Skip to main content
. 2022 Jul 25;12:944569. doi: 10.3389/fonc.2022.944569

Table 3.

Screening Evaluation Metrics for Machine Learning Algorithms Using 10-fold cross-validation.

Classifier LSTM CNN SVM KNN LDA LR NB RF MLP XGB
Average-AUC 0.910 0.864 0.880 0.871 0.886 0.891 0.874 0.881 0.883 0.952
Average-Kappa 0.717 0.652 0.672 0.656 0.691 0.702 0.624 0.706 0.698 0.763
Average- Accuracy 0.877 0.833 0.794 0.811 0.852 0.823 0.857 0.744 0.779 0.891

AUC, area under curve; SVM, support vector machine; XGBoost, extreme gradient boosting; RF, random forest; LDA, linear discriminant analysis; LR, logistic regression; NB, naive bayesian model; KNN, k-nearest neighbors; MLP, multilayer perceptron; LSTM, long short-term memory; CNN, convolutional neural network.