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In early 2020, the global spread of the COVID-19 has presented the world with a serious health crisis.
Due to the large number of infected patients, automatic segmentation of lung infections using computed
tomography (CT) images has great potential to enhance traditional medical strategies. However, the seg-
mentation of infected regions in CT slices still faces many challenges. Specially, the most core problem is
the high variability of infection characteristics and the low contrast between the infected and the normal

Keywords: regions. This problem leads to fuzzy regions in lung CT segmentation. To address this problem, we have
Image segmentation designed a novel global feature network(GFNet) for COVID-19 lung infections: VGG16 as backbone, we
COVID-19 design a Edge-guidance module(Eg) that fuses the features of each layer. First, features are extracted by

Edge-guidance
Convolutional neural network
CT image

reverse attention module and Eg is combined with it. This series of steps enables each layer to fully ex-
tract boundary details that are difficult to be noticed by previous models, thus solving the fuzzy problem
of infected regions. The multi-layer output features are fused into the final output to finally achieve au-
tomatic and accurate segmentation of infected areas. We compared the traditional medical segmentation
networks, UNet, UNet++, the latest model Inf-Net, and methods of few shot learning field. Experiments
show that our model is superior to the above models in Dice, Sensitivity, Specificity and other evaluation
metrics, and our segmentation results are clear and accurate from the visual effect, which proves the ef-
fectiveness of GFNet. In addition, we verify the generalization ability of GFNet on another “never seen”
dataset, and the results prove that our model still has better generalization ability than the above model.
Our code has been shared at https://github.com/zengzhenhuan/GFNet.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Since December 2019, a large number of novel coronavirus
cases have been reported in Wuhan, Hubei Province, China, and
the number of infections is increasing. Novel coronavirus can cause
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acute respiratory diseases in humans and may even cause fa-
tal acute respiratory distress syndrome (ARDS). The International
Committee on Taxonomy of Viruses (ICTV) named the novel coro-
navirus SARS-CoV-2, and the World Health Organization (WHO)
named it COVID-19. The Novel Coronavirus has been confirmed as
capable of human-to-human transmission. The Novel Coronavirus
spreads rapidly in China and the world due to massive traffic and
population movement during the Spring Festival. The Novel Coron-
avirus has extremely high rates of morbidity and mortality. Accord-
ing to the World Health Organization (WHO), as of 10 April 2020,
there have been 1521, 252 confirmed cases globally [1]. As of 12
July 2021, there have been 180 million confirmed cases worldwide
and 4 million cumulative deaths [2].

Reverse transcription polymerase chain reaction (RT-PCR) is
considered by the industry to be the gold standard for screening
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for COVID-19. However, this has limited rapid and accurate detec-
tion. In addition, RT-PCR testing has been reported to have a high
rate of false negatives. As an important complement to RT-PCR
testing, radiological imaging techniques such as X-ray and com-
puted tomography (CT) have also played a role in current diagno-
sis, including follow-up evaluation and assessment of disease pro-
gression [7,8]. A clinical study of 1014 patients from Wuhan, China,
showed that chest CT analysis could achieve a sensitivity of 0.97,
a specificity of 0.25, and an accuracy of 0.68 in detecting cases
of neocoronary pneumonia, accompanied by RT-PCR test results
as a reference [23]. Computed tomography (CT) imaging plays a
crucial role in detecting the pulmonary manifestations of COVID-
19 [3,4], and the segmentation of infected lesions in CT scan is
very important for quantitative measurement of disease progres-
sion [5,6]. Lung CT image segmentation is a necessary initial step
for lung image analysis [37]. The segmentation of lesions can re-
move unnecessary background areas and assist doctors in diag-
nosis, which is an important step in CT image analysis. In con-
trast to common pneumonia, COVID-19 presents with pulmonary
ground-glass opacity (GGO) and signs of pulmonary solidity. CT
imaging of COVID-19 in its early stages usually appears as one or
more GGO nodular, patchy or lamellar shadows and is generally
distributed along the field 1/3 of the lung and under the pleura.
As the disease progresses, most patients with COVID-19 will de-
velop solid lung lesions. During the COVID-19 outbreak in Wuhan,
a large number of patients, including suspected cases, confirmed
cases and follow-up cases, required chest CT examinations to ob-
serve the changes and severity of pneumonia. The qualitative eval-
uation of infection and longitudinal changes in CT slices could
thus provide useful and important information in fighting against
COVID-19. So we need to segment the lesion regions separately.
Existing papers [36] have shown that considering a real-world ap-
plication, segmentation is an important step since it removes back-
ground information, reduces the chance of data leak, and forces the
model to focus only on important image areas. Under the current
circumstances, any missed cases will continue to lead to COVID-19
transmission. Therefore, a large amount of work and high diagnos-
tic accuracy pose great challenges to radiologists. In addition, the
radiologist’s eyestrain increases the potential risk of missing some
small lesions. In the face of such a serious epidemic, it is very nec-
essary to apply deep learning to disease diagnosis. Early, accurate
and rapid diagnosis of suspected cases is crucial to timely isolation
and medical treatment, and is of great significance to patient treat-
ment, epidemic control and public health security. So, developing
an artificial intelligence (Al) method for COVID-19 computer-aided
diagnosis could be very helpful to radiologists.

In Section 2, we will introduce some recent examples of deep
learning applied to lung CT segmentation, explain their shortcom-
ings, and then introduce the ideas and solutions of this paper. In
Section 3, we will introduce the network structure and its core
modules and loss functions in detail. In Section 4, we will in-
troduce the experimental environment, dataset sources, evaluation
metrics, and illustrate how to determine the optimal output of the
network. Then we will present our experimental results qualita-
tively and quantitatively and compare them with other methods,
and add ablation experiments to verify the effectiveness of the core
modules. Finally, the conclusion is given in Section 5.

2. Related work

Recently, deep learning systems have been designed to examine
patients infected with COVID-19 via radiological imaging [41,42]. In
clinical practice, automatic segmentation of lesions is highly desir-
able [6]. Although CT scans are important for diagnosis and treat-
ment decisions, automatically segmenting COVID-19 pneumonia le-
sions from CT scans is challenging for several reasons. First of all,
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(d)

Fig. 1. CT scan of COVID-19 patients with complex findings of pneumonia lesions
(a-c) from three different patients, with some lesions highlighted by arrows.(d) Dis-
play the labels made by different observers on item (c). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

the infected lesions have a variety of complex manifestations, such
as ground glass shadow (GGO), consolidation, etc. [9]. Second, the
size and location of pneumonia lesions vary greatly between differ-
ent stages of infection and different patients. As shown in Fig. 1(a-
¢) [10], the lesions were irregular in shape and blurred in bound-
ary. Some lesions, such as GGO, had low contrast with the sur-
rounding region. In addition, radiologists’ labeling of infected re-
gion is a highly subjective task, often subject to personal biases
and influenced by clinical experience. As shown in Fig. 1(d). Due
to the outbreak of COVID-19, it is difficult to collect enough labeled
data for deep model training in a short period of time. In addition,
obtaining high quality pixel-level lung infection annotations on CT
slices is expensive and time consuming. These challenges make the
task of automatically segmenting lesions more difficult.

Li et al. [4] used U-Net [12] to segment lung from CT scan.
UNet++ [13] is also used to detect [14] and segment [15] infected
lesions from CT scan. Liu et al. [21] propose a weakly supervised
COVID-19 infection segmentation method with scribble supervi-
sion. A et al. [37] design and evaluate an automatic tool for au-
tomatic COVID-19 Lung Infection segmentation and measurement
using chest CT images. An uncertainty-aware mean teacher frame-
work is incorporated into the proposed method to guide the model
training, encouraging the segmentation predictions to be consis-
tent under different perturbations for an input image. With the
pixel level uncertainty measure on the predictions of the teacher
model, the student model is guided with reliable supervision. Zhao
et al. [22] proposed a new deep-learning-based method that inte-
grates a 3D V-Net with shape priors for medical image segmen-
tation. The shape prior was used to optimize the model weights
in both V-Net input and output, which significantly improved the
model performance. Wang et al. [16] trained the lung segmenta-
tion network by using ground-truth mask obtained by unsuper-
vised method, designed an effective lightweight 3D residual net-
work and proposed a weakly supervised COVID-19 lesion detection
method. Wang et al. [10] proposed a novel noise-robust-DICE loss
function and a noise robust learning framework based on CNNs
self-integration, which is robust to noise labels and Dice losses.
Fan et al. [17] proposed an Inf-Net automatic segmentation of in-
fected region from lung CT images and a semi-supervised segmen-
tation framework based on random selection propagation strategy,
which only required a small number of labeled images and mainly
used unlabeled data to alleviate the shortage of high-quality la-
beled data. Maghdid et al. [38] build a comprehensive dataset of
X-rays and CT scan images from multiple sources as well as pro-
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Segmentation results of
existing models

Fig. 2. The position marked by the circle in the figure points out the problem of fuzzy boundary of segmentation results in an existing model [17]. In the two regions
marked, it may be difficult for health care workers to determine from the naked eye whether these regions are infected or not. In image segmentation, these regions are
difficult identify by previous methods because of their fuzzy boundaries and low contrast with normal tissues. Such areas of ambiguity may interfere with a health care
provider’s perception of the infected region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

vides a simple but an effective COVID-19 detection technique us-
ing deep learning and transfer learning algorithms. Zhou et al.
[43] proposed an ensemble deep learning model for novel COVID-
19 detection from CT images. Mu et al. [45] proposed a multi-scale
multi-level feature recursive aggregation (mmFRA) network which
is used to integrate multi-scale features with multi-level features.
Katsamenis et al. [46G] proposed a deep learning framework that
can detect COVID-19 pneumonia in thoracic radiographs, as well
as differentiate it from bacterial pneumonia infection. Voulodimos
et al. [25,44] presented a few-shot learning paradigm for segment-
ing COVID-19 infectious regions. The main difference of the pro-
posed algorithm compared with the traditional approaches is that
it is an online learning paradigm, not the static supervised learning
of U-Net.

However, all the above methods have a common deficiency,
that is, the fuzzy boundary problem of lesion segmentation is not
solved completely, in other words, the fuzzy boundary is not ex-
actly segmented. So the segmentation results are still kind of am-
biguous. As shown in Fig. 2. If ambiguous, for segmenting the le-
sion regions will affect the medical staff of judgment, if the nor-
mal tissue segmentation as the lesion regions, can make the pa-
tient’s condition mistaken for serious, if the lesion regions seg-
mentation to normal tissue, may let the patient do not get proper
treatment cases lead to misdiagnosis and even produce COVID-19
further spread.

Therefore, the method proposed in this paper is mainly aimed
at solving the problem of fuzzy boundary and the problem that
normal organizations are difficult to distinguish correctly. In clini-
cal practice, doctors first determine the location of the lesion and
then judge the results according to the characteristics of the dis-
eased region when judging the patient’s condition according to CT
images. According to the above steps, we should focus on the lo-
cation and boundary of the lesion region when we use the deep
neural network for learning.

To solve the above problems, we will carry out the following
two main operations successively: 1. Locate the lesion.2 Accurately
extract contour. As we all know, in the convolutional neural net-
work, the resolution of low-layer features is higher and contains
more detailed information, but because of less convolution, it has
lower semantics and more noise. High-layer features have stronger
semantic information, but the resolution is low and the perception
of details is poor [11]. How to integrate them efficiently, take their

advantages and discard their faults is the key to improving the
segmentation model. Therefore, we designed a kind of framework.
First, aggregation high-level feature extracting rough estimate of
the lesion region. We also designed a Edge-guidance module, used
to provide guidance in the use of reverse attention modules for
accurate contour extraction of lesions after localization. Finally, by
fusing feature at each layer, the accurate segmentation of the le-
sion region was obtained.

In short, our contributions in this paper are threefold:

1. A novel deep learning network framework, GFNet, was pro-
posed for the segmentation of infected region of COVID-19 in two-
dimensional CT images of lungs. By aggregating the high-layer fea-
tures using the aggregation module, the aggregated features can
capture context information and generate a global location map as
an initial boot region for subsequent steps. In order to further dig
the boundary information of the target, we use the reverse atten-
tion module step by step from the high-layer to the low-layer, then
further extract the hidden details of each layer, and finally fuse the
features of each layer, so that the network can fully extract the de-
tails that are difficult to be noticed by the previous model.

2. We design a Edge-guidance map that contains the bound-
ary features of each layer to further extract the boundary informa-
tion when the features of each layer are extracted. The experiment
proves that this design is very effective.

3. We applied the GFNet framework to VGG16 and used our
method on two different datasets. One data set was “seen” to ver-
ify learning ability, and the other was “not seen” to verify gener-
alization ability. Experimental results show that GFNet has better
learning ability and generalization ability than existing models.

4. We conducted experiments with each model on training
datasets of different sizes. Our model can achieve good perfor-
mance when the training set is relatively small. In real-world case
decision making, our GFNet is fully capable of such tasks if it is put
into application under time constraints or with few training sam-
ples. Our GFNet can also be sufficiently trained to achieve max-
imum performance if there is sufficient time or a large training
sample.

3. Proposed method

In this section, we will give a detailed introduction to the GFNet
network structure, core network components, and loss functions.
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Fig. 3. Structure diagram of GFNet model, f1 to f5 are the backbone of VGG16. GFNet contains one Eg, one aggregation module Sg, and five RA modules connected. The
input image goes from F1 to F5, then from S5 back to S1 via Sg, Eg, RA modules. The final output result is the sum of each lateral output Si. See IIl. A for more details.

3.1. Global-feature network(GFNet)

Network overview: The framework of GFNet is shown in Fig. 3.
With VGG16 as the backbone network, the whole network is di-
vided into five layers, and the high-layers features are layer 3, layer
4, and layer 5. We use the aggregation module to aggregate the
high-layers features(fs, f4, f5) to generate global location map S
[17]. Then, starting from the S,, importing Sg and f5 into a reverse
attention module (RA), meanwhile, under the guidance of Edge-
guidance module(Eg). The output S5 and f4 go to the next RA. Re-
peating the above operation to get S; finally, fuse n S; and get the
prediction graph through sigmoid output. Next, we will introduce
the core modules in this network and the loss function in detail.

3.2. Edge guidance module

We know that the deeper the feature, the coarser the informa-
tion, while the low-layer feature contains a lot of useful details.
In order to make good use of the features of each layer, based on
the idea of edge detection [18], we designed a Edge-guidance mod-
ule(Eg) fusing the features of each layer, it contains the boundary
information of each layer and has rich edge features, which helps
us to extract the boundary of the lesion region more effectively
and accurately in the subsequent feature extraction, so as to solve
the problem of fuzzy boundary. The specific approach is as follows:
For the VGG16, VGG16 network composes of 13 conv layers and 3
fully connected layers. We cut all the fully connected layers and
the pool5 layer. On the one hand, we remove the fully connected
layers due to the fact that they do not align with our design of a
fully convolutional network. On the other hand, adding pool5 layer
will increase the stride by two times, and it’s harmful for edge lo-
calization. Its conv layers are divided into five stages, in which a
pooling layer is connected after each stage. The useful information
captured by each conv layer becomes coarser with its receptive
field size increasing. Detailed receptive field sizes of different lay-

Table 1
Detailed receptive field and stride sizes of standard VGG16 net.

layer convl, convl, pool; conv2, conv2; pool,
of size 3 5 6 10 14 16
stride 1 1 2 2 2 4
layer conv3, conv3, conv3s pools conv4, conv4,
if size 24 32 40 44 60 76
stride 4 4 4 8 8 8
layer conv4; pooly conv5; conv5, conv5s pool5
f size 92 100 132 164 196 212
stride 8 16 16 16 16 32

ers can be seen in Table 1. Hence, we combine hierarchical features
from all the conv layers into a holistic framework, in which all
of the parameters are learned automatically. Since receptive field
sizes of conv layers in VGG16 are different from each other, our
network can learn multi-scale, including low-level and objectlevel,
information that is helpful to extract more boundary information.
Since our boundary guidance module combines all the accessible
conv layers to employ richer features, it is expected to achieve a
boost in accuracy. At the same time of obtaining the Edge-guidance
map, we compute the gradient of Ground-truth of the input image
to obtain edge-Ground-truth of the boundary [17]. Then we con-
duct deep supervision of the Edge-guidance map and let it further
learn the boundary features from the rich features. In Fig. 4, we
show the Edge-guidance results after combination. The edge ob-
tains strong response at the COVID-19 infection region. Details of
this module are shown in Fig. 4.

We use the standard Binary Cross Entropy(BCE) loss function
to measure the dissimilarity between the generated Edge-guidance
map (Eg) and the edge-Ground-truth map (Ge) calculated by using
the gradient of the ground-truth (GT):

w h
Lg, == > [Gelog (Eg) + (1 - Ge) log (1 - Eg)] (1)

x=1y=1
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Fig. 5. Aggregated high-layers features are used to generate a global location map.

Where, (x,y) the coordinates of each pixel in the Edge-guidance
map Eg and edge-ground-truth map Ge. In addition, w and h re-
spectively represent the width and height of the corresponding
feature map.

3.3. Aggregation module

Many existing medical image segmentation networks [19,20],
use high and low level features in encoders to segment target or-
gans and lesion regions. However, Wu et al. [35] pointed out that,
compared with high-level features, low-level features require more
computing resources due to their greater spatial resolution, but
contribute less to performance. Inspired by this, we using a Parallel
Partial Decoder (PPD) modules to aggregate high-layers features.
Specifically, for the input 2d CT images, we first obtain three high-
layers features f;,i= 3, 4, 5 of the VGG16. Then, we use a novel
partial decoder pd() [1735] to aggregate the high-layers features
in a paralleled connection. The decoder produces a global location
map Sg = pd(fs, fa. f5), which then serves as an initial guide in
the RA module. The details are shown in Fig. 5.

3.4. Reverse attention module

In clinical practice, clinicians usually use a two-step operation
to segment the lung infection region, first roughly locate the in-
fected region, and then accurately mark these region by examining
the local tissue structure. Inspired by this process and [24], we de-
signed GFNet using five reverse attention modules(RA).

First, the PPD module acts as a rough locator and generates
a high-level global map Sg with unstructured details to provide
rough location information for the lung infection region.

Secondly, our structure mine discriminative infection regions in
an erasing manner [26,27]. Specifically, compared with simply ag-
gregating features from all layers [27],we propose to adaptively
learn the reverse attention in all five layers features. Importing Sg
and fs5 into a RA, meanwhile, under the guidance of Eg. The spe-
cific approach is as follows: S;,; goes through Sigmoid and reverse
to get A; with reverse attention weight, and then A; is multiplied
with the feature f; of the lower layer. Before getting the RA fea-
ture, we concatenate Eg with the result multiplied, so as to get Ry,
feature under the guidance of Eg. Finally, we add RA; with S;,; to
get lateral output S; of layer i. For each lateral output S;, we con-
duct deep supervised learning. The output S5 and f4; go to the next
RA. Repeating the above operation to get S; finally. Formula is as
follows:

RA; = C(f; ® A;, down (Eg)) (2)

Where C(-) represents concatenate, down(-) represents down sam-
pling, followed by two two-dimensional convolution layers with 64
filters. In fact, RA weights A; widely adopted design in the salient
object detection in computer vision [27], it is defined as:

A = €(O(Sig (up(Sis1)) (3)

Among them up represents the upsampling operation, Sig repre-
sents activate function for Sigmoid, ® represents the reverse op-
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Fig. 6. The reverse attention module is used to implicitly learn edge features.

eration of subtracting the input from a matrix of all 1s. The sym-
bol ¢ represents the extension of the single-channel feature map
to multi-channels, including the reversion of each channel of the
candidate tensors in Eq. (2). The final output of this layer S; is:

Si = RA; + Siq (4)

The details of this process are shown in Fig. 6. It is worth noting
that erasure strategies in RA can ultimately refine inaccurate and
coarse prediction region into an accurate and complete prediction
map.

In [17], RA module is also used in Res2Net to extract features
from layer 5 to layer 3. We differ from them in that here we apply
the RA module to each layer and demonstrate that our approach is
better in subsequent ablation experiments.

3.5. Loss function

We define the loss function Lsg as the combination of the
weighted IoU loss function L¢, and the weighted binary cross en-
tropy (BCE) loss function L}, namely:

Leeg = Ly + ALgcE (5)

Where A represents the weight, which was set to 1 in our ex-
periment. The two parts of Ly provide effective global (image-
level) and local (pixel-level) supervision to obtain accurate seg-
mentation effects. Unlike the standard IoU loss function, which is
widely used in the segmentation task, the weighted IoU loss func-
tion increases the weights at the sample points of the difficult
pixel to highlight its importance. In addition, compared with the
standard BCE loss function, Ly, pays more attention to the diffi-
cult pixel sample points rather than assigning the same weight to
all pixels. The definitions of these losses are the same as those in
[31,32], and their effectiveness has been validated in target detec-
tion domain. We adopt deep supervision for the five lateral outputs
(S;,i=1,2,3,4,5) and the global location map Sg, each of which is
upsampled to the same size as the object-level segmented ground-
truth map G. Therefore, the total loss function is:

5

Ltotal = Lseg(G’ sg) + ZLseg(Gs si) + LEg (6)
1

4. Experiment
4.1. Experimental environment and parameter setting

Our model was configured with the PyTorch 1.10.0, cuda 11.6
framework and trained on a single NVIDIA RTX 3080 Ilaptop
GPU. Before the training, we uniformly resize all the inputs to
352 x 352, and a multi-scale training method with a scaling ratio

of [0.75, 1, 1.25] was used to train the datasets, so as to improve
the generalization performance of the model. The network is
trained using the Adam optimizer. Set the Epoch to 100 with a
batch size of 4 and the learning rate to 1e-4.

4.2. Baselines

For the infected region experiment, we applied the GFNet
framework of this paper to VGG16. We first identify the best value
for n of Sou = ZL] S;. And compared with two classic segmen-
tation models in the medical field, including U-Net [12], U-Net++
[13], the latest model Inf-Net [17], and two segmentation models
“Few-shot UNet” [25] and “SG-One” [39] based on few-shot learn-
ing.

4.3. Datasets

Currently, the number of CT images with segmentation labeling
is very limited because manually segmenting areas of lung infec-
tion is a difficult and time-consuming task, and the outbreak of
the disease is in its early stages. To solve this problem, we use a
semi-supervised learning strategy to improve GFNet, using a large
number of unlabeled CT images to effectively expand the training
data. This strategy refers to the method in [17] and is based on the
random sampling strategy to gradually expand the unlabeled data
of the training dataset. See Algorithm 1 [17] for details. Specifi-

Algorithm 1
Require: Labeled training data Djpeeq and unlabeled training data
DUnlabeled
Ensure: Trained GFNet
1: Construct a training dataset Drpgining using all the labeled CT
images from Dygpeleq
2: Training our model GFNet using Drygining
3: repeat
4:  Perform testing using the trained model GFNet and K
CT images randomly selected from Dy, gpeleqs Which yields
network-labele data Dpg_jgpereq, cOnsisting of K CT images
with pseudo labels
5. Enlarge the training dataset using Dye;_jgpeled i-€-» Drraining=
DTraining U DNet—labeled
Remove the K testing CTimages from Dy apeled
Fine-tune GFNet using Drrgining
until Dy apeled 1S €MpPty
return Trained model GFNet

cally, we generate the pseudo labels for unlabeled CT images using
the procedure described in Algorithm 1. The resulting CT images
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with pseudo labels are then utilized to train our model. This semi-
supervised approach is simple, it requires no measures to evalu-
ate the labels of predictions, and it has no threshold. Secondly,
this strategy can provide better performance than other semi-
supervised learning methods and prevent network overfitting. Re-
cent research work [34] has confirmed this conclusion. We use the
same training settings as in [17]. We generate pseudo labels for un-
labeled CT images using the protocol described in Algorithm 1 [17].
The number of randomly selected CT images is set to 5, i.e.,, K = 5.
Now there are 1600 unlabeled images, we need to perform 320
iterations with a batch size of 4. The unlabeled CT images are ex-
tracted from the COVID-19 CT Collection [33] dataset, which con-
sists of 20 3D CT volumes from different COVID-19 patients. Fan
et al. [17] had extracted 1600 2d CT axial slices from 3D volumes,
removed non-lung regions, and constructed an unlabeled training
dataset Dypqpereq for effective semi supervised segmentation. After
obtaining a semi-supervised dataset with pseudo labels, our next
training phase consists of two steps: (i) Pre-training on 1600 CT
images with pseudo labels, which takes 7.5 h to converge over 100
epochs with a batch size of 4. (ii) Fine tuning on 60 CT images
with the ground-truth labels, which takes about 15 min to con-
verge over 100 epochs with a batch size of 4. These 60 CT images
were taken from COVID-19 CT Segmentation dataset [29], which
consists of 100 axial CT images collected by the Italian Society
of Medical and Interventional Radiology. A radiologist segmented
the CT images using different labels to identify lung infections. Al-
though this is the first open-access COVID-19 dataset for lung in-
fection segmentation, it suffers from a small sample size, i.e., only
100 labeled images are available. We employ them as the labeled
data Djgpejeq, Which consists of 60 CT images randomly selected as
training samples, 20 CT images for validation, and the remaining
20 images for testing. We verify the model’s learning ability on this
testing dataset. In addition, we found a public dataset “COVID-CS”
[30] and tested the trained model directly on this dataset to verify
our model’s generalization ability to “never seen” data. For a fair
comparison, we adopt the same training mode and setting for the
baseline model.

4.4. Evaluation metrics

According to Han et al. [5], Huang et al. [26], we used three
widely used metrics: Dice similarity coefficient, Sensitivity (Sen.),
Specificity (Spec.) and Precision (Prec.). We also introduce three
golden indicators from the object detection field, including Struc-
ture Measure [27], Enhanced-alignment Measure [28], and Mean
Absolute Error. In our evaluation, we choose Sy, with Sigmoid
function as the final prediction Seg. The seven metrics used to
measure the performance of a model can be expressed as:

4.4.1. Dice coefficient

Dice is mainly used to calculate the similarity of two sets, and
its definition is as follows:

. 2*| Seg NGT|
Dice = ——F——— 7

[Seg] +1CT] )

4.4.2. Sensitivity (Sen.)

Sen. reflects the percentage of lung infections that were cor-
rectly segmented. It is defined as follows:

| Seg NGT|
Sen. = ———— 8
4.4.3. Specificity (Spec.)

Spec. reflects the percentage of lung non-infections that were
correctly segmented. It is defined as follows:

_ |1 —SegUGT|

Spec. = T CT| 9)
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The value of n corresponds to the data change

Fig. 7. The value of n corresponds to the data change of [Dice, Sen., Spe., So., Em].

Among them is the pixel set of the entire CT.

4.4.4. Structural measure (Sy):

This metric is more consistent with the human visual system
and is used to measure the structural similarity between the pre-
diction map and the ground-truth mask:

Se = (1 —a) xSo(Seg, G) + o x S;(Seg, G) (10)

Where « is the balance factor used to control object-aware simi-
larity S, and region-aware similarity S;. In this paper, we set the
same metric value as the original text with the default setting
(¢=0.5).

4.4.5. Enhanced-alignment measure (E;’;e“”)

This is a recently proposed metric that measures both local and
global similarity between two binary graphs. The formula is as fol-
lows:

w h
Ey = ﬁZZWSp(XJ’)vG(X*”) ()
Xy

Where w and h represent the width and height of ground-truth
map G, and (x, y) represents the coordinates of each pixel in G.
The symbol ¢ is an enhanced alignment matrix. We get a set of
Eg value by thresholding the prediction Seg with thresholds 0 to
255 to obtain a binary mask. In our experiment, we reported the
mean of Eg under all thresholds.

4.4.6. Mean absolute error (MAE)
This metric measures the pixel-level error between Seg and G,
and is defined as:

1 w h
MAE = 5 2 2 ISeBx) = Gex.)| (12)

4.5. The determination of the optimal value of n

We first conducted experiments in different n on the “COVID-
19 CT Segmentation” dataset [29]. The results can be seen from
Fig. 7. Some metrics, such as Dice, Sen, S and E(’;;e“”,will increase
with the number of fusion feature layers increasing. So we set the
best value of n to 5, that is, the final output is Seyr = S1 + S5 + S5 +
S4 + Ss. Through this step experiment, we proved that the results
combinated by all the five lateral output will have the best perfor-
mance.
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Table 2
1600 training sets with pseudo-labels were trained and tested directly on
the “COVID-19 CT Segmentation” dataset [29] to verify the validity of the

dataset.
Method Dice Sen. Spe. Sa Em MAE
U-Net 0.682 0.607 0972 0.710 0.842 0.084
U-Net+ 0584 0.608 0.845 0.625 0.796 0.117
Inf-Net 0.689 0.630 0.970 0.733 0.853 0.070

GFnet(ours)  0.697 0.613 0976 0723 0.858  0.069

4.6. Verify the validity of data sets with pseudo labels

Our training process is divided into two steps: first, pre-training
on 1600 training sets with pseudo labels, and then fine-tuning
with 60 images with ground-truth labels. In this part, we first ver-
ify the validity of the pseudo-label dataset to ensure that it is help-
ful to the learning process of the model. The results are shown in
Table 2. It can be seen from the above results that there is a cer-
tain gap between the test result after training with only the train-
ing set with pseudo-label and the test result after fine-tuning with
ground-truth label, indicating that training with only the pseudo
label data set is not enough. However, if only ground-truth labels
are used for training (“0+60”), due to the small sample size, the
final result is inferior to pseudo-label data set in some evaluation
metrics such as Spe.. Therefore, we refer to the semi-supervised
training method in Inf-Net [17], which firstly used pseudo-label
data set for pre-training, and then used images with ground-truth
labels for fine-tuning, so as to ensure sufficient training sample
size and achieve the best performance.

4.7. Experimental results and analysis

4.7.1. Quantitative analysis

In order to compare the performance of infected region seg-
mentation, the existing segmentation models as U-Net, U-Net++
and Inf-Net were added. In addition, we have added two algo-
rithms for few-shot learning field: Few-shot U-Net and SG-One.
The quantitative results in datasets [29] and [30] are shown in
Tables 3 and 4. For each model, we used the same training method.
We first conducted experiments to observe the influence of train-
ing sets of different sizes on the performance of the models. The
specific approach is: we divide 1600 pseudo-label training sets into
different sizes: [0,400,800,1200,1600]. We train the model on train-
ing sets of different sizes. Then we fine-tune models on 60 CT im-
ages with the ground-truth labels. In general, the experimental re-
sults of the traditional medical segmentation models U-Net and U-
Net++ are mediocre. The GFNet proposed in this paper performs
the best in many metrics. For the few-shot U-Net, which is based
on U-Net and uses an online learning paradigm to further improve
the segmentation ability of traditional U-Net for COVID-19. Its per-
formance is improved over traditional U-Net. But for SG-One, an-
other few-shot learning method, it was only moderately effective.
Compared with the latest COVID-19 segmentation model and our
GFNet, the experimental results of these two methods are not out-
standing. Under the influence of training sets of different sizes, the
performance of existing methods is gradually enhanced with the
increase of data sets. We think this is because as the training set
increases, more and more different knowledge is learned by the
model. For GFNet, with the increase of training set, the perfor-
mance of GFNet is slightly improved. This shows that GFNet not
only has a good learning ability, but also can achieve good per-
formance when training samples are small. This is because “Edge-
guidance” in GFNet is a module with strong robustness and uni-
versality. It can learn the boundary features of the target region at
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a fast speed and with a small sample size, and expand it to the
segmentation result. In the dataset2 [30], our GFNet continues to
perform best on almost every metric. This means that our GFNet
performs better on “never seen” dataset. The universality of Eg to
boundary features in different data sets is verified again. Indicating
that it has greater generalization ability overall.

In addition, we also show the training and computational costs
of each model in Table 5. In real-world applications, the accuracy
of a deep learning model is important. Not only that, its training
cost, test speed and other performance are also taken seriously. As
can be seen from the table, on a training set of 1600 images, our
GFNet is slightly slower than U-Net and Inf-Net in terms of training
time. This is due to the relative complexity of our model. However,
it is worth mentioning that GFNet can achieve good performance
only by relying on a small number of training sets, which greatly
saves the training time of the model and has great potential. U-
Net++ has a very long training time, because when we were train-
ing U-Net++, on the same GPU, the batchsize was set to be smaller
in case of insufficient video memory. In terms of test speed, we
counted the time taken for a test set of 20 images. Our GFNet is
second only to U-Net in testing speed by a small margin. To sum
up, in real world case decision making, our GFNet is fully capable
of such tasks if it is put into application under time constraints or
with few training samples. If there is enough time or a large train-
ing sample, our GFNet can be sufficiently trained to achieve the
best results.

Finally, we also examine the effect of the number of the param-
eters on the GFNet performance. To be specific: we changed the
number of parameters by adding and removing one layer from the
original GFNet (5 layers). We named the changed models GFNet (6)
and GFNet (4). We examine the performance of these two models,
and the detailed results are shown in Table 6. From the perspec-
tive of model performance, when we add or reduce the number
of GFNet layers, the performance of the model is degraded. Gener-
ally speaking, the higher the number of parameters of the model,
the better the performance will be, but the performance of GFNet
(6) is slightly reduced. We suspect that this is because the bound-
ary details of COVID-19 are already very difficult to extract. As the
number of layers increases, many details are lost. For deeper struc-
tures, simple stacking of layers will lead to network degradation
[40]. The last, we show the training and test time of GFNet (6) and
GFNet (4) in Table 5.

4.7.2. Quantitative analysis

The segmentation results in different datasets of lung infection
are shown in Figs. 8 and 9. It is easy to see that our GFNet is
significantly better than the baselines. Specifically, the segmenta-
tion results generated by it are close to the ground-truth map,
and there are fewer tissue regions wrongly segmented. In con-
trast, the results given by U-Net, U-Net++ are not satisfactory be-
cause some results have a large amount of normal tissue that has
not been segmented. Although Inf-Net is much better than both,
there are still many regions where the boundaries are blurred.
Our GFNet demarcates the region with very clear and precise
boundaries.

4.8. Ablation experiments

In this Section, we conducted some experiments to verify the
core module and steps of GFNet (Edge-guidance module, number
of RA module usage (i.e., the best value of i in,A4; and S; (i = 1,
2, 3, 4, 5)), as shown in Table 7. The best result of each metric
is indicated in red. (The results of the fusion module are given in
Fig. 7.
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Table 3

Quantitative results of segmentation of infected region on the “COVID-19 CT Segmentation” dataset [29]. The table
shows the effect of training sets of different sizes on the performance of each model. The best of each evaluation
metric is marked in bold and the second best in italic.

Training set size (Pseudo label
training + Ground-truth label

Method Finetuning) Dice Sen. Spec. Se Ej;f“" MAE
0+60 0.632 0.653 0.917 0.762 0.880 0.083
400 + 60 0.651 0.702 0.937 0.765 0.892 0.076
U-Net 800 + 60 0.675 0.693 0.930 0.764 0.894 0.078
1200 + 60 0.682 0.687 0.949 0.763 0.892 0.078
1600 + 60 0.691 0.720 0.965 0.775 0.891 0.076
0+60 0.645 0.659 0.921 0.759 0.881 0.079
400 + 60 0.662 0.673 0.934 0.769 0.899 0.078
Few-shot U-Net ~ 800-+60 0.683 0.695 0.945 0.772 0.901 0.075
1200 + 60 0.701 0713 0946 0.762 0.898 0.076
1600 + 60 0.717 0.720 0.952 0.775 0.904 0.073
0+60 0.594 0.589 0.882 0.643 0.793 0.129
400 + 60 0.611 0.603 0.890 0.658 0.812 0.114
SG-One 800 + 60 0.625 0.616 0.913 0.671 0.824 0.098
1200 + 60 0.632 0.639 0.927 0.685 0.821 0.087
1600 + 60 0.640 0.635 0.936 0.693 0.834 0.079
0+60 0.607 0.692 0.898 0.681 0.767 0.125
400 + 60 0.603 0.642 0.894 0.633 0.726 0.145
U-Net+ 800 + 60 0.611 0.618 0.940 0.685 0.827 0.090
1200 + 60 0.625 0.640 0.930 0.702 0.830 0.098
1600 + 60 0.623 0.638 0.935 0.693 0.835 0.076
0+60 0.699 0.715 0.928 0.782 0.862 0.078
400 + 60 0.727 0.721 0.960 0.793 0.901 0.065
Inf-Net 800 + 60 0.739 0.716 0.961 0.781 0.896 0.064
1200 + 60 0.741 0.728 0.960 0.788 0.906 0.064
1600 + 60 0.743 0.739  0.963 0.779 0.908 0.062
0+60 0.739 0.731 0.944 0.767 0.919 0.064
400 + 60 0.745 0.725 0.959 0.768 0.921 0.061
GFNet(ours) 800 + 60 0.748 0.724 0.964 0.766 0.921 0.061
1200 + 60 0.750 0.721 0.966 0.764 0.922 0.062
1600 + 60 0.755 0.729 0.966 0.776 0.926  0.059
CT images U-Net U-Net++ Few-shot U-Net SG-One Inf-Net GFNet (ours) Ground Truth

Fig. 8. Comparison of visual effects of segmentation of infected regions on the “COVID-19 CT Segmentation” dataset [29].
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CT images U-Net U-Net++

Few-shot U-Net
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Inf-Net

GFNet (ours)

Ground Truth

Fig. 9. Comparison of visual effects of segmentation of infected regions on the “COVID-CS” dataset [30].

Table 4
Quantitative results of segmentation of infected region on the dataset of
“COVID-CS” [30]. The best segmentation results are shown in bold.

Method Dice Sen. Spec. Sa E g"’“” MAE

U-Net 0.602 0665 0964 0.719 0.883  0.050
Few-shot U-Net  0.611 0.668 0964 0.725 0.870 0.051
SG-One 0.596  0.581 0979 0.721 0.892  0.056
U-Net+ 0485 0.617 0946 0.650 0.801 0.077
Inf-Net 0.615 0.565 0963 0.732 0.849 0.038
GFNet(ours) 0.663 0.605 0.981 0.743 0.895 0.033

4.8.1. Effectiveness of edge-guidance module

As can be seen from No.1 and No.2, No.3 and No.4, after the
addition of Edge-guidance module, many metrics have significantly
improved.

4.8.2. Effectiveness of RA module
As can be seen from No.1 and No.3, after the RA module is
added, many metrics have greatly improved.

4.8.3. Effectiveness of the combination of edge-guidance module and
RA module

As can be seen from No. 3 and No. 4, when the combination of
Eg and RA module is used, many indicators are improved again.

Table 5

Table 6
Three GFNets which have different number of parameters.their perfor-
mance in dataset “1600+60”.

Method Dice Sen. Spec. Se E;"’”" MAE
GFNet(6)  0.741 0.713  0.961 0.758 0912  0.064
GFNet(4) 0.723 0.700 0958 0.747 0910 0.067
GFNet 0.755 0729 0966 0.776 0.926  0.059

4.8.4. Usage times of RA module

In the paper [17], RA module was used three times, it is not
rigorous enough, because we think RA module is a process of fus-
ing high-level information with low-level information. So, as the
features start at the deepest S5 and backward to the S;,the infor-
mation at each layer can be utilized. From No. 4 to No. 8, we can
see that with the increase of RA module, the experimental results
become better and better.

4.9. Deficiencies and future prospects

Although our GFNet is significantly better than the traditional
methods in two datasets, there are still some deficiencies. For ex-
ample, in terms of training speed and testing speed, our GFNet is
not the fastest. We will continue to improve GFNet in this area. In

The table shows the size of each model and the computational cost for training and test-
ing. The training time was conducted on the training set of 1600 images. The testing time

was conducted on a test set of 20 images.

Method Backbone  Param  FLOP Training time  Testing speed
U-Net VGG16 7.9M 38.116G  7.2h 1.51s
U-Net+ VGG16 9.2M 65.938G  26.7h 3.93s
SG-One VGG16 19.0M  45916G  7.3h 1.77s
Inf-Net Res2Net 33.1M  13.922G  5.3h 1.92s
GFNet(ours) VGG16 18.1M  50.827G  7.5h 1.63s
GFNet(6)(ours)  VGG16 27.4M  49.537G  7.1h 1.69s
GFNet(4)(ours)  VGG16 109M  59.391G  9.8h 1.55s

10
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Table 7

Ablation experiments of GFNet. The best segmentation results are shown in bold.
No.  BLOCKS Dice Sen Spec Sa Egean MAE

Backbone (VGG16) Eg Ss Sqe S3 S, S

1 v 0.601 0612 0.837 0.695 0.720 0.151
2 v v 0643 0.654 0.863 0.725 0.759  0.127
3 v v 0.639 0635 0878 0734 0.792 0.085
4 v v v 0.681 0667 0921 0.757 0.856 0.076
5 v v v 0710 0672 0944 0.776 0.872  0.069
6 v v v 0.725 0.698 0951 0.791 0.890  0.065
7 v v v 0737 0715 0962 0.792 0.899 0.063
8 v v v 0748 0714 0965 0.798 0.915 0.061

the future, we will combine GFNet with more advanced models,
and improve the existing modules such as Edge-guidance module
and the final fusion module.

5. Conclusion

In this paper, we propose a COVID-19 lung CT region segmenta-
tion network framework named GFNet. The edge guidance module
is added on the basis of the reverse attention module and the ag-
gregation module, which can help the model to capture the bound-
ary information on the fuzzy focus boundary effectively, and then
make the boundary segmentation result very accurate. Then, based
on the idea of feature fusion, the obtained features are fused. Fi-
nally, the model can produce an optimal output. Meanwhile, we
proved the problem of the usage times of RA module. In Inf-Net,
RA module was used in three deep convolution layers. We proved
that the experimental results would be better if RA module was
used for each layer. In order to solve the problem of the dataset is
too small, we use a semi-supervised approach to extend the train-
ing dataset to train GFNet and to prevent overfitting. On the ex-
isting two datasets, we verify GFNet’s learning ability and general-
ization ability respectively, and the experiment results show that
GFNet is superior to previous models. The qualitative results also
show that our segmentation results are more accurate and clear
than other models. At the same time, we conducted experiments
with each model on training datasets of different sizes. Experimen-
tal results show that for other models, increasing the size of the
training set will improve the performance of the model. But our
GFNet works well when the training set is small. This is because
“Edge-guidance” in GFNet is a module with strong robustness and
universality. It can learn the boundary features of the target region
at a fast speed and with a small sample size, and expand it to the
segmentation result. This shows that our GFNet has great potential
in image segmentation with fuzzy boundaries facing other similar
targets. Finally, we also show the training and computational costs
of each model. In our experiment, the training and testing speed
of our model is not the fastest, but our model can also achieve
good performance when the training set is relatively small. In real
world case decision making, our GFNet is fully capable of such
tasks if it is put into application under time constraints or with
few training samples. Our GFNet can also be sufficiently trained to
achieve maximum performance if there is sufficient time or a large
training sample. In the future, we will apply the GFNet framework
to other medical image segmentation tasks, such as colonoscopic
polyps, cells, etc., or image segmentation in other fields. Therefore,
our GFNet has great potential to assist healthcare professionals in
medical images segmentation.
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