Skip to main content
. 2022 Aug 1;2022:9541115. doi: 10.1155/2022/9541115

Table 2.

Convolutional neural network-based models in the Keras Application.

Model Top 1 accuracy Top 5 accuracy Depth Size (MB) Parameters Reference

VGG16 0.713 0.901 23 528 138,357,544 [33]
VGG19 0.713 0.900 26 549 143,667,240
ResNet50 0.749 0.921 98 25,636,712 [34]
ResNet101 0.764 0.928 171 44,707,176
ResNet152 0.766 0.931 232 60,419,944
ResNet50V2 0.760 0.930 98 25,613,800 [35]
ResNet101V2 0.772 0.938 171 44,675,560
ResNet152V2 0.780 0.942 232 60,380,648
InceptionV3 0.779 0.937 159 92 23,851,784 [36]
InceptionResNetV2 0.803 0.953 572 215 55,873,736 [37]
Xception 0.790 0.945 126 88 22,910,480 [38]
MobileNet 0.704 0.895 88 16 4,253,864 [39]
MobileNetV2 0.713 0.901 88 14 3,538,984 [40]
DenseNet121 0.750 0.923 121 33 8,062,504 [41]
DenseNet169 0.762 0.932 169 57 14,307,880
DenseNet201 0.773 0.936 201 80 20,242,984
NASNetMobile 0.744 0.919 23 5,326,716 [42]
NASNetLarge 0.825 0.960 343 88,949,818
EfficientNetB0 29 5,330,571 [43]
EfficientNetB1 31 7,856,239
EfficientNetB2 36 9,177,569
EfficientNetB3 48 12,320,535
EfficientNetB4 75 19,466,823
EfficientNetB5 118 30,562,527
EfficientNetB6 166 43,265,143
EfficientNetB7 256 66,658,687