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Abstract

Introduction: Progranulin (GRN) mutations occur in frontotemporal lobar degenera-

tion (FTLD) and in Alzheimer’s disease (AD), often with TDP-43 pathology.

Methods: We determined the frequency of rs5848 and rare, pathogenic GRN muta-

tions in two autopsy and one family cohort.We compared Braak stage, β-amyloid load,

hyperphosphorylated tau (PHFtau) tangle density and TDP-43 pathology inGRN carri-

ers and non-carriers.

Results:PathogenicGRNmutationsweremore frequent in all cohorts compared to the

Genome Aggregation Database (gnomAD), but there was no evidence for association
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with AD. Pathogenic GRN carriers had significantly higher PHFtau tangle density

adjusting for age, sex and APOE ε4 genotype. AD patients with rs5848 had higher

frequencies of hippocampal sclerosis and TDP-43 deposits. Twenty-two rare,

pathogenicGRN variants were observed in the family cohort.

Discussion: GRN mutations in clinical and neuropathological AD increase the burden

of tau-related brain pathology but show no specific association with β-amyloid load

or AD.
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1 INTRODUCTION

Alzheimer’sDisease (AD) is theprimary causeof dementia amongolder

people with a strong genetic predisposition1 (60% to 80% heritability),

a prevalence of 30% at age 70 years and an annual incidence rate of

6% to 8% by age 85 years.2 Extra-cellular accumulation and deposition

of β-amyloid (Aβ) in the brain is thought to be an early event. Although
phosphorylated tau is thought to have a role in the cause of AD its role

in pathogenesis is uncertain. Understanding the biologicalmechanisms

of AD could reveal insights about its etiology, and aid in the develop-

ment of novel treatments and pre-symptomatic diagnosis.3,4

Progranulin, a microglial protein encoded by the GRN gene, is neu-

rotrophic and anti-inflammatory, and there is increased expression by

microglia in conditions of pathology.5 GRN mutations are consistently

associatedwith frontotemporal lobar degeneration (FTLD)6 but recent

genetic andepidemiological studies suggest thatGRNvariantsmayalso

be observed in AD. GRN depletion heightens Aβ and tau deposition in

mice, and its expression rises in microglia surrounding plaques.7–9

Progranulin levels are increased in the cerebrospinal fluid (CSF) of

patients with both an autosomal-dominant early onset AD and spo-

radic late-onset AD.10 GRNmutations in patients with clinical AD have

been previously reported in large families in the National Institute on

Aging family-based study,11 among large, multiply affected families of

Caribbean Hispanic ancestry12 and in patients from a large exome-

sequencing study.13 A family clinically diagnosedwithADand also car-

rying a GRN mutation (c.154delA) had FTLD with ubiquitin-positive,

tau-negative, and lentiform neuronal intranuclear inclusions (FTLD-U

NII) with neuronal loss and gliosis, affecting the frontal and tempo-

ral lobes, and TDP-43 inclusions.14 Only one of the six family mem-

bers had mixed pathology meeting NIA-Reagan criteria15 of high like-

lihood and coexisting FTLD-UN11with TDP-43 inclusions.GRNmuta-

tionswere also observed in a patientwith postmortem evidence of AD:

NIA-Reagan criteria of high likelihood15 and coexisting FTLD-U N11

with TDP-43 inclusions.16

Herewe investigated the frequency of pathogenicGRNmutations in

large unrelated AD cohorts and in families among patients with either

clinical or postmortem AD. In clinical AD, we compared the frequency

of behavioral and other symptoms (such as learning disabilities) consis-

tent with a FTLD presentation. In autopsied-confirmed AD, we evalu-

ated the presence of co-pathologies including tauopathies and TDP-43

presentation.

2 METHODS

2.1 ROSMAP cohort

2.1.1 Cohorts and whole genome sequencing
(WGS)

Whole genome sequencing (WGS) data from 1161 autopsied brain tis-

sues were accessed from the ROSMAP cohort which is comprised of

two prospective studies of aging—The Religious Orders Study (ROS)

and the Memory and Aging Project (MAP). The detailed descrip-

tion of the study design and data collection scheme are described

elsewhere.17–19 All individuals have longitudinal clinical assessments

of AD based on the NINCDS-ADRDA criteria20,21 and neuropatholog-

ical diagnosis based on the NIA-Reagan criteria.15 We defined neu-

ropathological diagnosis of AD as having a NIA-Reagan score of 1

or 2 (high or intermediate likelihood of disease). Both studies were

approved by an Institutional Review Board, and all participants signed

an informed consent, AnatomicGift Act, and a repository consent to all

their data to be shared.WGSwas performed at the New York Genome

Center using DNA extracted from brain tissue (n = 806), whole blood

(n = 389), or lymphocytes transformed with EBV virus (n = 5). Details

of the sequencing technology and bioinformatics pipeline for data pro-

cessing, read alignment, and variant calling have been described.22

2.1.2 Correlation of GRN mutations with
neuropathological phenotypes

We first evaluated the frequency of rare putatively pathogenic GRN

variants in the ROSMAP autopsy cohort. Pathogenicity was defined as

codingmutations that have aCombinedAnnotationDependentDeple-

tion (CADD) greater than 20 or mutations that affect splicing. Joint

frequency of GRN mutations was defined as the sum of minor allele

frequencies (MAF) of pathogenic mutations. We then correlated the

GRNmutation dosage (number ofmutations carried by each individual)
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with neuropathological traits. Neuropathological traits included (1)

global pathology defined as a global measure of pathology based on

the scaled scores of five brain regions where the scaled variable is the

original count divided by the standard deviation; (2) Braak Stage23; (3)

diffuse plaque burden; (4) neuritic plaque burden; (5) hyperphospho-

rylated tau (PHFtau) tangle density across eight brain regions; (6) area

occupied by Aβ across eight brain regions; (7) hippocampal sclerosis

(present/absent); (8) TPD-43 inclusions (present/absent); (9) synaptic

measure across three cortical regions (hippocampus, midfrontal cor-

tex, and inferior temporal); and (10) presence of Lewy bodies. Three

stagesofTDP-43pathologyweremeasured (stage1, localized toamyg-

dala; stage 2, extension to hippocampus, and/or entorhinal cortex;

stage 3, extension to the neocortex), and the severity of the TDP-43

cytoplasmic inclusions in neurons and glia were rated on a six-point

scale.24

Correlationswere computed as follows: (1) unadjusted; (2) adjusted

for age at death and sex; (3) adjusted for age at death, sex, and patho-

logical AD diagnosis. Pathological AD was derived using the NIA-

Reagan diagnosis of Alzheimer’s disease.25

2.2 The National Alzheimer’s Coordinating
Center (NACC)

2.2.1 Cohort and WGS

The NACC coordinated collection of phenotype data from the 29

National Institute on Aging (NIA) Alzheimer’s Disease Centers (ADCs),

stored and shared all data, coordinated the adjudication of AD cases

and controls, and collection of samples. For autopsy samples, clin-

ical and neuropathologic information were recorded in either the

minimal dataset (MDS) or the more extensive uniform data set

(UDS) (after 2006), and neuropathologic information was recorded

in the Neuropathology Data Set. Details of the cohort have been

reported.26,27 Clinical diagnosis of AD was based on the NINCDS-

ADRDA criteria20,21 and neuropathological AD was defined as a score

of 1 or 2 (high or intermediate likelihood) on the NIA-AA Alzheimer’s

disease neuropathologic change (ADNC) scale.15

Whole exome sequencing (WES) data for the NACC autopsied

individuals were generated as a part of the AD Sequencing Project

and were accessed from The National Institute on Aging Genetics

of Alzheimer’s Disease Data Storage Site.28 The study design and

details of the WES experiment and variant calling are described

elsewhere.29,30

2.2.2 Correlation of GRN mutations with
neuropathological measures

GRN mutation dosage defined as the sum of non-reference alleles

in pathogenic mutations was correlated with presence of FTLD with

tau (FTLD-tau) pathologies such as argyrophilic grains, tau intracyto-

plasmic inclusions, TDP-43 inclusions, neurofibrillary tangles, or pre-

tangles (seeMann and Snowden31) from theNACCMDS andUDS. The

RESEARCH INCONTEXT

1. Systematic review: Common variants and rare progran-

ulin (GRN) mutations, typically associated with FTLD,

have been identified in genome wide arrays and genome

wide sequencing of Alzheimer’s disease (AD). We sought

to determine whether GRN variants were specifically

associated with AD and establish their impact on the dis-

ease phenotype.

2. Interpretation: We found the frequency of GRN muta-

tions among patients with AD ranged from 0.5% in unre-

lated individuals to 5% in families, but there was no spe-

cific associationwith clinical or pathological AD. Between

carriers and non-carriers there were no statistical differ-

ences in behavioral manifestations. Compared with non-

carriers at autopsy, patients with AD and GRNmutations

had advanced Braak stages, increased tangle density,

TDP-43 pathology, and evidence of other tauopathies.

3. Futuredirections:GRNmutations are not associatedwith

an increased risk of AD, but when present in neuropatho-

logical AD alter the phenotype by increasing the burden

of tau-related brain pathology.

proportion of individualswith clinical ADandwith FTLD-tau pathology

were compared betweenGRNmutation carriers and non-carriers.

2.3 Estudio Familiar de Influencia Genetica en
Alzheimer’s (EFIGA)

2.3.1 Cohort and WGS

WGS data from 307 families in the Estudio Familiar de Influencia

Genetica en Alzheimer’s (EFIGA) cohort were accessed. Study design,

adjudication, and clinical assessment of AD in this cohort were previ-

ously described.32 Participants were followed up every 2 years with

a neuropsychological test battery,33 a structured medical and neuro-

logical examination, and an assessment of depression.34,35 The Clini-

cal Dementia Rating Scale36,37 was administered and functional sta-

tus was assessed, and the clinical diagnosis of AD was based on the

NINCDS-ADRDA criteria.20,21 Seventy-seven families in EFIGA under-

went sequencing as a part of the Alzheimer’s Disease Sequencing

Project (ADSP) discovery and extension phases.38

WGS on 1886 individuals from 264 families was also performed at

the New York Genome Center (NYGC) using one microgram of DNA,

an Illumina PCR-free library protocol, and sequencing on the Illumina

HiSeq platform.

We harmonized the WGS the EFIGA families (n = 307), and

jointly called variants to create a uniform analysis set. Genomes

were sequenced to a mean coverage of 30x. Sequence data analysis

was performed using the NYGC automated analysis pipeline which

matches the centers for common disease genomics (CCDG) and
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Trans-Omics for Precision Medicine recommended best practices.39

Briefly, sequencing reads were aligned to the human reference,

hs38DH, using BWA-MEM v0.7.15. Variant calling was performed

using the Genome Analysis Toolkit best-practices. Variant filtration

was performed using Variant Quality Score Recalibration (at tranche

99.6%) which identified annotation profiles of variants that were likely

to be real and assigns a score to each variant.

2.3.2 Correlation of GRN variants with clinical
assessment of FTLD-like symptoms

Behavioral traits associated with FTLD had been collected in a sub-

group of the EFIGA cohort and was compared in those with clinical

AD with and without pathogenic GRN mutations. Presence of FTLD-

like behavioral symptoms were assessed on a ten-point Middelheim

Frontality Score (MFS).40

2.4 Statistical analysis

Partial correlations (cor) adjusting for covariates were computed using

the ppcor R package41 and resultswere assessed for significance at P≤

0.05.

3 RESULTS

3.1 Frequency of GRN mutations

We annotated mutations from the AD and FTD Mutation Database

(https://uantwerpen.vib.be/) to assess the CADD scores of putatively

deleterious variants in GRN (Figure S1 in the Supporting Information).

Of the 171 mutations in the AD and FTD databases, 78 (45%) were

classified as “pathogenic” and45 (26%)were considered “unclear,”with

average CADD scores of 28.4 (±7.6) and 19.3 (±9.73) respectively.

Thus, we used CADD ≥ 20 to define pathogenic GRN loss of function,

non-synonymous, and splice variants mutations.

Table 1 shows the frequency of pathogenic GRN mutations in

each dataset. Only summary level data were available from the

TABLE 1 Frequency of pathogenicGRNmutations with CADD
score≥ 20 in the different cohorts

Dataset

Number of

variants

Frequency

in affected

Frequency in

unaffected

gnomAD exomes (all

populations)

127 NA 0.0075

EFIGA families 22 0.0512 0.0473

ROSMAP 8 0.014 0.0082

NACC 30 0.0052 0.0052

Abbreviations: CADD, Combined Annotation Dependent Depletion; gno-

mAD, Genome Aggregation Database; EFIGA, Estudio Familiar de Influen-

cia Genetica enAlzheimer’s; ROSMAP, ReligiousOrders Study andMemory

and Aging Project; NACC, National Alzheimer’s Coordinating Center.

Genome Aggregation Database (gnomAD) and the total frequency of

pathogenic variants was assessed as the sum of frequencies of indi-

vidual variants (assuming that each variant was observed once in an

individual). The population frequency of pathogenic GRN variants in

gnomAD was 0.75%. In the EFIGA family cohort, there was a signifi-

cant enrichment of pathogenic GRNmutations, although no significant

differences were observed between clinical AD and unaffected family

members. In the ROSMAP study, the frequency of GRN mutations in

post-mortemAD caseswas observed at 1.4% for the affected and 0.8%

for the controls cohort.

3.2 Association of GRN with neuropathological
traits in ROSMAP

We observed eight pathogenic GRN mutations at a MAF = 1.4% in

autopsy confirmed cases and 0.8% in controls. We assessed the cor-

relation of GRN carrier status with neuropathological, behavioral, and

cognition-related traits (Table 2, Figures S2-S3 and Table S3). GRN

mutations in both cases and controls was accompanied by an advanced

Braak Stage (cor = 0.06, P = 0.04) and higher PHFtau tangle den-

sity (cor = 0.08, P = 0.008). Adjusting for age, sex, and AD diagno-

sis, correlation with PHFtau tangle density was statistically significant

(cor=0.065,P=0.02). Theassociationwas significant after adjustment

for APOE ε4 (cor = 0.06, P = 0.048). Upon further analysis of GRN and

APOE ε4 (Figures S2-S3), we found higher tangle density in AD patients

and healthy individuals who carried both a GRNmutation and APOE ε4
alleles. This observation was particularly strong in tangle density mea-

sured in the entorhinal cortex and the hippocampus. However, this pat-

tern was observed in only five AD patients and two unaffected individ-

uals. There was no association ofGRN variants with other neuropatho-

logical traits.

Of the 20 individuals in ROSMAP with a neuropathological diag-

nosis of AD and carrying a GRN mutation, 9 (45%) showed TDP-43

inclusions that were either stage 2 (extension to hippocampus and/or

entorhinal cortex) or stage 3 (extension to the neocortex).Moderate to

severe TDP-43 pathology was slightly higher in GRNmutation carriers

with a confirmed neuropathological diagnosis of AD (45% vs 39.5%).

In addition, one patient with confirmed AD and a second individual

without dementia but a carrier of a GRN variant had neuropathologi-

cal characteristics of hippocampal sclerosis.

3.3 Single nucleotide polymorphism (SNP) rs5848
in ROSMAP cohort

The rs5848 single nucleotide polymorphism (SNP), located in the 3′-
untranslated region of GRN, predicted to be a binding site for the

microRNA miR-659, is the most frequent GRN variant associated

with frontotemporal dementia.42 Several small independent andmeta-

analysis studies from several populations have reported association

of the T allele of rs5848 with risk for clinical AD.43 Recently, a large

meta-analysis of genome-wide association studies (39,106 clinically

https://uantwerpen.vib.be/
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TABLE 2 GRN carrier status is correlated positively with tangle load and Braak stage

Unadjustedmodel Adjusted for age and sex

Adjusted for age, sex

and AD status

Adjusted for age, sex

and APOE ε4 dosage

Correlation

coefficient P-value
Correlation

coefficient P-value
Correlation

coefficient P-value
Correlation

coefficient P-value

Global pathologya 0.04 1.79E-01 0.03 3.32E-01 0.01 6.93E-01 0.02 5.21E-01

Braak Stage 0.06 4.10E-02 0.05 9.04E-02 0.04 1.72E-01 0.04 1.36E-01

Diffuse plaque burden 0.02 5.43E-01 0.02 5.64E-01 0.00 9.29E-01 0.01 7.41E-01

Neuritic plaque burden 0.03 3.27E-01 0.02 5.85E-01 −0.01 8.63E-01 0.01 8.27E-01

square-root of tangle density

across eight brain regions

0.08 8.83E-03 0.07 2.68E-02 0.06 4.93E-02 0.06 4.88E-02

square-root of the overall

amyloid levels

0.03 3.61E-01 0.02 4.88E-01 0.00 9.86E-01 0.01 6.96E-01

Hippocampal sclerosis

(present/absent)

−0.01 7.88E-01 −0.01 7.31E-01 −0.01 6.96E-01 −0.01 6.61E-01

TPD-43 pathology

(present/absent)

0.03 4.27E-01 0.02 4.37E-01 0.02 4.93E-01 0.02 4.82E-01

Presence of Lewy bodies 0.00 9.60E-01 0.00 9.78E-01 0.00 9.72E-01 0.00 9.98E-01

Synaptic measureb 0.05 2.91E-01 0.06 2.20E-01 0.06 2.05E-01 0.05 2.47E-01

aGlobal pathology defined as global measure of pathology based on the scaled scores of pathology in five brain regions, where the scaled variable is the

original count divided by the standard deviation.
bSynaptic measure across three cortical (hippocampus, midfrontal cortex, and inferior temporal).

TABLE 3 Correlation of pathological measures with rs5848 in the ROSMAP cohort

Unadjustedmodel Adjusted for age and sex

Adjusted for age, sex,

and AD status

Adjusted for age, sex,

andAPOE ε4 dosage

Correlation

coefficient P-value
Correlation

coefficient P-value
Correlation

coefficient P-value
Correlation

coefficient P-value

Global pathologya −0.02 4.45E-01 −0.02 4.84E-01 −0.03 3.76E-01 −0.03 3.47E-01

Braak Stage −0.03 3.40E-01 −0.02 4.91E-01 −0.02 4.14E-01 −0.02 4.86E-01

Diffuse plaque burden −0.01 6.26E-01 −0.01 6.73E-01 −0.01 6.56E-01 −0.02 5.54E-01

Neuritic plaque burden −0.01 6.86E-01 −0.01 7.06E-01 −0.01 6.57E-01 −0.02 5.57E-01

Square-root of tangle density

across eight brain regions

−0.02 5.22E-01 −0.01 6.64E-01 −0.02 5.87E-01 −0.02 5.34E-01

Square-root of the overall

amyloid levels

−0.02 5.78E-01 −0.01 7.51E-01 −0.01 6.76E-01 −0.02 5.51E-01

Hippocampal sclerosis

(present/absent),

0.08 4.88E-03 0.09 3.08E-03 0.09 3.09E-03 0.08 4.55E-03

TPD-43 pathology

(present/absent)

0.08 1.84E-02 0.08 1.00E-02 0.08 9.52E-03 0.08 1.65E-02

Presence of Lewy bodies 0.00 8.82E-01 0.00 9.00E-01 0.00 9.08E-01 0.00 9.62E-01

Synaptic measureb 0.00 9.68E-01 0.00 9.76E-01 0.00 9.37E-01 0.00 9.88E-01

Abbreviation: ROSMAP, Religious Orders Study andMemory and Aging Project.
aGlobal pathology defined as global measure of pathology based on the scaled scores of pathology in five brain regions, where the scaled variable is the

original count divided by the standard deviation.
bSynaptic measure across three cortical (hippocampus, midfrontal cortex, and inferior temporal).

diagnosed AD, 46,828 proxy-ADD cases and 401,577 controls) and

replication in 25,392 independent AD cases and 276,086 controls

implicated rs5848 as a genome-wide significant locus for AD.44

We evaluated the association of rs5848 with neuropathological,

behavioral, and cognition traits (Table 3, Table S4) using unadjusted

and adjusted models for age, sex, AD diagnosis, and APOE ε4 dosage.

The rs5848 SNP was modestly associated with presence of hip-

pocampal sclerosis (cor = 0.09, P = 3.07e-03) and TDP-43 pathology

(cor = 0.082, P = 0.01), adjusting for age, sex, and AD diagnosis. The

association was significant after adjusting for APOE ε4 status. Within
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TABLE 4 Frequency of Hippocampal Sclerosis (HS) and TDP-43 pathology inGRN rs5848 carriers in ROSMAP

Healthy at Autopsy (NoAD) Neuropathologically ConfirmedAD

rs5848 T alleles HSAbsent HS Present HSAbsent HS Present

0 0.50 0.27 0.48 0.43

1 0.41 0.46 0.44 0.42

2 0.09 0.27 0.08 0.14

Healthy at Autopsy (NoAD) Neuropathologically ConfirmedAD

rs5848 T alleles

TDP-43

Absent

TDP-43

Present

TDP-43

Absent

TDP-43

Present

0 0.53 0.43 0.50 0.47

1 0.40 0.43 0.43 0.43

2 0.07 0.14 0.07 0.10

Abbreviation: ROSMAP, Religious Orders Study andMemory and Aging Project.
a)Hippocampal Sclerosis (% of individuals with rs5848 within each category (AD and HS absent, AD and HS present, Healthy and HS absent, healthy and HS

present), P= 0.016 in 6-df chi-square test. Raw numbers are shown in (Table S5).
b)TDP-43 Pathology (% of individuals with rs5848 within each category (AD and TDP-43 pathology absent, AD and TDP-43 pathology present, Healthy and

TDP-43 pathology absent, healthy and TDP-43 pathology present), P= 0.16 in 6-df chi-square test. Number of individuals in each cell is given in Table S5.

homozygous rs5848 carriers with pathological AD, 17.4% had con-

comitant hippocampal sclerosis and 68% exhibited some TDP-43

pathology (9.7% and 58% for hippocampal sclerosis and TDP-43,

respectively, amongst rs5848 non-carriers or heterozygotes; Table 4,

Table S5).

3.4 GRN mutations in the autopsied cohort of
NACC WES

We usedWES data from the ADSP29 and neuropathological measures

obtained fromNACC to evaluate the frequency ofGRN variants. Over-

all, we identified 30 putatively deleterious GRN variants in the NACC

cohort. Among 3,252 individuals, for whom autopsy information was

available, 31 (1%) individuals carried a GRNmutation (MAF = 0.0047)

which is lower compared to the ROSMAP cohort. The low frequency

here may be partially explained by the intersection of capture regions

of the various exome kits used in the ADSP,29 which could reduce the

reliably of regions called within the gene. We evaluated the frequency

of FTLD-tau using the variables specified in the NACC neuropatholog-

ical dataset. Three out of fifteen individuals (20%) who were patients

with postmortem AD and carrying a GRN mutation showed criteria of

FTLD (as described below). In patients with clinical AD who did not

carry a GRN mutation, presence of FTLD neuropathological features

was observed at 5.5% (P-value= 0.063).

The three patient examples reveal the variation inGRN related neu-

rodegeneration. Patient A, with clinical AD, carried a GRN mutation

and had the pathological hallmarks of AD including Braak Stage = 5,

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)

C score of 2 (moderate neuritic plaques), and NIA-AAADNC score of 3

(high and frequent diffuse plaques). The patient had little tau pathology

(FTLD-tau) but TDP- 43 immunoreactive inclusions in the amygdala

were observed. Patient B also had both clinical and pathological AD

(Braak Stage = 5, CERAD C score = 3, and NIA-AA ADNC score = 3).

Concomitantly, TDP-43 immunoreactive inclusions were widespread

in the amygdala, hippocampus, inferior temporal cortex, and neo-

cortex. Interestingly both patients carried theGRN p.Arg433Trpmuta-

tion. Patient C (p.Val8Met mutation) was diagnosed as clinical AD but

did not have the pathological hallmarks ofAD (Braak Stage=0, CERAD

C score = 0 [no neuritic plaques and no diffuse plaques]) at autopsy.

The patient had FTLD with parkinsonism, tau-positive, or argyrophilic

inclusions and tauopathy but without ubiquitin-positive (tau-negative)

inclusions.

3.5 GRN mutations in families

To investigate the clinical characteristics of AD in pathogenic GRN car-

riers, we compared the frequency of behavioral and other psychiatric

manifestations in EFIGA families between carrier and non-carrier sta-

tus in living patients with AD. The presence of FTLD-like behavioral

symptomswas assessedon the ten-pointMFS.40 The frequency of indi-

vidualswith at least onebehavioral symptomconsistentwithFTLDwas

compared between pathogenicGRN carriers and non-carriers.Medical

record reviews were conducted in all GRN carriers and a similar num-

ber of randomly selected non-carriers to assess behavioral, mood, and

psychosis-like symptoms.

In clinically diagnosed AD, there was no difference (Table S1) in

the presence of FTLD-like symptoms on the MFS scale between car-

riers and non-carriers of pathogenic GRN variants (9% in carriers vs

11% in non-carriers) or between carriers and non-carriers of the com-

mon rs5848 SNP (Tables S1, S2). Interestingly, within unaffected fam-

ily members, carriers of GRN variants and the common rs5848 SNP

weremore likely to have behavioral symptoms, assessed using theMFS

(5.4% in carriers vs 1.3% in non-carriers, P= 0.03).We found that 3.7%

of the individuals carrying a GRN mutation also displayed parkinson-

ism while it was absent in non-carriers. Four patients in one family

with clinical AD (Figure S4) andwith aGRN splice variant (rs72824736)
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had learning disabilities and one patient carrying another splice variant

(rs112873166) had progressive aphasia. These observations were not

present among non-carriers.

4 DISCUSSION

GRNmutations explain up to 20% of familial and 5% of sporadic FTLD

but lead to a variety of clinical presentations, predominantly present-

ing as behavioral variant FTLD or progressive aphasia. Less frequently,

variants in GRN are found in clinical AD with or without parkinsonism.

Among patients with clinical AD and not carrying mutations in PSEN1,

PSEN2, and APP, 6.3% carried putatively pathogenic GRNmutations.45

The authors recommend re-examination of clinical AD patients, partic-

ularly those whowere diagnosed prior to identification of causal FTLD

genes includingGRN.

In this report, we systematically evaluated the frequency of puta-

tively pathogenic GRN mutations in two large autopsy cohorts and

one clinical cohort, and further examined the presence of concomitant

tauopathy or other FTLD-like neuropathological or clinical presenta-

tions among patients with AD. In addition, we also examined the fre-

quency of FTLD-like symptoms in patients with AD carrying rs5848,

the strongest variant linked to FTLD-TDP43 pathology.

We found a higher than expected frequency of pathogenic GRN

mutations among autopsied and clinically diagnosed AD compared

to publicly available exome and genome datasets (gnomAD).46 In the

ROSMAP cohort, we found an association between rs5848 and hip-

pocampal sclerosis and TDP-43 pathology. It has been previously

reported that up to 25% to 50% of patients with AD have been found

to have TDP-43 pathology at autopsy,47 especially those with hip-

pocampal sclerosis. However, in carriers of the rs5848 SNP, we found

that 60% of pathologically confirmed AD patients exhibited TDP-43

pathology, and it increased to 67% if they were homozygous for the

variant (Table S5). Interestingly, 95% (41 out of 43) rs5848-positive,

AD patients presenting with hippocampal sclerosis also had TDP-43

pathology.Among the collectionofHispanic families,we found learning

disabilities and aphasia concomitant with clinical AD in GRN carriers,

but this was absent in non-carriers. GRN variants are present in ∼16%

primary progressive aphasia, 7% of behavioral-FTLD, and ∼5% of AD

with learning disabilities48,49 suggesting that increased language and

behavioral deficits in the presence of GRN variants in clinically diag-

nosed AD.

There are some limitations of this study including the diverse ascer-

tainment and neuropathological characterizations across the autopsy

cohorts. The in-silico pathogenic classificationofGRN variants requires

additional validation. Patients with mixed AD and FTLD presentations

that carry GRNmutations with incomplete penetrance or mutations in

other genes such asMAPT andC9orf72would bemissed in this analysis.

Progranulin levels in CSF are associated with the progression of

early and late onset, clinically diagnosed AD.10 In addition, progran-

ulin levels are also associated with cortical thinning on brain MRI50

andADneuropathology.51 Future studies should attempt to relateCSF

progranulin levels, GRN variants, neurofibrillary tangle pathology, and

Braak stage.

Taken together, the data presented here indicate that both rare and

common GRN variants are associated with specific neuropathological

findings in AD that are also present in FTLD. Postmortem data reveal

that among neuropathologically diagnosed AD with GRN mutations,

Braak stage and tau pathology exceed what is normally present in AD.

Interestingly, GRN variants in AD were not accompanied by the typi-

cal behavioral manifestations occurring in FTLD. While GRN variants

are strongly associated with FTLD, this report validates the numer-

ous studies indicating that they can also be present in AD, but are not

causal. As suggested earlier, it is possible that progranulin impacts AD,

FTLD, and other neurodegenerative disease putatively by its effect on

lysosomal storage in neurons and microglia.5 Progranulin mutations

may also explain concomitant tauopathies or other manifestations in

AD neuropathology.
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