Table 2.
Convolutional neural network-based models in the Keras Application.
| Model | Top 1 accuracy | Top 5 accuracy | Depth | Size (MB) | Parameters | Reference |
|
| ||||||
| VGG16 | 0.713 | 0.901 | 23 | 528 | 138,357,544 | [33] |
| VGG19 | 0.713 | 0.900 | 26 | 549 | 143,667,240 | |
| ResNet50 | 0.749 | 0.921 | — | 98 | 25,636,712 | [34] |
| ResNet101 | 0.764 | 0.928 | — | 171 | 44,707,176 | |
| ResNet152 | 0.766 | 0.931 | — | 232 | 60,419,944 | |
| ResNet50V2 | 0.760 | 0.930 | — | 98 | 25,613,800 | [35] |
| ResNet101V2 | 0.772 | 0.938 | — | 171 | 44,675,560 | |
| ResNet152V2 | 0.780 | 0.942 | — | 232 | 60,380,648 | |
| InceptionV3 | 0.779 | 0.937 | 159 | 92 | 23,851,784 | [36] |
| InceptionResNetV2 | 0.803 | 0.953 | 572 | 215 | 55,873,736 | [37] |
| Xception | 0.790 | 0.945 | 126 | 88 | 22,910,480 | [38] |
| MobileNet | 0.704 | 0.895 | 88 | 16 | 4,253,864 | [39] |
| MobileNetV2 | 0.713 | 0.901 | 88 | 14 | 3,538,984 | [40] |
| DenseNet121 | 0.750 | 0.923 | 121 | 33 | 8,062,504 | [41] |
| DenseNet169 | 0.762 | 0.932 | 169 | 57 | 14,307,880 | |
| DenseNet201 | 0.773 | 0.936 | 201 | 80 | 20,242,984 | |
| NASNetMobile | 0.744 | 0.919 | — | 23 | 5,326,716 | [42] |
| NASNetLarge | 0.825 | 0.960 | — | 343 | 88,949,818 | |
| EfficientNetB0 | — | — | — | 29 | 5,330,571 | [43] |
| EfficientNetB1 | — | — | — | 31 | 7,856,239 | |
| EfficientNetB2 | — | — | — | 36 | 9,177,569 | |
| EfficientNetB3 | — | — | — | 48 | 12,320,535 | |
| EfficientNetB4 | — | — | — | 75 | 19,466,823 | |
| EfficientNetB5 | — | — | — | 118 | 30,562,527 | |
| EfficientNetB6 | — | — | — | 166 | 43,265,143 | |
| EfficientNetB7 | — | — | — | 256 | 66,658,687 | |