphs. The formula is as fol- 

ows: 

 φ = 

1 

w × h 

w ∑ 

x 

h ∑ 

y 

φ( S p (x, y ) , G (x, y ) ) (11) 

here w and h represent the width and height of ground-truth 

ap G, and (x, y) represents the coordinates of each pixel in G. 

he symbol φ is an enhanced alignment matrix. We get a set of 

 φ value by thresholding the prediction Seg with thresholds 0 to 

55 to obtain a binary mask. In our experiment, we reported the 

ean of E φ under all thresholds. 

.4.6. Mean absolute error ( MAE) 

This metric measures the pixel-level error between Seg and G , 

nd is defined as: 

AE = 

1 

w × h 

w ∑ 

x 

h ∑ 

y 

| Seg (x, y ) − G (x, y ) | (12) 

.5. The determination of the optimal value of n 

We first conducted experiments in different n on the “COVID- 

9 CT Segmentation” dataset [29] . The results can be seen from 

ig. 7 . Some metrics, such as Dice , Sen , Sα and E mean 
φ

,will increase 

ith the number of fusion feature layers increasing. So we set the 

est value of n to 5, that is, the final output is S out = S 1 + S 2 + S 3 +
 4 + S 5 . Through this step experiment, we proved that the results 

ombinated by all the five lateral output will have the best perfor- 

ance. 
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Table 2 

1600 training sets with pseudo-labels were trained and tested directly on 

the “COVID-19 CT Segmentation” dataset [29] to verify the validity of the 

dataset. 

Method Dice Sen. Spe. S a E m MAE 

U-Net 0.682 0.607 0.972 0.710 0.842 0.084 

U-Net + 0.584 0.608 0.845 0.625 0.796 0.117 

Inf-Net 0.689 0.630 0.970 0.733 0.853 0.070 

GFnet(ours) 0.697 0.613 0.976 0.723 0.858 0.069 
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.6. Verify the validity of data sets with pseudo labels 

Our training process is divided into two steps: first, pre-training 

n 1600 training sets with pseudo labels, and then fine-tuning 

ith 60 images with ground-truth labels. In this part, we first ver- 

fy the validity of the pseudo-label dataset to ensure that it is help- 

ul to the learning process of the model. The results are shown in 

able 2 . It can be seen from the above results that there is a cer-

ain gap between the test result after training with only the train- 

ng set with pseudo-label and the test result after fine-tuning with 

round-truth label, indicating that training with only the pseudo 

abel data set is not enough. However, if only ground-truth labels 

re used for training (“0+60”), due to the small sample size, the 

nal result is inferior to pseudo-label data set in some evaluation 

etrics such as Spe.. Therefore, we refer to the semi-supervised 

raining method in Inf-Net [17] , which firstly used pseudo-label 

ata set for pre-training, and then used images with ground-truth 

abels for fine-tuning, so as to ensure sufficient training sample 

ize and achieve the best performance. 

.7. Experimental results and analysis 

.7.1. Quantitative analysis 

In order to compare the performance of infected region seg- 

entation, the existing segmentation models as U-Net, U-Net++ 

nd Inf-Net were added. In addition, we have added two algo- 

ithms for few-shot learning field: Few-shot U-Net and SG-One. 

he quantitative results in datasets [29] and [30] are shown in 

ables 3 and 4 . For each model, we used the same training method. 

e first conducted experiments to observe the influence of train- 

ng sets of different sizes on the performance of the models. The 

pecific approach is: we divide 1600 pseudo-label training sets into 

ifferent sizes: [0,40 0,80 0,120 0,160 0]. We train the model on train- 

ng sets of different sizes. Then we fine-tune models on 60 CT im- 

ges with the ground-truth labels. In general, the experimental re- 

ults of the traditional medical segmentation models U-Net and U- 

et++ are mediocre. The GFNet proposed in this paper performs 

he best in many metrics. For the few-shot U-Net, which is based 

n U-Net and uses an online learning paradigm to further improve 

he segmentation ability of traditional U-Net for COVID-19. Its per- 

ormance is improved over traditional U-Net. But for SG-One, an- 

ther few-shot learning method, it was only moderately effective. 

ompared with the latest COVID-19 segmentation model and our 

FNet, the experimental results of these two methods are not out- 

tanding. Under the influence of training sets of different sizes, the 

erformance of existing methods is gradually enhanced with the 

ncrease of data sets. We think this is because as the training set 

ncreases, more and more different knowledge is learned by the 

odel. For GFNet, with the increase of training set, the perfor- 

ance of GFNet is slightly improved. This shows that GFNet not 

nly has a good learning ability, but also can achieve good per- 

ormance when training samples are small. This is because “Edge- 

uidance” in GFNet is a module with strong robustness and uni- 

ersality. It can learn the boundary features of the target region at 
8

 fast speed and with a small sample size, and expand it to the 

egmentation result. In the dataset2 [30] , our GFNet continues to 

erform best on almost every metric. This means that our GFNet 

erforms better on “never seen” dataset. The universality of Eg to 

oundary features in different data sets is verified again. Indicating 

hat it has greater generalization ability overall. 

In addition, we also show the training and computational costs 

f each model in Table 5 . In real-world applications, the accuracy 

f a deep learning model is important. Not only that, its training 

ost, test speed and other performance are also taken seriously. As 

an be seen from the table, on a training set of 1600 images, our 

FNet is slightly slower than U-Net and Inf-Net in terms of training 

ime. This is due to the relative complexity of our model. However, 

t is worth mentioning that GFNet can achieve good performance 

nly by relying on a small number of training sets, which greatly 

aves the training time of the model and has great potential. U- 

et++ has a very long training time, because when we were train- 

ng U-Net++, on the same GPU, the batchsize was set to be smaller 

n case of insufficient video memory. In terms of test speed, we 

ounted the time taken for a test set of 20 images. Our GFNet is 

econd only to U-Net in testing speed by a small margin. To sum 

p, in real world case decision making, our GFNet is fully capable 

f such tasks if it is put into application under time constraints or 

ith few training samples. If there is enough time or a large train- 

ng sample, our GFNet can be sufficiently trained to achieve the 

est results. 

Finally, we also examine the effect of the number of the param- 

ters on the GFNet performance. To be specific: we changed the 

umber of parameters by adding and removing one layer from the 

riginal GFNet (5 layers). We named the changed models GFNet (6) 

nd GFNet (4). We examine the performance of these two models, 

nd the detailed results are shown in Table 6 . From the perspec- 

ive of model performance, when we add or reduce the number 

f GFNet layers, the performance of the model is degraded. Gener- 

lly speaking, the higher the number of parameters of the model, 

he better the performance will be, but the performance of GFNet 

6) is slightly reduced. We suspect that this is because the bound- 

ry details of COVID-19 are already very difficult to extract. As the 

umber of layers increases, many details are lost. For deeper struc- 

ures, simple stacking of layers will lead to network degradation 

40] . The last, we show the training and test time of GFNet (6) and

FNet (4) in Table 5 . 

.7.2. Quantitative analysis 

The segmentation results in different datasets of lung infection 

re shown in Figs. 8 and 9 . It is easy to see that our GFNet is

ignificantly better than the baselines. Specifically, the segmenta- 

ion results generated by it are close to the ground-truth map, 

nd there are fewer tissue regions wrongly segmented. In con- 

rast, the results given by U-Net, U-Net++ are not satisfactory be- 

ause some results have a large amount of normal tissue that has 

ot been segmented. Although Inf-Net is much better than both, 

here are still many regions where the boundaries are blurred. 

ur GFNet demarcates the region with very clear and precise 

oundaries. 

.8. Ablation experiments 

In this Section, we conducted some experiments to verify the 

ore module and steps of GFNet (Edge-guidance module, number 

f RA module usage (i.e., the best value of i in, A i and S i ( i = 1,

, 3, 4, 5)), as shown in Table 7 . The best result of each metric

s indicated in red. (The results of the fusion module are given in 

ig. 7 . 
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Table 3 

Quantitative results of segmentation of infected region on the “COVID-19 CT Segmentation” dataset [29] . The table 

shows the effect of training sets of different sizes on the performance of each model. The best of each evaluation 

metric is marked in bold and the second best in italic . 

Method 

Training set size (Pseudo label 

training + Ground-truth label 

Finetuning) Dice Sen. Spec. S α E mean 
φ

MAE 

0 + 60 0.632 0.653 0.917 0.762 0 . 880 0.083 

400 + 60 0.651 0.702 0.937 0 . 765 0.892 0.076 

U-Net 800 + 60 0.675 0 . 693 0 . 930 0.764 0.894 0.078 

1200 + 60 0.682 0.687 0.949 0.763 0.892 0 . 078 

1600 + 60 0.691 0.720 0.965 0.775 0.891 0.076 

0 + 60 0.645 0.659 0.921 0.759 0.881 0.079 

400 + 60 0.662 0.673 0.934 0 . 769 0.899 0.078 

Few-shot U-Net 800 + 60 0.683 0 . 695 0.945 0.772 0.901 0.075 

1200 + 60 0.701 0.713 0.946 0.762 0.898 0.076 

1600 + 60 0.717 0.720 0.952 0.775 0.904 0.073 

0 + 60 0.594 0.589 0.882 0.643 0.793 0.129 

400 + 60 0.611 0.603 0.890 0.658 0.812 0.114 

SG-One 800 + 60 0.625 0 . 616 0 . 913 0.671 0.824 0.098 

1200 + 60 0.632 0.639 0.927 0.685 0.821 0.087 

1600 + 60 0.640 0.635 0.936 0.693 0.834 0.079 

0 + 60 0.607 0.692 0.898 0.681 0.767 0.125 

400 + 60 0.603 0.642 0.894 0.633 0.726 0.145 

U-Net + 800 + 60 0.611 0.618 0.940 0.685 0.827 0.090 

1200 + 60 0.625 0.640 0.930 0.702 0.830 0.098 

1600 + 60 0.623 0.638 0.935 0.693 0.835 0.076 

0 + 60 0.699 0.715 0.928 0.782 0.862 0.078 

400 + 60 0.727 0.721 0.960 0.793 0.901 0.065 

Inf-Net 800 + 60 0.739 0.716 0.961 0.781 0.896 0.064 

1200 + 60 0.741 0.728 0.960 0.788 0.906 0.064 

1600 + 60 0.743 0.739 0.963 0.779 0.908 0.062 

0 + 60 0.739 0.731 0.944 0.767 0.919 0.064 

400 + 60 0.745 0.725 0.959 0.768 0.921 0.061 

GFNet(ours) 800 + 60 0.748 0.724 0.964 0.766 0.921 0.061 

1200 + 60 0.750 0.721 0.966 0.764 0.922 0.062 

1600 + 60 0.755 0.729 0.966 0.776 0.926 0.059 

Fig. 8. Comparison of visual effects of segmentation of infected regions on the “COVID-19 CT Segmentation” dataset [29] . 

9 
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Fig. 9. Comparison of visual effects of segmentation of infected regions on the “COVID-CS” dataset [30] . 

Table 4 

Quantitative results of segmentation of infected region on the dataset of 

“COVID-CS” [30] . The best segmentation results are shown in bold . 

Method Dice Sen. Spec. S α E mean 
φ

MAE 

U-Net 0.602 0.665 0.964 0.719 0.883 0.050 

Few-shot U-Net 0.611 0.668 0.964 0.725 0.870 0.051 

SG-One 0.596 0.581 0.979 0.721 0.892 0.056 

U-Net + 0.485 0.617 0.946 0.650 0.801 0.077 

Inf-Net 0.615 0.565 0.963 0.732 0.849 0.038 

GFNet(ours) 0.663 0.605 0.981 0.743 0.895 0.033 
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Table 6 

Three GFNets which have different number of parameters.their perfor- 

mance in dataset “1600+60”. 

Method Dice Sen. Spec. S α E mean 
φ

MAE 

GFNet(6) 0.741 0.713 0.961 0.758 0.912 0.064 

GFNet(4) 0.723 0.700 0.958 0.747 0.910 0.067 

GFNet 0.755 0.729 0.966 0.776 0.926 0.059 
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.8.1. Effectiveness of edge-guidance module 

As can be seen from No.1 and No.2, No.3 and No.4, after the 

ddition of Edge-guidance module, many metrics have significantly 

mproved. 

.8.2. Effectiveness of RA module 

As can be seen from No.1 and No.3, after the RA module is 

dded, many metrics have greatly improved. 

.8.3. Effectiveness of the combination of edge-guidance module and 

A module 

As can be seen from No. 3 and No. 4, when the combination of 

g and RA module is used, many indicators are improved again. 
Table 5 

The table shows the size of each model and the

ing. The training time was conducted on the trai

was conducted on a test set of 20 images. 

Method Backbone Param FLO

U-Net VGG16 7.9M 38.1

U-Net + VGG16 9.2M 65.9

SG-One VGG16 19.0M 45.9

Inf-Net Res2Net 33.1M 13.9

GFNet(ours) VGG16 18.1M 50.8

GFNet(6)(ours) VGG16 27.4M 49.5

GFNet(4)(ours) VGG16 10.9M 59.3

10 
.8.4. Usage times of RA module 

In the paper [17] , RA module was used three times, it is not 

igorous enough, because we think RA module is a process of fus- 

ng high-level information with low-level information. So, as the 

eatures start at the deepest S 5 and backward to the S 1 ,the infor- 

ation at each layer can be utilized. From No. 4 to No. 8, we can

ee that with the increase of RA module, the experimental results 

ecome better and better. 

.9. Deficiencies and future prospects 

Although our GFNet is significantly better than the traditional 

ethods in two datasets, there are still some deficiencies. For ex- 

mple, in terms of training speed and testing speed, our GFNet is 

ot the fastest. We will continue to improve GFNet in this area. In 
 computational cost for training and test- 

ning set of 1600 images. The testing time 

P Training time Testing speed 

16G 7.2h 1.51s 

38G 26.7h 3.93s 

16G 7.3h 1.77s 

22G 5.3h 1.92s 

27G 7.5h 1.63s 

37G 7.1h 1.69s 

91G 9.8h 1.55s 
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Table 7 

Ablation experiments of GFNet. The best segmentation results are shown in bold . 

No. BLOCKS Dice Sen Spec S α E mean 
φ

MAE

Backbone (VGG16) Eg S 5 S 4 S 3 S 2 S 1 

1 � 0.601 0.612 0.837 0.695 0.720 0.151 

2 � � 0.643 0.654 0.863 0.725 0.759 0.127 

3 � � 0.639 0.635 0.878 0.734 0.792 0.085 

4 � � � 0.681 0.667 0.921 0.757 0.856 0.076 

5 � � � 0.710 0.672 0.944 0.776 0.872 0.069 

6 � � � 0.725 0.698 0.951 0.791 0.890 0.065 

7 � � � 0.737 0.715 0.962 0.792 0.899 0.063 

8 � � � 0.748 0.714 0.965 0.798 0.915 0.061 
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[  
he future, we will combine GFNet with more advanced models, 

nd improve the existing modules such as Edge-guidance module 

nd the final fusion module. 

. Conclusion 

In this paper, we propose a COVID-19 lung CT region segmenta- 

ion network framework named GFNet. The edge guidance module 

s added on the basis of the reverse attention module and the ag- 

regation module, which can help the model to capture the bound- 

ry information on the fuzzy focus boundary effectively, and then 

ake the boundary segmentation result very accurate. Then, based 

n the idea of feature fusion, the obtained features are fused. Fi- 

ally, the model can produce an optimal output. Meanwhile, we 

roved the problem of the usage times of RA module. In Inf-Net, 

A module was used in three deep convolution layers. We proved 

hat the experimental results would be better if RA module was 

sed for each layer. In order to solve the problem of the dataset is 

oo small, we use a semi-supervised approach to extend the train- 

ng dataset to train GFNet and to prevent overfitting. On the ex- 

sting two datasets, we verify GFNet’s learning ability and general- 

zation ability respectively, and the experiment results show that 

FNet is superior to previous models. The qualitative results also 

how that our segmentation results are more accurate and clear 

han other models. At the same time, we conducted experiments 

ith each model on training datasets of different sizes. Experimen- 

al results show that for other models, increasing the size of the 

raining set will improve the performance of the model. But our 

FNet works well when the training set is small. This is because 

Edge-guidance” in GFNet is a module with strong robustness and 

niversality. It can learn the boundary features of the target region 

t a fast speed and with a small sample size, and expand it to the

egmentation result. This shows that our GFNet has great potential 

n image segmentation with fuzzy boundaries facing other similar 

argets. Finally, we also show the training and computational costs 

f each model. In our experiment, the training and testing speed 

f our model is not the fastest, but our model can also achieve 

ood performance when the training set is relatively small. In real 

orld case decision making, our GFNet is fully capable of such 

asks if it is put into application under time constraints or with 

ew training samples. Our GFNet can also be sufficiently trained to 

chieve maximum performance if there is sufficient time or a large 

raining sample. In the future, we will apply the GFNet framework 

o other medical image segmentation tasks, such as colonoscopic 

olyps, cells, etc., or image segmentation in other fields. Therefore, 

ur GFNet has great potential to assist healthcare professionals in 

edical images segmentation. 
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