
nature communications

Article https://doi.org/10.1038/s41467-022-32097-3

Scarf enables a highly memory-efficient ana-
lysis of large-scale single-cell genomics data

Parashar Dhapola 1 , Johan Rodhe1, Rasmus Olofzon 1, Thomas Bonald2,
Eva Erlandsson1, Shamit Soneji1 & Göran Karlsson1

As the scale of single-cell genomics experiments grows into the millions, the
computational requirements to process this data are beyond the reach of
many. Herein we present Scarf, a modularly designed Python package that
seamlessly interoperateswith other single-cell toolkits and allows formemory-
efficient single-cell analysis of millions of cells on a laptop or low-cost devices
like single-board computers. We demonstrate Scarf’s memory and compute-
time efficiency by applying it to the largest existing single-cell RNA-Seq and
ATAC-Seq datasets. Scarf wrapsmemory-efficient implementations of a graph-
based t-stochastic neighbour embedding and hierarchical clustering algo-
rithm. Moreover, Scarf performs accurate reference-anchored mapping of
datasets while maintaining memory efficiency. By implementing a sub-
sampling algorithm, Scarf additionally has the capacity to generate repre-
sentative sampling of cells from a given dataset wherein rare cell populations
and lineage differentiation trajectories are conserved. Together, Scarf pro-
vides a framework wherein any researcher can perform advanced processing,
subsampling, reanalysis, and integration of atlas-scale datasets on standard
laptop computers. Scarf is available on Github: https://github.com/
parashardhapola/scarf.

The rapid evolution, integration, and diversification of high-
throughput single-cell genomic technologies continue to have a cri-
tical impact on our conceptual understanding of tissue heterogeneity,
cell-type specification, and differentiation. Accumulating technologi-
cal advances reaches beyond gene expression quantification to the
measurement of higher-dimensional genomic features and an expo-
nential increase of input cell numbers1. Single-cell genomic data from
large-scale studies are oftenmade available throughwebportalswhere
quick but limited access is granted, restricting how much information
can be mined.

A major objective for computational analysis of single-cell geno-
mic data has been to improve the scalability of analysis for increasing
cell numbers and features2. While recent focus has been to improve
computation time, memory scalability has largely been ignored even
though memory capacity in computing systems is currently the major
hurdle for increased usage of single-cell genomic datasets. Larger

datasets with more than 100,000 cells obligate the use of specialised
hardware with larger primary memory capacity (random access
memory, RAM) in the order of several hundreds of gigabytes3. This
resource barrier prevents a majority of biologists and bioinformati-
cians from uncomplicated access to their own as well as publicly
available datasets.

We have developed Scarf, which enables analysis of even the lar-
gest single-cell datasets with a limited amount of RAM consumption.
Consequently, users can now analyse atlas-scale datasets on their
laptop computers and for the first time, perform large-scalemulti-atlas
analysis on servers. Upon the core memory efficient architecture of
Scarf, we have introduced multiple novel algorithms to solve the
challenges specifically posed by atlas-scale datasets. Briefly, we have
developed a cell subsampling algorithmbuilt upon Scarf that can allow
generating highly representative subsets of data for usage in other
tools. We have introduced a visualisation and clustering algorithm,

Received: 14 December 2021

Accepted: 18 July 2022

Check for updates

1Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden. 2Institut Polytechnique de Paris, Paris, France.
e-mail: parashar.dhapola@med.lu.se; goran.karlsson@med.lu.se

Nature Communications | (2022) 13:4616 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8070-7238
http://orcid.org/0000-0002-8070-7238
http://orcid.org/0000-0002-8070-7238
http://orcid.org/0000-0002-8070-7238
http://orcid.org/0000-0002-8070-7238
http://orcid.org/0000-0001-8079-8718
http://orcid.org/0000-0001-8079-8718
http://orcid.org/0000-0001-8079-8718
http://orcid.org/0000-0001-8079-8718
http://orcid.org/0000-0001-8079-8718
https://github.com/parashardhapola/scarf
https://github.com/parashardhapola/scarf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32097-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32097-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32097-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32097-3&domain=pdf
mailto:parashar.dhapola@med.lu.se
mailto:goran.karlsson@med.lu.se

that were previously unknown in the single-cell field, for a faster and
more accurate representation of single-cell datasets.

Scarf is a modularly developed and extensible Python package,
designed to work with any kind of single-cell genomic dataset pre-
sented as a matrix of cells and features. In the current version, func-
tionality to analyse ScRNA-Seq4, ScATAC-Seq5,6 and CITE-Seq7 datasets
are included. Scarf performs major steps of data analysis like data
filtering, normalisation, feature selection, linear dimension reduction,
cell-cell neighbourhood graph creation, non-linear dimension reduc-
tion, clustering and identification of discriminatory features.

For an efficient and interpretable clustering of cells at low mem-
ory consumption, we introduce Paris8, a hierarchical graph clustering
algorithm scalable to millions of cells included in Scarf. For the
visualisation of generated cell clusters, the Uniform Manifold
Approximation and Projection (UMAP)9 algorithm is complemented
with graph t-distributed stochastic neighbour embedding (t-SNE)10.We
show when the same initialisation of data is used the UMAP will high-
light the magnitude of cluster relations, while t-SNE reveals the het-
erogeneity within the data. Moreover, by creating a graph-based
method for cell subsampling (subsampling henceforth), we have
leveraged Scarf’s memory efficiency while preserving archetypes or
differentiation trajectories.

Finally, Scarf is equipped with features for optimal data integra-
tion where samples are projected onto each other cell by cell, using a
K-Nearest neighbour (KNN) mapping approach. This strategy avoids
the generation of non-biological sample separation when datasets
generated from different technologies or techniques need to be
combined, or from strongmolecular signals when comparing cells, for
example, after perturbation experiments ormalignant transformation.

Importantly, benchmarking performed by utilising the largest
publicly available scRNA-Seq and scATAC-Seq datasets show that Scarf
canhandlemillions of cells and hundreds of thousands of features on a
regular laptop in a time-efficient manner while producing results that
are consistent with the existing tools that arewidely used butmemory-
exhausting.

Scarf is powerful in scenarioswhere researchers need to reanalyse
existing atlas-scale datasets to obtain a relevant subset of cells, or for
integration with their own data. With an ever-increasing growth of
single-cell datasets, it is imperative that researchers can easily build
upon existing datasets at any scale without being limited by compu-
tational resources.

Results
Scarf enables analysis of atlas-scale scRNA-Seq and scATAC-Seq
datasets on laptop computers
Single-cell genomic datasets undergo two stages of processing. In the
first stage, sequencing reads are used to generate a countmatrixwhich
serves as the foundation for all the downstream analyses. The two axes
of the count matrix usually consist of cell barcodes and features. For
example, in single-cell RNA-Seq data, features normally represent
genes/transcripts and for single-cell ATAC-Seq data features are the
peak coordinates. Scarf achieves memory efficiency by dividing a
dataset into small chunks and then compressing these chunks indivi-
dually and storing them onto the disk (Fig. 1a). Chunks with a larger
number of zero values automatically achieve a larger degree of com-
pression. In contrast to other single-cell libraries like Loompy and
Scanpy11, Scarf, by default, uses the Zarr file format12 to store chunked
datasets and not HDF513. Zarr improves support and performance for
parallel operations as well as interactions with datasets that are stored
remotely. Algorithms like PCA (principal component analysis) and
KNN (k-nearest neighbours), in most commonly used implementa-
tions, require the whole dataset to be loaded inmemory as input. Scarf
uses out-of-core (a.k.a. incremental) implementations of these algo-
rithms that allow the iterative input of data in small chunks. These
incremental learning algorithms lead to the creation of a cell-cell

neighbourhood graph structure of the data (see Methods for details)
which can subsequently be used for downstream steps like generating
UMAP/t-SNE visualisations, pseudotime ordering, etc.

One of the most common objectives of a single-cell analysis
pipeline is to generate a low-dimensional embedding of cells (e.g.
UMAP and t-SNE) and to partition them into distinct clusters. Along
withUMAP/t-SNE embedding and clustering, current protocols involve
common processes like data normalisation, feature selection, dimen-
sion reduction and cell neighbourhood graph generation, forming a
basic workflow of single-cell data14. We benchmarked the time and
memory consumption of such a basic workflow using Scarf and two
other widely used scRNA-Seq analysis toolkits Scanpy11 and Seurat15.

Using six scRNA-Seq datasets16–18 with increasing cell numbers,
we found that under the same analysis parameters (see Methods),
Scarf had substantially lower memory consumption than Scanpy and
Seurat (Fig. 1b). Importantly, using less than 16 GB of memory (RAM)
(commonly available in modern laptops), even the largest set of four
million cells18 were efficiently processed by Scarf. In contrast, Scanpy
was not able to process the two and four million cell datasets due to
high memory consumption, despite 200GB of RAM being available
during the benchmarking experiments. Seurat was not able to handle
the loading of the 1M cell dataset or larger due to limitations of
matrix sizes in R language. For the datasets that both Seurat and
Scanpy were able to process, the memory consumption was similar
and many folds higher than Scarf. For the largest set successfully
analysed by Scanpy (one million brain cell dataset generated by 10x
genomics), ~40 times more RAM was used compared to Scarf, under
the same parameters and equivalent steps. Moreover, the lower
memory consumption by Scarf did not come at a cost of the runtime
of the workflow, which was similar across all three datasets (Fig. 1c).
Of note, Scarf was able the process all analysis steps using the four
million cell dataset within 10 h without exceeding 16GB of
memory usage.

The four datasets that could be processed by Scanpy, were
visualised by the UMAP embeddings generated by either Scarf or
Scanpy (Fig. 1d). To aid the visual inspection, cellswere colouredbased
on their cluster identity obtained using Scarf. The generated UMAPs
indicate that very similar embeddings of cells were achieved. To
quantify any potential differences, we calculated the average centroid
distance (ACD), i.e. the average Euclidean distance of cells from their
cluster centroids in the UMAP space and cross-evaluation was per-
formed using UMAP from one and clustering information from the
other pipeline. Indeed, ACD values were found to be similar when
comparing the two pipelines to the ones obtained when both UMAP
and clustering information was obtained from the same pipeline
(Fig. 1e). In contrast, ACD values were substantially higher after gen-
erating a random embedding of cells.

Next, extensive benchmarking was conducted under different
combinations of three variable parameters: number of highly vari-
able genes (HVGs), number of PCA components andneighbours to be
used in the construction of the cell-cell neighbourhood graph. We
found that memory consumption was consistently and substantially
lower in Scarf than Scanpy, across all the parameters tested (Sup-
plementary Figs. 1 and 2). The number of HVGs and PCA dimensions
used had a very low impact on memory consumption and runtime.
However, using larger numbers of neighbours for graph building
(parameter ‘k’) led to a substantial increment in memory consump-
tion. We investigated the runtime of each major stage of the pipeline
and found that the proportion of time consumed by each stage was
similar across the benchmarked datasets (Fig. 1f). With the chosen
parameters, UMAP was the longest-running step for both Scanpy and
Scarf, occupyingmore than 50%of the runtime. In the case of Scanpy,
the fraction of time taken by Leiden clustering increased with larger
data sizes (from), while in the case of Scarf, it remained consistently
low across datasets.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 2

Scarf can also be applied to other single-cell genomics methods,
including large-scale scATAC-Seq. To further demonstrate Scarf’s
scalability, we used a dataset generated from human foetal samples
representing 15 organs, 720,613 cells in total and a feature set com-
prising 1.05 million peak regions19. Scarf was able to process this data,
generating clusters and UMAP embeddings, in ~5.5 h using less than
2.5 GB of RAM. As done previously for the scRNA-Seq datasets, we
benchmarked the runtime and memory consumption across three
critical parameters: the number of peaks, latent semantic indexing
(LSI) components used, and the number of neighbours identified for
neighbourhood graph creation (Fig. 2a). Due to the large size of the
peak set present, unlike scRNA-Seq, the fraction of features used and
not the number of neighbourswas the primary contributor tomemory
usage. However, the memory consumption stayed under 10GB even
when ~25% of peaks were included in the analysis. UMAP embeddings
labelled with author-determined cell types (Fig. 2b) revealed that the
UMAP embedding generated by Scarf accurately captured the het-
erogeneity of the cell types and categorised cells based on their tissue
of origin. Furthermore, UMAP embedding and clustering of cells were
not affected by batches of data generation (Fig. 2c).

Topology-assisted cell downsampling using Scarf
Even though Scarf offers memory-efficient processing of single-cell
data, including the generation of heterogeneity maps, other down-
stream analyses often require memory-consuming software that can-
not handle a large number of cells. These datasets have prompted a
need for downsampling (subsampling, hereon) to allow advanced
downstreamanalysis. Randomsampling is often used as a subsampling
solution; however, it provides no guarantees of preserving archetypes
or differentiation trajectories in the subsampled versions of the data.
Recently, GeoSketch20 has been proposed to solve this problem,
however, GeoSketch is notmemory efficient as it has been designed to
be run on large-scale computational resources. Here, a subsampling
algorithm called TopACeDo (Topology Assisted Cell Downsampling) is
embedded into Scarf. TopACeDo leverages the neighbourhood graph
structure of the cells to performdownsampling that conserves rare cell
types, reduces the proportion of highly represented cell types and
preserves the underlyingmanifold of the transcriptional space. Briefly,
TopACeDo identifies landmark points in the graph (seed cells) and
then tries to find paths to connect those seed cells using a prize-
collecting Steiner tree algorithm (PCST) (Fig. 3a). An implementation

10K 60K 600K 1M 2M 4M

Dataset size (~no. of cells)

16

64

256

1024

4096

16384

65536

Ti
m

e
in

 s
ec

on
ds

 (l
og

2
sc

al
e)

Workflow runtime

1 min

1 hour

10 hours

10K 60K 600K 1M 2M 4M
Dataset size (~no. of cells)

0

1

4

16

64

256

1024

M
em

or
y

in
 G

B
(L

og
2

sc
al

e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Dataset size (~no. of cells in millions)

0

20

40

60

80

100

120

140

160

M
em

or
y

in
 G

B

Peak memory consumption

RAM range of an
average laptop

Scanpy

Scarf
Seurat

Incremental
learning

algorithms

Neighbourhood
 graph

UMAP / tSNE

Clustering

Subsampling

Imputation

Pseudotime
ordering

Mapping

Parallel
processing

Dense count
 matrix

Chunked, dense
 count matrix

Compressed,
chunked count matrix

??

?

10
K

68
K

0

50

100

%
 o

f r
un

tim
e

Dataset sizes (~no. of cells)

Scarf Scanpy

Leiden clustering
UMAP embedding
Graph construction

HVG selection
Cell filtering
Format conversion

60
0K 1M 2M 4M 10
K

68
K

60
0K 1M 2M 4M

D
.N

.C
.

D
.N

.C
.

10K PBMCs 68K PBMCs 600K Immune cells 1M Mice brain cells

Sc
ar

f
Sc

an
py

Dataset sizes (~no. of cells)
10K 68K 600K 1M

0
5

10
15
20

Av
er

ag
e

ce
nt

ro
id

di
st

an
ce

Scarf (U+C)
Scanpy (U+C)
Scarf (U) + Scanpy (C)

Scanpy (U) + Scarf (C)
Random (U) + Scanpy (C)
Random (U) + Scarf (C)

a b c

d
e

f

Scanpy

Scarf
Seurat

Fig. 1 | Scarf performs memory and time-efficient computation to produce
consistent embedding and clustering. a Schematic of the workflow of Scarf
wherein the input data is illustrated as a matrix used to generate a cell-cell neigh-
bourhoodgraph.Outwardpointing arrows from the neighbourhoodgraph indicate
the operations that can be performed on the graph in no particular order. b Plot
showing the amount ofmemory consumedby Scarf, Seurat and Scanpyondatasets
containing up to approx. 4 million cells. The inset image shows the same data with
the y-axis on the log2 scale. Dots connecting the lines indicate the number of cells
on the x-axis and corresponding memory consumed on the y-axis. Lines are drawn
to indicate a general trend. c Plot showing the amount of time (in seconds) con-
sumed by Scarf, Seurat and Scanpy on the six datasets used for benchmarking. The

x-axis shows the number of cells in the datasets as categorical labels. Horizontal
dotted lines indicate the time consumed (in hours). d Plots showing UMAP
embedding of cells calculated using Scarf and Scanpy. Cells are coloured, for both
Scarf and Scanpy, by the cluster identity obtained using Scarf’s Leiden clustering.
Only four of the six datasets, that were successfully processed using Scanpy are
shownhere. e Bar plots showing the average distance (inUMAP space) of cells from
their corresponding cluster centroids. ‘U’ = UMAP and ‘C’ = clustering. f Percentage
of timeconsumedby sixbroad steps in theprocessing pipeline of Scarf and Scanpy.
D.N.C = ‘did not complete’ due to out-of-memory error. Please note that the Leiden
clustering stepmight not be visible for Scarf when zoomed out because of its quick
runtime.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 3

of PCST with near-linear time complexity21 is used to achieve fast and
scalable subsampling on millions of cells (see Methods for details).

Importantly,we found thatScarfwas able toperformsubsampling
on datasets with up to 4 million cells using less than 20GB of RAM
(Fig. 3b). In addition, subsampling took less than 3min on the 1million
cell dataset and less than 15min in the case of the 4million cell dataset
(Fig. 3c). UMAP visualisation of four atlas scale datasets indicates that
even with subsampling to ~1% of cells, cells belonging to all clusters
across the UMAP space were sampled (Fig. 3d).

Furthermore, for quantitative analysis of subsampling, we ana-
lysed the degree of connections subsampled cells make with other
subsampled cells in the original neighbourhood graph. A high fre-
quency of zero-degree values indicates that many cells are dis-
connected from other subsampled cells and is a marker of poor
subsampling, indicating that intermediary cell states aremissing in the
subsampled set. When comparing the number of disconnected cells
between Scarf with randomly subsampled cells from four atlas-scale
datasets, 100% of Scarf-subsampled cells displayed non-zero degree
values across all datasets, while random sampling resulted in non-zero
degree values in 18.9–26.9% of cells (Fig. 3e).

Two of the primary objectives of subsampling are to decrease
redundancy in the dataset and preserve rare cell types/states. These
two objectives can be accessed by calculating the change in the pro-
portion of cells from each cluster after subsampling. We show that
across the four atlas scale datasets, Scarf was able to reduce the pro-
portion of cells from larger clusters while simultaneously increasing
the proportion of cells from smaller clusters (Fig. 3f). The proportion
of cells from the smallest cluster in each of the datasets increased
between 8.13 and 16.82 folds while the proportion of cells from the
largest cluster decreased between 3.35 and 5.26 folds. In comparison,
random sampling did not show any increase in the proportion of
smaller clusters beyond 1.5 fold or a decrease in the proportion of
larger clusters beyond 1.01 fold. As a result, random sampling has a low
probability to sample rare clusters. For example, the smallest cluster in
the atlas-scale datasets had none of the cells sampled in 20% (1M cells
dataset), 40% (2M cells dataset) and 20% (4M cells dataset) (n = 10) of
random samplings. In contrast, all clusters were sampled using Scarf,
regardless of the original cluster size.

In order to compare the results of subsampling between Scarf and
GeoSketch, we used two contrasting small-scale datasets consisting of
either 10K PBMC cells of distinct cell types (provided by 10X Geno-
mics) or 3.5 K pancreatic cells22 within a continuum of differentiation.
Visualisation of progressively increasing levels of subsampling on each

of these datasets showed that Scarf was able to capture the cells
throughout the UMAP landscape (Supplementary Fig. 3). Running 100
iterations of subsampling with either Scarf, GeoSketch or random
sampling, 100% of subsampled cells selected by Scarf had a non-zero
degree on both the datasets, while the same measurement for GeoS-
ketch was 66.9% and 75.9%, and for random sampling 49.5% and 70.3%
in the PBMC and pancreatic cell datasets, respectively (Fig. 4a, b).
Compared to random sampling, both Scarf and GeoSketch sampled an
increased proportion of cells from smaller clusters and a reduction in
the proportion of cells from larger clusters (Fig. 4c, d). For both the
datasets, sampling enrichments obtained using Scarf were strongly
correlated with decreasing cluster size; pancreatic cells (Pearson’s
r =0.97, p value=3.36e −0.7) and PBMC dataset (Pearson’s r =0.94, p
value=4.96e −0.6), while in the case of GeoSketch, there was either no
correlation (pancreatic cell dataset: Pearson’s r =0.08) or moderate
correlation (PBMC data: Pearson’s r =0.77). This indicates that Scarf
achieves a consistent reduction in redundancy and increases the
representation of rare cells in subsampled datasets.

Memory efficient projection of cells for compositional analysis
and co-embedding of cells
The continuous growth of large publicly available single-cell genomic
datasets prompts a need for memory-efficient, reliable and appro-
priate data integration. In Scarf, integration takes a reference-based
data alignment approach15,23,24 wherein the transcriptional states of
query/target cells are interpreted considering the heterogeneity of the
reference cells. To achieve reference-based mapping, Scarf imple-
ments a highly memory-efficient KNN mapping approach (Fig. 5a; see
Methods). This entails that Scarf does not attempt to perform batch
correction like other data integration methods25–27 but rather brings
the target cells into the estimated manifold of the reference cells.

Demonstrating the efficiency and accuracy of Scarf’s data inte-
gration approach, we performed mapping of published single-cell
RNA-Seq dataset of interferon beta (IFN-β) treated peripheral blood
mononuclear cells (n = 10,111) to their culture-matched control cells
(n = 8487)28. Before mapping, the datasets were independently ana-
lysed to generate UMAP embeddings of both treatment arms (Fig. 5b,
c) and cluster annotationwas performed using knownmarker genes of
cell types previously reported for this dataset26. The annotation was
additionally confirmed by performing a marker gene search (Supple-
mentary Fig. 4a,b).

Next, the IFN-β cells were mapped onto the control cells by
including the CORAL29 correction step (see Methods) and the

k=5 k=11 k=21

UMAP 1

Batches: human fetal scATAC-Seqa c

Batch 1
Batch 2
Batch 3

U
M

AP
 2

b

UMAP 1

U
M

AP
 2

Erythroblasts

Hepatocytes

Adrenocortical cells

Myeloid

Cardiomyocytes
Intestinal
epithelial

cells

cells Thymocytes

Excitatory
neurons

Lymphoid cells

Lung epithelial
cells

Stromal cells

Metanephric
cells

Vascular
endothelial

cells

Cell types: human fetal scATAC-Seq

Data from Domcke et. al Science, 2020
720K cells and 1.01M peaks

50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0

Number of LSI dimensions used

0
2
4
6
8

10

M
em

or
y

(G
B
) #Peaks=50,000 #Peaks=100,000 #Peaks=250,000

50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0 50 10
0

20
0

Number of LSI dimensions used

0
2
4
6
8

10
12
14

Ti
m

e
(H

ou
rs

) #Peaks=50,000 #Peaks=100,000 #Peaks=250,000

Fig. 2 | Scarf enables memory-efficient analysis of large-scale scATAC-Seq
datasets. a Bar plots showing the memory and time consumption of Scarf on the
>700K single-cell ATAC-Seq dataset. Each bar (mean value of three technical runs)
shows the result of benchmarking conducted using a combination of multiple
numbers of peaks, k (number of neighbours in the nearest neighbour graph) and
number of latent semantic indexing dimensions used over which the graph was

computed. The error bars show the standard deviation computed over three
iterations of the entire pipeline (individual datapoints shown as empty circles).
b Scatter plot showing UMAP embedding of the cells from the >700K single-cell
ATAC-Seq dataset. Cells are coloured by author-annotated cell types or (c) batches
of data generation.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 4

reference cell-cell neighbourhood graph, now spiked with target cells,
was subjected to the UMAP algorithm to obtain a low-dimensional co-
embedding includingbothdata sets (seeMethods). The ‘unified’UMAP
of the control and IFN-β treated PBMCs (Fig. 5d) shows that the cells
from the two datasets are well integrated. We noted that the reference

cells in the unified UMAP (Fig. 5e) had a very similar layout as com-
pared to the UMAP resulting from the reference cells alone. This
indicates that the inclusionof the IFN-β treated cellsdid notdisrupt the
manifold of the control cells. Visualisation of the cell type identity of
the mapped IFN-β cells on the unified UMAP clearly showed that Scarf

60
0K

 c
el

l d
at

as
et

1M
 c

el
l d

at
as

et
2M

 c
el

ld
at

as
et

4M
 c

el
l d

at
as

et

Scarf/TopACeDo
Random sampling

Scarf/TopACeDo
Random sampling

d e f

b

c

Cell-cell neighbourhood graph

Subsampled cells from graph

Prize and prenalty allocation

Empty dots represent
cells that were not
included in the
subsampled set of cells.

All filled dots represent
the seed and non-seed
cells that were included
in the subsampled set

a
600K cell dataset

1M
 cell dataset

2M
 cell dataset

4M
 cell dataset

100%

100%

100%

100%

Lo
g2

 S
am

pl
in

g
en

ric
hm

en
t

Lo
g2

 S
am

pl
in

g
en

ric
hm

en
t

Lo
g2

 S
am

pl
in

g
en

ric
hm

en
t

Lo
g2

 S
am

pl
in

g
en

ric
hm

en
t

3.55%

4.39%

5.29%

4.68%

0 25 50 75 100

−2

−1

0

1

2

0 100 200
−2

−1

0

1

2

0 200 400
−2

−1

0

1

2

0 250 500 750 1000

−2

−1

0

1

2

0.62%

0.84%

0.99%

0.84%

Clusters sorted by

600K 1M 2M 4M
Dataset size (no. of cells)

0

5

10

15

20

M
em

or
y

(i
n

G
B
) 0.1%

1.0%
10.0%

600K 1M 2M 4M
Dataset size (no. of cells)

0

5

10

15

Ti
m

e
(i

n
m

in
ut

es
) 0.1%

1.0%
10.0%

0

20

40

60

80

100

%
 s

ub
sa

m
pl

ed
 c

el
ls

0

20

40

60

80

100

%
 s

ub
sa

m
pl

ed
 c

el
ls

Deg
ree

Outd
eg

ree
Ind

eg
ree

Deg
ree

Outd
eg

ree
Ind

eg
ree

0

20

40

60

80

100

%
 s

ub
sa

m
pl

ed
 c

el
ls

0

20

40

60

80

100

%
 s

ub
sa

m
pl

ed
 c

el
ls

Fig. 3 | Subsampling cells from large datasets using Scarf. a An illustration of the
concept behind the cell subsampling, performed using Scarf. Each subplot repre-
sents the cell-cell neighbourhood graph computed using Scarf. The nodes in each
graph indicate the cells in the dataset. The edges connect two cells if at least one of
them is present in the other’s k nearest neighbour list. Memory (b) and time (c)
consumption of TopACeDo in four atlas scale datasets. The x-axis represents the
number of cells in each dataset. Each bar indicates mean value and the error bars
indicate standard deviation computed using ten iterations of subsampling (indi-
vidual datapoints shown as empty circles). The on-figure legends show that
downsampling was performed with a maximum sampling rate set at 0.1%, 1% and
10%. d Scatter plots showing UMAP embedding of the four atlas-scale datasets. For
each of the datasets, UMAPs with all the cells, or cells subsampledwith amaximum
sampling rate of 10% and 1% are shown. The effective sampling percentage is

indicated on each subplot. The cell colours indicate the cluster identities of cells
obtained using Leiden clustering. e Percentage of subsampled cells that have non-
zero graph degrees. Maximum sampling rate for TopACeDo set at 1% and the same
number of cells subsampled with TopACeDo was used for random sampling. Bars
represent mean and error bars indicate standard deviation obtained using 10 runs
of subsampling (individualdatapoints shown asemptycircles). fPlots (a subplot for
each of the four datasets) showing the change in cluster enrichment, i.e. change in
the proportion of cells from each cluster before and after clustering. The y-axis is
Log2 cluster enrichment, values below0 indicate that the proportion of cells froma
cluster decreased (depleted) post subsampling and those above 0 indicate that the
proportion of cells from clusters have increased (enriched). The values for each
cluster represent the mean of 10 iterations. The numbers on the x-axis indicate
cluster ID and clusters are ordered in decreasing order by size.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 5

was able to co-embed cell types from the two datasets accu-
rately (Fig. 5f).

Scarf uses the KNN mapping to transfer labels from reference to
target cells (see Methods). The original UMAP of IFN-β cells (Fig. 5g)

annotated with predicted cell types clearly shows that the label
transfer was highly accurate (Supplementary Table 1). Of note, Scarf
predicted cell type with high accuracy even on low-abundant cell
populations within the dataset. For example, 91.9% and 97.6% of the

UMAP1

U
M

AP
2

B

B activated

CD 14 MonoCD16 Mono

CD4 Memory T
CD4 naive TCD8 T

DC

Eryth

Mk

NK
T activated

pDC

b
Control PBMCs

UMAP1

U
M

AP
2

B

B activated

CD 14 Mono

CD16 Mono

CD4 Memory T

CD4 naive T

CD8 T

DC

Eryth

Mk

NK

T activated

pDC

c
IFN-B PBMCs

Unified UMAP1

U
ni

fie
d

U
M

AP
2

d
Co-embedded samples

Control
IFN-B

Unified UMAP1

U
ni

fie
d

U
M

AP
2

B

B activated

CD 14 Mono

CD16 Mono

CD4 Memory T

CD4 naive TCD8 T

DC

Eryth

Mk

NK
T activated

pDC

e
Control PBMCs in co-embedding

Unified UMAP1

U
ni

fie
d

U
M

AP
2

B

B activated

CD 14 Mono
CD16 Mono

CD4 Memory T

CD4 naive TCD8 T

DC

Eryth
Mk

NK T activated
pDC

f
IFN-B PBMCs in co-embedding

UMAP1

U
M

AP
2

g
IFN-B PBMCs (predicted labels)

UMAP 1

U
M

AP
 2

a

KNN projection
of target cells

Target cells

Label transfer

Mapping
scores

Projection
based

co-embedding

B

B activated
CD 14 Mono

CD16 Mono

CD4 Memory T

CD4 naive T

CD8 T

DC

Eryth

Mk

NK

T activated

pDC

Fig. 5 | Mapping and co-embedding of cells across datasets. a The illustration
shows how Scarf uses a KNN projection method to co-embed projected cells into a
UMAP space, then, transfer labels to projected cells and assign mapping scores to
the reference cells. b Scatter plot showing UMAP embedding of untreated and
c IFN-beta treated PBMCs with cells coloured based on their cluster identity;
inferred cell types of each cluster are indicated. dUMAP co-embedding of IFN-beta
treated PBMCs post projection onto untreated PBMCs. Cells are coloured based on

treatment conditions. e Plot showing inferred cell types of control PBMCs in the co-
embedding obtained upon the projection of IFN-B treated PBMCs. f Plot showing
inferred cell types of IFN-beta treated PBMCs in the co-embedding obtained upon
projection onto control PBMCs. g UMAP embedding of IFN-beta PBMCs only; cells
are coloured to indicate the cell types obtained through label transfer from control
PBMCs upon projection.

10K PBMCs10K PBMCs

Pancreatic cells (Bastidas et. al.)

Scarf /
TopACeDo GeoSketch Random

a c

db
Pancreatic cells (Bastidas et. al.)

Deg
ree

Outd
eg

ree
Ind

eg
ree

Deg
ree

Outd
eg

ree
Ind

eg
ree

Deg
ree

Outd
eg

ree
Ind

eg
ree

0

50

100

%
 s

ub
sa

m
pl

ed
 c

el
ls

w
ith

 v
al

ue
 >

 0

0

50

100

%
 s

ub
sa

m
pl

ed
 c

el
ls

w
ith

 v
al

ue
 >

 0

GeoSketch sampling

1 2 3 4 5 6 7 8 9 10 11 12

−2

0

2

4
Scarf / TopACeDo sampling GeoSketch sampling Random sampling

Deg
ree

Outd
eg

ree
Ind

eg
ree

Deg
ree

Outd
eg

ree
Ind

eg
ree

Deg
ree

Outd
eg

ree
Ind

eg
ree

Clusters sorted by
size (descending)

Clusters sorted by
size (descending)

Clusters sorted by
size (descending)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Lo
g2

 S
am

pl
in

g
en

ric
hm

en
t

Lo
g2

 S
am

pl
in

g
en

ric
hm

en
t

c f f oTTT AA e o m ll gg ee SS tt mm ii RaRa dd mm aa pp gg

−2

0

2 Scarf / TopACeDo sampling Random sampling

Clusters sorted by
size (descending)

Clusters sorted by
size (descending)

Clusters sorted by
size (descending)

Fig. 4 | Comparison of Scarf, GeoSketch and random sampling on small-scale
datasets. a Percentage of subsampled cells from 10 K PBMC dataset and
b differentiating pancreatic cells that have non-zero graph degrees. Max sampling
rate for TopACeDo set at 1% and the same number of cells as subsampled with
TopACeDo was used for random sampling and GeoSketch. Bars represent mean
and error bars indicate standarddeviation obtainedusing 100 runs of subsampling.

c Bar plots indicating Log2 cluster enrichment for 10 K PBMC dataset and
d differentiating pancreatic cells obtained using TopACeDo, GeoSketch and ran-
dom sampling. Bars represent mean and error bars indicate standard deviation
obtained using 100 runs of subsampling. The cluster IDs (ordered by decreasing
size) are indicated on the x-axis of each subplot.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 6

predicted cell-type labels for pre-dendritic cells and erythrocytic IFN-β
treated cells respectively, were true.

Reference-based data integration using Scarf is not limited to two
samples. Multiple samples can be co-embedded into the reference
manifold simultaneously, here demonstrated using four datasets of
pancreatic cells30–33. These data are from four different labs, and
derived using four different single-cell RNA sequencing platforms viz.,
InDrop30 (n = 7715), CEL-Seq231 (n = 1946), SMART-Seq232 (n = 1809)
and C1-IFC SMARTer33 (n = 1446). Each dataset was processed indivi-
dually, and the heterogeneity was explored by generating individual
UMAP embeddings (Supplementary Fig. 5a–d). Subsequently, we used
author-provided cell type labels to annotate the cells. Choosing the
InDrop dataset as a reference, we mapped the other datasets using
CORAL corrected values and generated a unifiedUMAP, as done above
for the PBMCs. Again, the UMAP embedding of the reference cells
remained largelyunalteredwhen co-embeddedwith theother datasets
(Fig. 6a) Moreover, the co-embedding showed mixing of the datasets
into each of the reference clusters (Fig. 6b) and visualisation of the cell
type identity of the mapped cells on the unified UMAP revealed that
co-embedding was highly cell type-specific (Fig. 6c). As previously
described for PBMCs, the mapped cells were accurately classified into
reference cell type labels (Fig. 6d, Supplementary Table 2–4). For
example, a rare population of endothelial cells from CEL-Seq2 (n = 19)
and SMART-Seq2 (n = 15) datasetswas labelled to 100%accuracy by the
classifier while alpha cells, themost abundant cell type, were identified
with >99.8% accuracy in each of the three mapped datasets.

Having assessed the accuracy of the data integration, we aimed to
access the scalability of Scarf to larger datasets. Here, we chose a
modestly large dataset with 146,093 cells from the mouse nervous
system34. The dataset was processed to generate a UMAP and anno-
tated with user-provided cell type specification (Fig. 6e). Next, 43,954
oligodendrocytes and 21,885 astrocytes from another brain cell atlas35

were mapped to this reference dataset. By utilising the nearest

neighbour index that was already generated for the reference, the
mapping took less than 30 s and was done under 500MB of memory
consumption. Convincingly, the unified UMAP showed that the map-
ped cell types colocalize with the equivalent clusters in the reference
dataset (Fig. 6f). KNN classification was able to accurately predict the
correct cell type for 93.7% of astrocytes and 99.5% of oligoden-
drocytes. Generating co-embedding of large datasets can be time-
consuming when multiple mappings on multiple large datasets are
performed. To this end, Scarf provides an additional alternative in the
form of mapping scores36 (see Methods). Here, we demonstrate indi-
vidually generated mappings for astrocytes and oligodendrocytes,
visualised by increasing cell size in proportion to their mapping score
(Fig. 6g,h).

Memory efficient hierarchical clustering and t-stochastic
neighbour embedding for single-cell genomics data
Visualisation of single cells in two/three-dimensional space is one of
the central tenets of single-cell data analysis. Since single-cell datasets
contain tens to hundreds of thousands of features, non-linear dimen-
sion reductionalgorithmshavebeen considered ideal solutions for 2D/
3Ddata visualisation.Historically, themostpopular choice for a variety
of single-cell datasets has been t-SNE37, while UMAP9 is the most
common current method for visualisation on account of its compu-
tation efficiency (runtimes) and improved preservation of global
structure in the data. Alternatively, FIt-SNE38 is an improved t-SNE
algorithm with runtimes on par with UMAP for larger-scale datasets.
Recently, a novel t-SNE algorithm, SG-tSNE10, that can directly operate
on stochastic KNN graphs was introduced. The implementation of SG-
tSNE was shown to have improved runtimes over FIt-SNE and, to be
scalable to the three-dimensional embedding of large-scale datasets.
However, until our currentwork, itwas unknown, how the embeddings
obtained using SG-tSNE compared to those from UMAP and how SG-
tSNE performs on a wider selection of datasets.

Unified UMAP1

U
ni

fie
d

U
M

AP
2

Acinar

Alpha

Beta
Delta

Ductal

Endothelial

Epsilon

Gamma

Mast

Mesenchymal

c
Co-embedded cell types

Unified UMAP1

U
ni

fie
d

U
M

AP
2

Acinar

Alpha

Beta Delta

Ductal

Endothelial

Epsilon

Gamma

Macrophage

Mast

Schwann

Stellate

d
Predicted celltypes

UMAP1

U
M

AP
2

Projections scores: Oligodendrocytes

UMAP1

U
M

AP
2

h
Projection scores: Astrocytes

Unified UMAP1

U
ni

fie
d

U
M

AP
2

Acinar

Alpha

Beta

Delta

Ductal

Endothelial

Epsilon

Gamma

Macrophage

Mast

Schwann

StellateT cell

a
Baron et. al. cells in co-embedding

Unified UMAP1

U
ni

fie
d

U
M

AP
2

b
Co-embedded samples

Baron et. al
Muraro et. al
Segerstolpe et. al
Xin et. al

UMAP1

U
M

AP
2

e
Zeisel et.al. (n=146093)

Astrocytes

Oligodendrocytes
Unified UMAP1

U
ni

fie
d

U
M

AP
2

Co-embedded samples

Saunders et. al. Oligodendrocytes
Saunders et. al. Astrocytes
Zeisel et. al.

f g

Fig. 6 | Co-embedding multiple datasets and cell type-specific mapping with
Scarf. a Scatter plot showing pancreatic cells fromBaron et al. in the co-embedding
space thatwas created using the samecells as reference. The projected cells are not
shown here, and the reference cells have been coloured according to author
annotated cell types. b Co-embedding of cells after the projection of cells from
three datasets over cells from Baron et al. c Cells from the three projected datasets
in the unifiedUMAPspace. Cells are coloured basedonauthor-annotatedcell types.

d Cells from the three projected datasets were coloured based on label transfer
from the reference cells (Baron et al.) upon projection. eUMAP embedding of cells
frommurine nervous system atlas (Zeisel et al.), cells are coloured based on author
annotated cell types. f Oligodendrocytes and astrocytes from Saunders et al. co-
embedded with cells from Zeisel et al. UMAP plots showing cells from Zeisel et. al.
with the size of cells scaled to showmapping score obtained upon the projectionof
g oligodendrocytes h and astrocyte from Saunders et al.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 7

The neighbourhood graph computed by Scarf can be directly fed
into either UMAP or SG-tSNE algorithm. Furthermore, Scarf uses the
same initial embedding for both UMAP and SG-tSNE (see Methods),
thus restricting the differences between the two methods to the
underlying algorithm itself and the parameters used.Webenchmarked
the run-time of UMAP and SG-tSNE on four atlas scale datasets of
600K, 1M, 2M and 4M cells at multiple iterations (see Methods for
details). Both algorithms run iteratively for a user-defined number of
steps. 2D UMAP (250 iterations) and SG-tSNE (2500 iterations) plots
were obtained from the four atlas scale datasets (Fig. 7a). SG-tSNE
consumed less time for 2500 iterations compared to UMAP’s 250 (5.8,
9.9, 13.6 and 30.7min vs 15.9, 19.3, 38.5 and 87.6min, for the 600K,
1M, 2M and 4M cell datasets respectively). Moreover, we observed
that for the corresponding iterations across datasets, SG-tSNE scaled
better to the increasing number of cells; for 4M cell datasets the
runtime of 10,000 iterations SG-tSNE (96.45min) was similar to the
runtime of UMAP with 250 iterations (Fig. 7b).

Annotation of UMAP (Supplementary Fig. 6a) and SG-tSNE (Sup-
plementary Fig. 6b) plots with Leiden clusters resulted in well-
separated clustering in both cases and the relative distances
between clusters could be easily visualised on the UMAP plot. More-
over, the clusters were positioned in a similar vicinity to other clusters
in both embeddings.Toquantify this,we calculated the Spearman rank
correlation between the nearest neighbour across the clusters in the
embedded space and the original cell–cell neighbourhood graph
(Supplementary Fig. 6c). The spearman correlations coefficient values
across the clusters show that UMAP was able to learn cluster relations
quickly and showed only a slight improvement from the increased
number of iterations. In all four datasets, SG-tSNE showed a lower
meanSpearman’s rho value thanUMAP at a fewer number of iterations
but improved to be higher than UMAP when a larger number of
iterations were used. For example, in the case of the 4M cell dataset,
the SG-tSNE’s value increased from 0.75 (1000 iterations) to 0.93
(10,000 iterations).

Next, we compared UMAP and SG-tSNE for the preservation of
local data structure by quantifying the number of KNN neighbours
found in the vicinity of each cell in the UMAP or SG-tSNE space (Sup-
plementary Fig. 6d). Across the four datasets, SG-tSNE led to improved
local structurewith an increasing number of iterationswhile no benefit
was observed for UMAP embeddings. UMAP, with 1000 iterations, had
0.15, 0.23, 0.24 and 0.3 mean fractions of nearest neighbours pre-
served in the embedding of 600K, 1M, 2M and 4M cell datasets,
respectively. SG-tSNE, on the other hand, at 10,000 iterations, reached
the values of 0.41, 0.51, 0.5 and 0.46, in the respective datasets.

Clustering is one of the most critical aspects of single-cell data
analysis wherein cells are partitioned into distinct groups. Hierarchical
clustering39–42-based methods can provide accurate partitioning of
cells anddiscover rare cell types in the data but are not scalable to atlas
size datasets43. Alternatively, Graph clustering44–47 methods have
become a popular choice for clustering on single-cell data and
Louvain46 and Leiden44 algorithms are routinely used through Seurat15

and Scanpy11 packages. However, unlike hierarchical clustering meth-
ods, Louvain and Leiden are unable to reflect the relationship between
clusters. Scarf performs clustering using the highly scalable Leiden
algorithm. Like other graph-based methods and unlike hierarchical
clustering, Leiden is unable to explicitly indicate the relationships
between clusters. PAGA48 was introduced as a method that can expli-
citly indicate a relationship between clusters once created by any
clustering method. Unfortunately, it can become hard to interpret
those relationships on large datasets where multiple clusters with
complex connection patterns are present (Fig. 7c). Within Scarf, we
introduce a recently published approach, Paris8, that has not pre-
viously been applied to single-cell genomics data. Paris is a graph
clustering approach that rather than creating flat clusters of cells,
creates a dendrogram of cells akin to hierarchical clustering methods.

Specifically, Paris computes a binary tree representing the various
nested clusters of the graph, at different levels of granularity. The top-
level clusters give the core structure of the graph while the lower-level
clusters provide the local structure. Like Louvain and Leiden, Paris is a
scalable algorithm applicable to large graphs with millions of cells.
High performance is achieved through the nearest neighbour chain
algorithm, where pairs of clusters to be merged are locally searched,
following the edges of the graph. The successive merged clusters are
stored and aggregated to compute the final binary tree.

We applied Paris to the six datasets used previously (Supple-
mentary Fig. 7a). In order to allow comparison with Leiden clustering
(Supplementary Fig. 7b), we cut the Paris dendrogram to obtain the
same number of clusters as Leiden clustering. Coalesced Paris den-
drograms presented a clear structure of cluster relationships (Fig. 7d)
and the mean concordance between the Paris and Leiden clusters was
found to be between 84.9% and 93.1% across the datasets (Supple-
mentary Fig. 7c). These values were significantly larger (p value < 9.18
e − 11; Mann Whitney U test) than randomly shuffled cluster identity
wherein mean concordance with Leiden ranged between 9.06%
and 29.3%.

To ascertain the biological meaningfulness of Paris dendrograms,
we used scRNA-Seq data from cells of the murine nervous system34.
The authorsmanually curated multiple taxonomies of cell types in the
cell atlas. Importantly, Paris was able to retrace the taxonomic rela-
tionships between the cell types (Fig. 7e) presenting a dendrogram
with relevant and clearly separated branches for vascular, immune,
glial and neuronal cell types.

Together, these results show that Scarf can perform all critical
analysis steps of single-cell genomics data including filtering, normal-
isation, feature selection, linear dimension reduction, neighbourhood
graph creation, embedding using UMAP and t-SNE, clustering, down-
sampling andcell projectiononeven the largest available data sets on a
regular laptop in a time-efficient manner. Importantly, the resulting
data are consistent or improved compared to using the memory-
exhausting current state-of-the-art tools.

Discussion
The means to handle and process large-scale single-cell genomics
data using readily available hardware are urgently needed. Most
atlas-scale projects resort to providing online interfaces with UMAP/
t-SNE plots over which users visualise the expression of different
genes. But this can be grossly insufficient for many research tasks.
Researchers often generate datasets that need co-analysis with other
atlas-scale datasets which necessitates the use of high-performance
computing machines. Another common-usage scenario where
researchers need to process count matrices of large-scale datasets is
when performing custom sub-selection of cells and generating new
UMAP/t-SNE and clustering. Feature selection on a sub-selection of
cells can improve the resolution of UMAP/t-SNE and increase the
sensitivity of rare cell-type and cell-state identification. We designed
Scarf to give researchers the ability to analyse and re-analyse atlas-
scale datasets on their laptop computers.

Coupled with memory-efficient methods such as Kallisto
Bustools49 which generates cell-gene (or cell-transcript) count matri-
ces, Scarf represents an end-end solution for the analysis of single-cell
RNA-Seq datasets. During the preparation of this manuscript an
R-based memory-efficient tool, ArchR50, was published for analysis of
scATAC-Seq data. In the paper describing this feature-rich tool, the
authors benchmarked a simulated PBMC dataset with 1.2 million cells
and found thememory usage to be over 20GB in a small infrastructure
setting. With Scarf, we were able to perform corresponding steps in a
scATAC-Seq dataset with 700K cells within 5GB RAM. ArchR needs
genome-aligned fragment files and unlike Scarf, does not support
direct input of precalculated cell-peak matrices that are readily avail-
able for many atlas scale datasets.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 8

Our subsampling algorithm is designed to leverage the fact that a
cell-cell neighbourhood graph is already calculated in a memory-
efficient way. The obtained subsampled set can thereby be exported
and used with external tools to apply methods that are not currently
directly supported in Scarf. We allow seamless import and export of
data between Scarf and Scanpy. Though our comparison metrics

indicate that Scarf performs better than GeoSketch, we want to high-
light that GeoSketch does not require clustering information that
Scarf/TopACeDo needs to perform subsampling.

As previously described51, the embedding obtained from t-SNE
and UMAP can be sensitive to the parameters used in the analysis.
Hence, one method is not necessarily better than the other, but rather

Fig. 7 | SG-tSNE andParis hierarchical clusteringon single-cell datasets. aUMAP
and SG-tSNE embeddings of the four, atlas scale single-cell RNA-Seq datasets. The
colour gradient shows regions of high (darker regions, with black at the extreme)
and low cell density (lighter regionswith light yellow at the extreme). bRuntime (in
minutes) of UMAP and SG-tSNE at a different number of iterations, on Scarf com-
puted cell-cell neighbourhood graph. c Scatter plots, for each dataset, show cen-
troids of each Paris cluster in UMAP space. The lines connecting pairs of cluster
centroids indicate the weighted sum of edges (in the cell-cell neighbour graph)
shared by those clusters. Thicker lines indicate a larger degreeof similarity between
the clusters. The number on cluster centroids indicate cluster ID. d Paris

dendrograms of each of the datasets. Each terminal node in the dendrogram
represents a cluster of cells (same cluster identities as in C above). The size of each
cluster node is set proportionate to the number of cells in that cluster. Each binary
branchpoint in thedendrogram is shownwith a black circle. The root node is shown
as an unlabelled grey node and does not have an incoming arrow. e Paris dendro-
gram of the mouse nervous system cell atlas (Zeisel et al.). The coloured nodes
indicate a Paris cluster and are labelled with cluster IDs. The nodes are sized pro-
portionately to the number of cells in the cluster. The author annotated cell types
present in each cluster are indicated next to the cluster node.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 9

complementary techniques for visualisation. Without extensive para-
meter tuning, SG-tSNE can generally reveal the heterogeneity of large-
scale datasets more clearly thanUMAP, while on the other hand UMAP
canbemoreuseful to investigate the relationshipbetween clusters and
visualise biological processes like differentiation. Our contribution
herewas to perform a head-to-head comparison of UMAP and a graph-
based t-SNE (SG-tSNE) onmultiple datasets byproviding the sameKNN
graph and coordinate initialisation.

In Scarf, we introduce a graph-based hierarchical clustering
method that can highlight cluster similarity. Single-cell specific hier-
archical clustering algorithms have been shown to not be scalable to
large-scale datasets42. Our benchmarks showed that the Paris algo-
rithm applied to the Scarf computed cell-cell neighbourhood graph
creates a full dendrogram of the 4M cell dataset in 130min (Supple-
mentary Fig. 7d, e). This runtime is much slower compared to Leiden
clustering which generated a fixed resolution in less than 5min.
However, Paris reveals a full profile of cell-cell relationships while
Leiden provides only static partitioning using an arbitrary ‘resolution’
parameter. In practice, analysts often run the Leiden algorithm with
many different values for the ‘resolution’ parameter to ascertain an
optimal number of clusters. In contrast, the creation of a cell den-
drogram in Paris is parameter-free and can subsequently be cut into
any desired number of clusters within a few seconds. Hence, the
effective runtime of the Leiden algorithm can be longer than Paris,
especially on large and complex datasets.

Taken together, Scarf represents a comprehensive toolkit for the
analysis and integration of even the largest single-cell datasets on
desktop computers, making single-cell genomics available to a sig-
nificantly larger segment of the research community while simulta-
neously and significantly driving down the computational cost.

Methods
Design principles
Data storage that supports parallel processing. Scarf, though pri-
marily intended for memory-efficient analysis, provides enhanced
parallel processing capabilities for single-cell genomics analysis. We
chose the Zarr file format12 for on-disk representation and storage of
data. The benefit of using Zarr over HDF5 (used by Loom andAnndata)
is its ability to perform concurrent read/write operations on the data.
We use the Dask52 library to load and perform efficient concurrent
operations on the Zarr-backed data matrix. Using the Blosc library we
were able to efficiently compress the data matrix while still in dense
format. Storing and loading compressed, chunked dense matrix
allowed us to avoid sparse/dense interconversions, a strategy used by
other packages to manage memory11,26. The size of the chunks of the
countmatrix savedbyZarr represents the trade-off between speed and
memory efficiency. Larger chunks allow faster processing by reducing
loading cycles but have a larger memory footprint than the smaller
chunks. Individual chunks are processed and fed into downstream
algorithms in parallel.

Efficient usage of CPU resources. We observed that in the Python
ecosystem many libraries aggressively use all the available CPU cores.
Though this is usually not an issue when running analysis on servers, it
can seriously impediment users’ ability to simultaneously use their
laptops/desktops if all CPU cores are being used. Hence, we have
extensively placed CPU usage restrictions throughout the code so that
only a user-determined number of CPU cores are engaged during the
analysis. We have further enabled support for running non-linear
dimension reductionmethods, which canoften be the longest-running
step in the pipeline, on multiple CPU cores.

Optimisations for interactive iterative analysis. Single-cell genomics
analysis has several parameterised steps and estimating the optimal
parameters can often be difficult beforehand. Hence, users explore

their datasets with different combinations of parameters. Scarf
aggressively caches all the intermediate data generatedduring analysis
workflow. This avoids unnecessary re-computation.

Multi-assay support. Multi-omics experiments like CITE-Seq are well
supported by Scarf. Scarf can store assays data from each of the
modalities under a separate branch of the Zarr hierarchy. The cell level
attributes are stored outside the assays while feature level attributes
and assay’s count matrix is stored under the assay group. Scarf’s pro-
grammatic interface mimics this hierarchy. Also, Scarf assigns one of
the assays as default when the dataset is loaded, and all the functions
will act on this default assay. Almost all the functions associated with
the DataStore object use the from_assay parameter which can be used
to assign the assay for the operation.

Cell filtering
Poor quality cells can be filtered based on any cell attribute. Scarf has a
auto_filter_cells function that will model a normal distribution of a
chosen cell attribute and then remove cells with value probability
below x or over 1 − x, wherein x is a user-selected cut-off value (default
value: 0.01). Users can also apply custom filtering methods to remove
or include cells in the analysis.

Count normalisation
For scRNA-Seq datasets, Scarf performs library size normalisation of
the cells. Hence, the normalised value of a gene/feature in a cell yFc can
be calculated as

yf c = S:
xf c

∑f 0ϵF xf 0c

where F is the feature set, c represents a cell and S is a scaling factor.
The normalised value can optionally be transformed into log
scale: yf c = log 1 + yf c

� �

For scATAC-Seq datasets, TF-IDF (term frequency-inverse document
frequency) normalisation is performed.

yf c =
xf c
nFc

:log 1 +
NC

nCf

 !

where nFc
represents the total number of accessible peaks (those with

non-zero values) in a given cell, nCf
represents a total number of cells

where a given peak is accessible. Nc is the total number of cells in the
dataset.

Feature selection
For scRNA-Seq datasets, Scarf provides the highly variable gene (HVG)
selection approach as previously reported53. For this purpose, the
mean expression and variance of genes are calculated across all the
cells and are log-transformed. The next step is to remove the mean-
variance trend in the feature space. For this, genes are divided into
equal-sized bins based on their mean expression value; from each bin,
the gene with the lowest expression value is selected. A lowess curve
(using Python’s statsmodels package54) is fitted to the selected genes.
Thefitted curve is used topredict the ‘expected variance’ for eachgene
using mean expression as the independent variable. The ‘expected
variance’ is subtracted from observed variance to obtain corrected
variance based on which HVGs are selected. Optionally, the users can
put constraints onmean expression and corrected variance to perform
HVG selection. For scATAC-Seq datasets, each peak is assigned a pre-
valence score. The prevalence score is the sum of TF-IDF normalised
values for all the features. Top npeaks, sorted byprevalence scores are
chosen by users to perform the downstream analysis.

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 10

Primary dimension reduction
For single-cell RNA-Seqdatasets, principal component analysis (PCA) is
applied. PCA is normally applied to a subset of features prioritised
using a feature selection method like highly variable gene selection
but can also be applied to all the features or user-designated
custom subset of features. In Scarf, Sklearn’s incremental PCA
implementation55 is used which allows PCA to be trained iteratively
using only a subset of cells at a time. Additionally, using Scarf, users
can easily use only a subset of cells to train PCA and the rest of the cells
can still be transformed into this trained PCA space. The data is stan-
dard scaled before performing the PCA. For scATAC-Seq datasets, we
use Gensim’s iterative latent semantic indexing (LSI)56 method to
perform dimension reduction. Similar to PCA, the LSI method can be
trained iteratively and hence is scalable to large (aka atlas scale)
datasets.

Cell-cell neighbourhood graph
An approximate nearest neighbour algorithm, the hierarchical small
navigable world (HNSW), as implemented in the HNSWlib library is
utilised57. The dimension-reduced values are used to build the HNSW
index. By default, Scarf uses the Euclidean metric as the measure of
distances between the cells. The index once trained is saved onto the
disk for later use. The nearest neighbour search is then performed
using the index, querying for ‘k’ neighbours. During the query, it is
noted if cells are indeed the nearest neighbours of themselves and this
is summarised and reported as the recall value. The resulting KNN
index and the distances to the KNNs are saved onto the disk. There-
after, an edge normalisation step is performed on the KNN graph
wherein the distances are converted into a continuous scale bounded
between 0 and 1 using UMAP’s edge weight smoothening algorithm58.
The resulting adjacency matrix is saved in sparse format on disk. This
adjacencymatrix represents the graph that is directly fed downstream
steps like UMAP, SG-tSNE, Paris and Leiden clustering.

Calculation of initial embedding
Before running UMAP and tSNE, cells are usually ascribed an initial
embedding which can be either random coordinates (default formany
t-SNE algorithms) or informedmeasures such asfirst to/three principal
component51 or Laplacian eigenmaps (default for UMAP). In Scarf, the
initial embedding for UMAP and tSNE is calculated by fitting the
MiniBatch Kmeans algorithm from scikit-learn package55 during the
same step as the graph construction. This gives a cluster centroid
matrix of form c × d; where c is the number of Kmeans clusters and d is
the number of dimensions of PCA used in the graph construction step.
Thereafter, another round of PCA is performed on this matrix to two
obtain either c × 2 (for 2D embedding) or c × 3 (in the case of 3D
embedding) matrix. Thereafter, each cell is assigned a 2D or 3D initial
embedding coordinate based on its Kmeans cluster identity.

Benchmarking setup
All benchmarks were performed on a computing cluster comprised of
nodes with configuration: 16 2.6GHz CPUs and 190 GB RAM. Each
compute node had a local SSD drive and files were moved to local
storage to allow exclusive IO operations for each job. A job comprised
of either the Scarf or Scanpy pipeline which was monitored for mem-
ory consumption using Linux’s ‘ps’ utility.We used Scarf’s version 0.7.7
for all the analysis. Scanpy’s version 1.6.1 was used for all the bench-
marking. Geosketch version 1.2 was used for comparison with
TopACeDo.

Marker feature identification
In Scarf, we adopt a simple and fast approach to identify marker genes
based on gene ranks. All the features are ranked based on normalised
values. Thereafter, for each gene, we calculate the mean rank for each
group/cluster. Themean ranks for each gene cluster are normalised by

dividing by the sum of all mean ranks from all the clusters. The sorted
list of normalisedmean ranks gives the ordered list of marker features
for each cluster. Themarker scores generated by Scarf are in the range
between 0 and 1 with lower scores indicating poor specificity of a
marker gene.

TopACeDO algorithm
The first step in the TopACeDO algorithm is to identify ‘seed’ cells in
the graph. For this, two metrics for each cell (referred to as a node in
the neighbourhood graph) are calculated: n-neighbourhood degree
(NND) and neighbourhood-connectedness (NC). The degree of the
node is calculated as the total number of other nodes this particular
node is connected to. 1-neighbourhood degree is the sum of the
degree of all nodes that are connected to a given node. Hence, NND is
computed by iterating neighbours of neighbours over n-step distance
and captures the density of the connections around a given node in the
graph. The second metric is neighbourhood connectedness which
captures if a given number of connections are shared betweenmany or
few nodes. To calculate the NC of each cell, the sum of shared nearest
neighbour distances (Jaccard distance) between a node and all its
neighbours is calculated. Thus, if a node is connected to other nodes
that are strongly connected among eachother, this nodewill get a high
value for neighbourhood connectedness.

For the next step, the algorithm uses the partitioning of cells.
Here, median NND and NC are calculated for each cluster of cells and
themedian value is used to adjust the sampling rate for each cluster. A
highermedianNND leads to a reduction in sampling ratewhile a higher
NC leads to a reduced sampling rate and vice versa. Based on the
sampling rate, the number of cells to be sampled from each of the
clusters are determined. Each cluster is then sub-clustered, wherein
the number of sub-clusters is the same as the number of cells to be
sampled; one cell is then sampled from each of the sub-clusters. These
sampled cells are referred to as ‘seed’ cells.

All the seed cells are assigned a constant prize value. Here, we
used a value of 10. The edge penalty Ep for each edge is calculated as
follows:

Ep = Ecm:E
�Ew
bw

wherein, Ecm and Ebw are user-provided parameters, edge cost
multiplier and edge bandwidth, respectively and Ew is the edge weight
in the graph. Higher values for Ecm will make reaching remote cells in
the graph more difficult but at the same time will discourage the
inclusion of non-seed cells in the subsampled set. Higher Ebw

accentuates the difference among edge penalties. Here we used
Ecm = 1 and Ebw = 10.

Once, the prizes on the seed cells and penalties on all the edges
are set, we run an approximate implementation PCST algorithmon the
cell-cell neighbourhood graph. This implementation can be found
here: https://github.com/fraenkel-lab/pcst_fast. We run an unrooted
version of PCST and set the num_clusters parameter to 1 in order to get
one connected Steiner tree for each component of the cell-cell
neighbourhood graph.

TopACeDo was run on atlas scales datasets whose graphs were
calculated using 21 nearest neighbours(k) and 25 PCA dimensions
(calculated on 2500 HVGs).

KNN mapping and Integrated embedding
Normalisation to remove batch effects. The reference-based KNN
mapping approach in Scarf overcomes batch effects due to the fol-
lowing reasons. Only highly variable genes from the reference data-
set are used for mapping. This means that we use those genes that
already capture the heterogeneity of the reference dataset. Hence,
the genes that might be contributing to the batch effects are likely to
be ignored. The assumption here, as in most other methods like

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 11

https://github.com/fraenkel-lab/pcst_fast

MNNcorrect, is that the batch effect is orthogonal to cellular het-
erogeneity. Secondly, Scarf performs a second round of normal-
isation that scales the total expression values from each cell (from
reference as well as target datasets) to the same value. This means
that the sum of values for all the selected genes (HVGs defined in the
reference) from a given cell will always add up to 1000 (default
value). The motivation for this is, that if let’s say, technology/batch 1
captures a lot more ribosomal genes than batch 2; then resultantly,
the total normalised value for all non-ribosomal will bemuch lower in
batch 1 compared to batch 2. By rescaling, we will be able to remove
this difference (assuming that ribosomal genes do not make it to the
HVG list, otherwise heterogeneity is not orthogonal to batch effect).
Thirdly, specifically related to the last point, in Scarf, we auto-
matically disqualify (this behaviour canbe easily overridden by users)
mitochondrial, ribosomal and some cell cycle genes from theHVG list
as these genes are usually the ones contributing (completely or
partially) to batch effects (full list of patterns that are ignored for
HVG selection can be found here).

KNN mapping is performed using the precalculated HNSW index
of the reference dataset. By avoiding recalculation of the index, Scarf
can quickly perform mapping even when cold started on a dataset. If
the two datasets have identical populations, we suggest the usage of
the domain shift correction method, CORAL, that’s built into Scarf.
CORAL29 correction is performed as follows:

ACoral =Cov Sð Þ1=2 � Cov Tð Þ1=2

TDC =ACoral � T

wherein, S and T are scaled and normalised count matrixes of source
and target samples respectively and TDC is the domain corrected
matrixof the target dataset. Because the covariance,Cov, ofmatrices is
calculated across features, this normalisation is easily scalable to large
datasets.

Calculation of unified UMAP. All reference graphs were constructed
with 11 neighbours and using 25 PCA dimensions (calculated on 2500
HVGs). The unified UMAP/SG-tSNE for the reference and target cells
are calculated by spiking the reference cell-cell neighbourhood graph
with target cells based on their nearest neighbours (top 3 for all the
results here) in the reference set. The target-reference edges are
assigned a constant weight which users can tune manually. We used a
value of 1 for all the results presented. The UMAP was run for 100
iterations on the unified graph of reference and target cells to obtain a
unified UMAP embedding.

Mapping scores. To calculate the mapping scores of reference cells,
we first calculate the edge weights, W, between reference and target
cells as follows:

Wrt = 1= np:log Drt + 1
� �

+ 1
� �

wherein Drt is the Euclidean distance between a reference and a target
cell. For each reference cell, mapping score, Mr is calculated is as
follows:

Mr =
∑
tϵKt

Wrt

NT

wherein Kt are all the targets that mapped to the given reference cell
and NT is the number of target cells. Normalising with NT allows
improved comparison of mapping scores from two different map-
pings. For the reported results, the mapping scores were additionally
multiplied by a scalar value of 1000 and log-transformed.

Label transfer from reference to target sample. Label transfer is
performed in Scarf using the KNN projection. To ascribe a reference
label to a target (projected) cell, we compute the weighted sum of all
edges from a target to all the connected reference classes. If the target
cell has at least 50% (default threshold andused throughout here) of all
the edgeweights a single reference class then the target cell is ascribed
to that reference class, otherwise, it is labelled as NA (null value
meaning not assigned).

Comparison of UMAP and SG-tSNE on atlas scale datasets
We chose four iteration sets for UMAP (100, 250, 500 and 1000) and
ten times for SG-tSNE. We observed that individual iterations of SG-
tSNE had lower runtime than UMAP, hence we chose iterations so that
they can have comparable runtimes. Both the methods were run in
parallel mode using 16 computing cores. The same KNN graphs (gen-
eratedwith k = 11, PCA dimensions = 25 andHVGs = 2500) were used as
input for both UMAP and SG-tSNE. Parameters used for UMAP:
min_dist = 0.5, spread = 2.0. Parameters used for SG-tSNE: alpha = 50,
box_h = 1. To find the KNNof cells in the UMAP/SG-tSNE space, we used
the NearestNeighbors function from the scikit-learn package with
Euclidean distance metric and KD tree algorithm. To calculate Spear-
man’s correlation between the clusters in the neighbourhood graph
and UMAP/tSNE space, we took the following approach. We first cre-
ated a similarity matrix of dimension (P, P) where P is the number of
clusters identified in the dataset. This similarity matrix is calculated by
calculating the weighted sum of edges (in cell-cell neighbourhood
graph) between cells of each pair of clusters. Another similarity matrix
is calculated based on the KNN graph calculated on the UMAP/tSNE
embedding. Spearman’s correlation coefficient is calculated between
each column (cluster) from the two similarities after log2 transforming
the values.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Following is the list of all the publicly available datasets used in the
study. The dataset id, as referenced in this study, are shown in square
brackets. The links for the dataset location are provided where data-
sets were not downloaded from GEO/ArrayExpress. Kang et al.28

[kang_15K_pbmc_rnaseq]: GSM2560248 (GEO); Kang et al.28 [kang_14-
K_ifnb-pbmc_rnaseq]: GSM2560249 (GEO); Baron et al.30 [bar-
on_8K_pancreas_rnaseq]: GSE84133 (GEO); Muraro et al.31

[muraro_2K_pancreas_rnaseq]: GSE85241 (GEO); Segerstolpe et al.32

[segerstolpe_2K_pancreas_rnaseq]: E-MTAB-5061 (ArrayExpress); Xin
et al.33 [xin_1K_pancreas_rnaseq] GSE81608 (GEO); Zeisel et al.34 [zei-
sel_161K_nervous_rnaseq]: https://storage.googleapis.com/linnarsson-
lab-loom/l5_all.loom; Saunders et al.35 [saunders_110K_brain_rnaseq]:
http://dropviz.org/; 10x genomics datasets [tenx_8K_pbmc_citeseq]:
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_
protein_v3/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5;
Bastidas-Ponce et al.22 [bastidas-ponce_4K_pancreas-d15_rnaseq]:
https://github.com/theislab/scvelo_notebooks/raw/master/data/
Pancreas/endocrinogenesis_day15.h5ad; Zheng et al.16 [zheng_69K_
pbmc_rnaseq]: http://cf.10xgenomics.com/samples/cell-exp/1.1.0/
fresh_68k_pbmc_donor_a/fresh_68k_pbmc_donor_a_filtered_gene_bc_
matrices.tar.gz; Human Cell Atlas Data Portal [hca_783K_-
blood_rnaseq]: https://data.humancellatlas.org/project-assets/project-
matrices/cc95ff89-2e68-4a08-a234-480eca21ce79.homo_sapiens.mtx.
zip; 10x genomics Data datasets [tenx_1.3M_brain_rnaseq]: http://cf.
10xgenomics.com/samples/cell-exp/1.3.0/1M_neurons/1M_neurons_
filtered_gene_bc_matrices_h5.h5; Cao et. al17 [cao_2.1M_moca_rnaseq]:
GSE119945 (GEO) https://shendure-web.gs.washington.edu/content/
members/cao1025/public/mouse_embryo_atlas/gene_count.txt; Cao

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 12

https://storage.googleapis.com/linnarsson-lab-loom/l5_all.loom
https://storage.googleapis.com/linnarsson-lab-loom/l5_all.loom
http://dropviz.org/
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_protein_v3/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5
http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_protein_v3/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5
https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad
https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad
http://cf.10xgenomics.com/samples/cell-exp/1.1.0/fresh_68k_pbmc_donor_a/fresh_68k_pbmc_donor_a_filtered_gene_bc_matrices.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/1.1.0/fresh_68k_pbmc_donor_a/fresh_68k_pbmc_donor_a_filtered_gene_bc_matrices.tar.gz
http://cf.10xgenomics.com/samples/cell-exp/1.1.0/fresh_68k_pbmc_donor_a/fresh_68k_pbmc_donor_a_filtered_gene_bc_matrices.tar.gz
https://data.humancellatlas.org/project-assets/project-matrices/cc95ff89-2e68-4a08-a234-480eca21ce79.homo_sapiens.mtx.zip
https://data.humancellatlas.org/project-assets/project-matrices/cc95ff89-2e68-4a08-a234-480eca21ce79.homo_sapiens.mtx.zip
https://data.humancellatlas.org/project-assets/project-matrices/cc95ff89-2e68-4a08-a234-480eca21ce79.homo_sapiens.mtx.zip
http://cf.10xgenomics.com/samples/cell-exp/1.3.0/1M_neurons/1M_neurons_filtered_gene_bc_matrices_h5.h5
http://cf.10xgenomics.com/samples/cell-exp/1.3.0/1M_neurons/1M_neurons_filtered_gene_bc_matrices_h5.h5
http://cf.10xgenomics.com/samples/cell-exp/1.3.0/1M_neurons/1M_neurons_filtered_gene_bc_matrices_h5.h5
https://shendure-web.gs.washington.edu/content/members/cao1025/public/mouse_embryo_atlas/gene_count.txt
https://shendure-web.gs.washington.edu/content/members/cao1025/public/mouse_embryo_atlas/gene_count.txt

et al.18 [cao_4.9M_fetal_rnaseq]: GSE156793 (GEO) https://descartes.
brotmanbaty.org/bbi/human-gene-expression-during-development/;
Domcke et al.19 [domcke_721K_fetal_atacseq]: GSE149683 (GEO)
https://descartes.brotmanbaty.org/bbi/human-chromatin-during-
development/. All count matrices used in this study can be obtained
using the following command: scarf.fetch_dataset(dataset_id) Ids for all
available datasets can be obtained using this command:
scarf.show_available_datasets().

Code availability
The source code for the Scarf package is available here: github.com/
parashardhapola/scarf The documentation for installation and usage
of Scarf can be found here: scarf.readthedocs.io. The notebooks and
scripts used in the paper can be found here: https://osf.io/cbu6a.

References
1. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential

scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13,
599–604 (2018).

2. Lähnemann, D. et al. Eleven grand challenges in single-cell data
science. Genome Biol. 21, 31 (2020).

3. Chen, H. et al. Assessment of computational methods for the ana-
lysis of single-cell ATAC-seq data. Genome Biol. 20, 241 (2019).

4. Eberwine, J. et al. Analysis of gene expression in single live neurons.
Proc. Natl Acad. Sci. USA 89, 3010–3014 (1992).

5. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals
principles of regulatory variation. Nature 523, 486–490 (2015).

6. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin
accessibility by combinatorial cellular indexing. Science 348,
910–914 (2015).

7. Stoeckius, M. et al. Simultaneous epitope and transcriptome mea-
surement in single cells. Nat. Methods 14, 865–868 (2017).

8. Bonald, T., Charpentier, B., Galland, A. & Hollocou, A. Hierarchical
graph clustering using node pair sampling. arXiv:1806.01664
[cs] (2018).

9. Becht, E. et al. Dimensionality reduction for visualizing single-cell
data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.
4314 (2018).

10. Pitsianis, N., Iliopoulos, A.-S., Floros, D. & Sun, X. Spaceland
Embedding of Sparse Stochastic Graphs. In Proc. IEEE High Per-
formance Extreme Computing Conference (HPEC) 1–8 (IEEE, 2019).
https://doi.org/10.1109/HPEC.2019.8916505.

11. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

12. Miles, A. et al. zarr-developers/zarr-python: v2.5.0. (Zenodo, 2020).
https://doi.org/10.5281/ZENODO.4069231.

13. Koranne, S. Hierarchical data format 5: HDF5. in Handbook of Open
Source Tools 191–200 (Springer, 2011).

14. Luecken, M. D. & Theis, F. J. Current best practices in single‐cell
RNA‐seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

15. Stuart, T. & Satija, R. Integrative single-cell analysis.Nat. Rev. Genet.
20, 257–272 (2019).

16. Zheng, G. X. Y. et al. Massively parallel digital transcriptional pro-
filing of single cells. Nat. Commun. 8, 14049 (2017).

17. Cao, J. et al. The single-cell transcriptional landscape of mamma-
lian organogenesis. Nature 566, 496–502 (2019).

18. Cao, J. et al. A human cell atlas of fetal gene expression. Science
370, eaba7721 (2020).

19. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility.
Science 370, eaba7612 (2020).

20. Hie, B., Cho, H., DeMeo, B., Bryson, B. & Berger, B. Geometric
sketching compactly summarizes the single-cell transcriptomic
landscape. Cell Syst. 8, 483–493.e7 (2019).

21. Hegde,C., Indyk, P. &Schmidt, L. Anearly-linear time framework for
graph-structured sparsity. In Proc. 32nd International Conference

on International Conference on Machine Learning - volume 37,
928–937 (JMLR.org, 2015).

22. Bastidas-Ponce, A. et al. Comprehensive single cell mRNA profiling
reveals a detailed roadmap for pancreatic endocrinogenesis.
Development 146, dev173849 (2019).

23. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-
cell RNA-seq data across data sets. Nat. Methods 15, 359–362
(2018).

24. Tusi, B. K. et al. Population snapshots predict early haematopoietic
and erythroid hierarchies. Nature 555, 54–60 (2018).

25. Hie, B., Bryson, B. & Berger, B. Efficient integration of hetero-
geneous single-cell transcriptomes using Scanorama. Nat. Bio-
technol. 37, 685–691 (2019).

26. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Inte-
grating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

27. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 36,
421–427 (2018).

28. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing
using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

29. Sun, B., Feng, J., & Saenko, K. Return of frustratingly easy domain
adaptation. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI'16). AAAI Press, 2058–2065 (2016).

30. Baron, M. et al. A single-cell transcriptomic map of the human and
mouse pancreas reveals inter- and intra-cell population structure.
Cell Syst. 3, 346–360.e4 (2016).

31. Muraro, M. J. et al. A single-cell transcriptome atlas of the human
pancreas. Cell Syst. 3, 385–394.e3 (2016).

32. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human
pancreatic islets in health and type 2 diabetes. Cell Metab. 24,
593–607 (2016).

33. Xin, Y. et al. Use of the Fluidigm C1 platform for RNA sequencing of
single mouse pancreatic islet cells. Proc. Natl Acad. Sci. U.S.A. 113,
3293–3298 (2016).

34. Zeisel, A. et al. Molecular architecture of the mouse nervous sys-
tem. Cell 174, 999–1014.e22 (2018).

35. Saunders, A. et al. Molecular diversity and specializations among
the cells of the adult mouse brain. Cell 174, 1015–1030.e16
(2018).

36. Dhapola, P. et al. Nabo—a framework to define leukemia-initiating
cells and differentiation in single-cell RNA-sequencing data. http://
biorxiv.org/lookup/doi/10.1101/2020.09.30.321216 https://doi.org/
10.1101/2020.09.30.321216 (2020).

37. Amir, E. D. et al. viSNE enables visualization of high dimensional
single-cell data and reveals phenotypic heterogeneity of leukemia.
Nat. Biotechnol. 31, 545–552 (2013).

38. Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. &
Kluger, Y. Fast interpolation-based t-SNE for improved visualization
of single-cell RNA-seq data. Nat. Methods 16, 243–245 (2019).

39. Žurauskienė, J. & Yau, C. pcaReduce: hierarchical clustering of
single-cell transcriptional profiles. BMC Bioinform. 17, 140 (2016).

40. Lin, P., Troup, M. & Ho, J. W. K. CIDR: ultrafast and accurate clus-
tering through imputation for single-cell RNA-seq data. Genome
Biol. 18, 59 (2017).

41. Herman, J. S., Sagar, null & Grün, D. FateID infers cell fate bias in
multipotent progenitors from single-cell RNA-seq data. Nat. Meth-
ods 15, 379–386 (2018).

42. Schwartz, G. W. et al. Too many cells identifies and visualizes
relationships of single-cell clades. Nat. Methods 17,
405–413 (2020).

43. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsu-
pervisedclustering of single-cell RNA-seqdata.Nat. Rev. Genet.20,
273–282 (2019).

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 13

https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://descartes.brotmanbaty.org/bbi/human-chromatin-during-development/
https://descartes.brotmanbaty.org/bbi/human-chromatin-during-development/
https://osf.io/cbu6a
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1109/HPEC.2019.8916505
https://doi.org/10.5281/ZENODO.4069231
http://biorxiv.org/lookup/doi/10.1101/2020.09.30.321216
http://biorxiv.org/lookup/doi/10.1101/2020.09.30.321216
https://doi.org/10.1101/2020.09.30.321216
https://doi.org/10.1101/2020.09.30.321216

44. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden:
guaranteeing well-connected communities. Sci. Rep. 9,
5233 (2019).

45. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals
progenitor-like cells that correlate with prognosis. Cell 162,
184–197 (2015).

46. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast
unfolding of communities in large networks. J. Stat. Mech. 2008,
P10008 (2008).

47. Xu, C. & Su, Z. Identification of cell types from single-cell tran-
scriptomes using a novel clustering method. Bioinformatics 31,
1974–1980 (2015).

48. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with
trajectory inference through a topology preserving map of single
cells. Genome Biol. 20, 59 (2019).

49. Melsted, P. et al. Modular, efficient and constant-memory single-
cell RNA-seq preprocessing. Nat. Biotechnol. https://doi.org/10.
1038/s41587-021-00870-2 (2021).

50. Granja, J. M. et al. ArchR is a scalable software package for inte-
grative single-cell chromatin accessibility analysis. Nat. Genet. 53,
403–411 (2021).

51. Kobak, D. & Berens, P. The art of using t-SNE for single-cell tran-
scriptomics. Nat. Commun. 10, 5416 (2019).

52. Rocklin, M. Dask: parallel computation with blocked algorithms
and task scheduling. In Proc. 9th Python in Science Conference.
126–132 https://doi.org/10.25080/Majora-7b98e3ed-013
(2015).

53. Lun, A. T. L., McCarthy, D. J. &Marioni, J. C. A step-by-stepworkflow
for low-level analysis of single-cell RNA-seq data with Bio-
conductor. F1000Res. 5, 2122 (2016).

54. Seabold, S. & Perktold, J. statsmodels: econometric and statistical
modeling with python. In Proc. 9th Python in Science Con-
ference (2010).

55. Pedregosa, F. et al. Scikit-learn: machine learning in python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

56. Řehůřek, R. & Sojka, P. Software framework for topicmodellingwith
large corpora. In Proc. LREC 2010Workshop on New Challenges for
NLP Frameworks 45–50 (ELRA, 2010).

57. Malkov, Y. A. & Yashunin, D. A. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small
world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 824–836
(2020).

58. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP:
uniform manifold approximation and projection. JOSS 3,
861 (2018).

Acknowledgements
This work was supported by grants from the Swedish Cancer Society
(G.K.; 190502 Pj and 190517 Us), The Ragnar Söderberg Foundation
(G.K.; M117/14), the Knut and Alice Wallenberg Foundation (G.K.; KAW
2020.0210), the Swedish Research Council (G.K.; 2019-01584), the
Swedish Society for Medical Research (G.K.), and the Swedish Child-
hood Cancer Foundation (G.K.; PR2020-0157). We thank Nikolay
Oskolkov, Ram Krishna Thakur and Mikael Sommarin for insightful dis-

cussions and valuable feedback. We also thank the authors of SG-tSNE-
pi for providing clarifications and bug fixes.

Author contributions
P.D. conceived anddesigned the study; P.D. designed andperformed all
the analyses with consultation from G.K.; P.D. prepared the figures with
consultation from G.K., E.E., R.O. and S.S.; P.D. and G.K. wrote the
manuscript with assistance from T.B., E.E. and S.S.; P.D., R.O. and J.R.
wrote and debugged the vignettes; G.K. supervised the study; All
authors reviewed, edited and approved the manuscript.

Funding
Open access funding provided by Lund University.

Competing interests
P.D and G.K. have submitted a patent application (No. 2051077-2) to the
Swedishpatent office (PRV). The application is under reviewandclaims a
patent on thepart of themanuscript concerning thedown/sub-sampling
of cells (TopACeDo algorithm). The rest of the authors declare no con-
flicting interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-32097-3.

Correspondence and requests for materials should be addressed to
Parashar Dhapola or Göran Karlsson.

Peer review informationNature Communications thanks Etienne Becht,
Syed Murtuza Baker and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-32097-3

Nature Communications | (2022) 13:4616 14

https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.1038/s41587-021-00870-2
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1038/s41467-022-32097-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data
	Results
	Scarf enables analysis of atlas-scale scRNA-Seq and scATAC-Seq datasets on laptop computers
	Topology-assisted cell downsampling using Scarf
	Memory efficient projection of cells for compositional analysis and co-embedding of cells
	Memory efficient hierarchical clustering and t-nobreakstochastic neighbour embedding for single-cell genomics data

	Discussion
	Methods
	Design principles
	Data storage that supports parallel processing
	Efficient usage of CPU resources
	Optimisations for interactive iterative analysis
	Multi-assay support
	Cell filtering
	Count normalisation
	Feature selection
	Primary dimension reduction
	Cell-cell neighbourhood graph
	Calculation of initial embedding
	Benchmarking setup
	Marker feature identification
	TopACeDO algorithm
	KNN mapping and Integrated embedding
	Normalisation to remove batch effects
	Calculation of unified UMAP
	Mapping scores
	Label transfer from reference to target sample
	Comparison of UMAP and SG-tSNE on atlas scale datasets
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

