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A neural circuit for wind-guided olfactory
navigation

Andrew M. M. Matheson 1,4, Aaron J. Lanz 1, Ashley M. Medina1, Al M. Licata1,
Timothy A. Currier 1,2,5, Mubarak H. Syed3 & Katherine I. Nagel 1

To navigate towards a food source, animals frequently combine odor cues
about source identity with wind direction cues about source location. Where
and how these two cues are integrated to support navigation is unclear. Here
we describe a pathway to the Drosophila fan-shaped body that encodes
attractive odor and promotes upwind navigation. We show that neurons
throughout this pathway encode odor, but not wind direction. Using con-
nectomics, we identify fan-shaped body local neurons called hΔC that receive
input from this odor pathway and a previously described wind pathway. We
show that hΔC neurons exhibit odor-gated, wind direction-tuned activity, that
sparse activation of hΔC neurons promotes navigation in a reproducible
direction, and that hΔC activity is required for persistent upwind orientation
during odor. Based on connectome data, we develop a computational model
showing how hΔC activity can promote navigation towards a goal such as an
upwind odor source. Our results suggest that odor and wind cues are pro-
cessed by separate pathways and integrated within the fan-shaped body to
support goal-directed navigation.

Searching for a resource such as food requires the integration of
multiple sensory cues. In natural environments, food odors are often
transported by wind, forming turbulent plumes1,2. Within these
plumes, instantaneous odor concentration is often a poor cue to
source direction3–5. Thus, many organisms have evolved a strategy of
using odor information to gate upwind (or upstream) movement to
locate the source of an attractive odor6–10. This strategy complements
those observed in odor gradients, where odor increases drive
straighter trajectories, while odor decreases drive re-orientation
(e.g.11). Navigation towards potential food sources thus requires inte-
gration of directional information about the prevailing wind (often
derived frommechanosensation), with information about the identity
and quality of odors carried on that wind9,10. Where and how these two
types of information are integrated to support navigation towards an
odor source is not clear.

In the insect brain, several conserved central neuropils have been
implicated in olfactory food search and navigation (Fig. 1A). The
mushroom body (MB) and lateral horn (LH) have been implicated in
learned and innate olfactory processing, respectively12–14. Subsets of
MB and LH output neurons (MBONs and LHONs) promote approach
and avoidance behavior15–18. A number of putative mechanosensory
inputs to theMB have been identified19 and wind intensity signals have
been observed in certain MB compartments20. The LH also receives
input from mechanosensory centers in a discrete ventral region17,19.
However, it is not known whether the MB and LH represent wind
direction signals, as well as odor identity and value signals, to support
navigation.

In contrast, the fan-shaped body (FB), a part of the Drosophila
navigation center called the central complex (CX), has been recently
shown to encode wind direction21. Columnar inputs to the fan-shaped
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Fig. 1 | A behavioral paradigm for investigating odor-evoked wind navigation.
A Brain regions and neuronal classes investigated in this study. The mushroom
body (MB) and lateral horn (LH) are higher-order olfactory centers involved in
learned and innate olfactory processing, respectively. The fan-shaped body (FB) is
part of the fly navigation center called the Central Complex (CX). Output neurons
of the MB and LH (MBONs and LHONs) provide input directly or indirectly to FB
tangential inputs. Columnar PFNs provide wind direction input to the FB. FB local
neurons receive input both from FB tangential inputs and from columnar PFNs.
B Schematic of top and side view of the behavioral apparatus showing IR illumi-
nation (850nm), red activation light (626nm, 26 µW/mm2), imaging camera,
behavior chambers, and air and odor inputs. C Navigation behaviors evoked by
odor and by optogenetic stimulation of olfactory receptor neurons. Example
walking trajectories in response to 1% vinegar (left) and optogenetic activation of
orco+ and IR8a+ ORNs (right), before (gray), during (magenta), and after (green)
10 s of odor (left) or light (right). Constant wind at ~12 cm/s. D Time course of
upwind velocity and curvature (angular/forward velocity) in response to odor or
optogenetic stimulation, averaged across flies (mean± SEM, vinegar N = 26 flies,
ORN activation N = 24 flies). Shaded area: stimulation period, 10 s vinegar (purple)
or light (orange). E Upwind velocity and OFF curvature (average change from
baseline for single flies) in response to stimulation for each genotype/condition.
Mean ± STD overlaid; red indicates a significant increase. Vinegar (N = 31),

orco>Chrimson (N = 31), and or/IR8a > Chrimson (N = 24) stimulation all drove
significant increases in upwind velocity (0–5 s after stimulus ON, vinegar:
p = 1.0997e−05, orco: p = 3.8672e−05, orco,IR8a: 2.6691e−05) and OFF curvature
(0–2 s after stimulus OFF, vinegar: p = 1.9619e−04, orco: p = 1.1742e−06, orco,IR8a:
p = 2.3518e−05). Light activation of flies carrying only the parental effector (nor-
pA;UAS-Chrimson, N = 16), empty-GAL4 >Chrimson (N = 19), or empty-split
GAL4 >Chrimson (N = 14) did not increase upwind velocity (parent: p =0.7174,
empty-split: p =0.6874, empty-gal4: p =0.6698) or OFF curvature (parent:
p =0.7960, empty-split: p =0.3144,empty gal4: p=0.7354). IR8a > Chrimson stimu-
lation did not increase upwind velocity (p =0.3507) but did increase OFF curvature
(p = 4.4934e−04). All statistics used two-sided Wilcoxon signed rank test. F Time
course of upwind velocity and curvature in response to odor in flies with ORNs
silenced (orco/IR8a > TNT, mean± SEM, N = 26, teal) versus control (UAS-TNT,
N = 31, gray). G Upwind velocity and OFF curvature for silencing experiments,
quantified as in E. Mean±STD overlaid. Blue overlay represents significant decrease
compared to control (UAS-TNT). (Two-sided Mann–Whitney U test compared to
UAS-TNT (N = 31) control, upwind velocity: orco (N = 25): p =0.10627, ir8a (N = 18):
p =0.40095, orco,ir8a (N = 26): p =0.00010917, OFF curvature: orco: p = 3.2758e-
05, IR8a: p =0.037135, orco,IR8a: p = 4.2482e−05). All statistics corrected using the
Bonferronimethod. Source data for panels that show statistical tests for this and all
subsequent figures are provided as a Source Data file.
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body (FB), known as PFNs, represent wind direction as a set of
orthogonal basis vectors, and receive input from the lateral accessory
lobe (LAL) via LNa neurons21. Wind direction signals are strongest in
PFNs targeting ventral layers of the FB (PFNa,p, andm in thehemibrain
connectome22). PFNs targetingmore dorsal layers (PFNdand v) encode
both optic flow23 and self-motion during walking24 in a similar vector
format. PFNs of all types show little sensitivity to odor stimuli21 sug-
gesting that this pathway mostly encodes flow and self-motion infor-
mation independent of odor.

A distinct set of FB inputs, known as FB tangential cells, are ana-
tomically downstream of the MB25,26 however, most of these have not
been functionally characterized. Todate, fewolfactory inputs to the FB
have been described27. Large lesions to the FB disrupt visual
navigation28 and activation of subsets of FB neurons can produce
oriented locomotor behaviors in cockroaches29. Recent theoretical
and experimental work suggests that FB circuitry is optimized for
encoding vectors and specifying navigational goals23,24,30–32 but
experimental evidence for goal encoding in the FB is still sparse.
Numerous studies have explored the role of the FB in path
integration31,33 visual navigation34 and landmark-guided long-distance
dispersal35–37. However, few studies have investigated the role of this
region in olfactory navigation38.

Hereweused an optogeneticwind-navigation paradigm, together
with calcium imaging, connectomic analysis, and computational
modeling to ask how the MB/LH and FB work together to promote
olfactory navigation behavior. We show that a subset of attraction-
promoting MB and LH neurons evoke upwind movement when acti-
vated. However, calcium imaging indicates that these neurons do not
strongly encode wind direction, suggesting that integration of odor
and wind information occurs elsewhere. We next performed a large
behavioral screen of FB inputs, finding that several groups of FB tan-
gential inputs, but not columnar PFNs, drive upwind movement. Ima-
ging revealed that these neurons also encode odor but not wind
direction. Finally, we identify a specific type of FB local neuron, called
hΔC, that receives input frombothwind-sensitive PFNs and fromodor-
sensitive FB tangential cells. We show that these neurons encode an
odor-gated wind direction-tuned signal, and promote navigation in a
reproducible directionwhen sparsely activated in afly-specific pattern.
Silencing hΔC neurons impairs the ability of flies to maintain upwind
orientation throughout an odor stimulus. Based onmotifs from the fly
connectome, we develop a computational model showing how dif-
ferent patterns of activity in hΔC neurons can promote navigation
either upwind (under natural odor and wind activation) or in a repro-
ducible arbitrary direction (during sparse optogenetic activation).
Taken together, our data support an emerging model of the FB, in
which spatial direction cues and non-spatial context cues enter this
region through distinct anatomical pathways, and are integrated by
local neurons to specify goal-directed navigation behaviors.

Results
An optogenetic paradigm to investigate the neural circuit basis
of upwind navigation
To investigate the neural circuit basis of wind-guided olfactory navi-
gation, we developed an optogenetic activation paradigm. We mod-
ified a set of miniature wind tunnels (Fig. 1B10) to present temporally
controlled red light stimuli as walking flies navigated in a laminar wind
flow. To validate this assay, we asked whether optogenetic activation
of olfactory receptor neurons (ORNs) with Chrimson could produce
behavioral phenotypes similar to those observed with an attractive
odor, apple cider vinegar (vinegar). We found that broad activation of
ORNs using either the orco, or the orco and IR8a co-receptor pro-
moters together39,40 resulted in robust navigation behaviors similar to
those observed with vinegar (Fig. 1C, D, Fig. S1A). In response to either
odor or light, flies ran upwind, generating an increase in upwind
velocity. Following odor or light OFF, flies initiated a local search,

characterized by increased curvature. Neither behavior was observed
in the absence of the orco-GAL4 or orco/IR8a-GAL4 driver, or when we
expressed Chrimson under an empty-GAL4 or empty split-GAL4 driver
(Fig. 1E, Fig. S1B). Silencing both orco and IR8a-positive ORNs using
tetanus toxin abolished both upwind and search responses to odor
(Fig. 1F, G). Thus, optogenetic activation can substitute for odor in
producing both upwind orientation and OFF search, and ORNs are
required for these behavioral responses to odor.

Vinegar activates a subset of both orco+ and IR8a+glomeruli41.
Although the behavioral phenotypes evoked by vinegar and by opto-
genetic activation of ORNs were similar, they exhibited some subtle
differences. Vinegar produced a stronger upwind response than
optogenetic activation of orco+ ORNs in the same flies (Fig. S1A).
However, the OFF search behavior evoked by optogenetic activation
orco-GAL4, or of orco/IR8a-GAL4, was more robust than that evoked
by vinegar (Fig. 1C, D, Fig. S1A). Moreover, activation of orco/IR8a+
ORNs in the absence of wind produced OFF search without upwind
orientation (Fig. S1C). These results indicate that upwind orientation
can be evoked independently of OFF search, and suggest that these
two behaviors are driven by distinct but overlapping populations of
olfactory glomeruli. Activation of single ORN types known to be acti-
vated by vinegar41 did not generate significant upwind orientation or
OFF search (Fig. S1D). In addition, silencing of orco+ or IR8a+ORNs
alone did not abolish upwind orientation, but did reduce OFF search
(Fig. 1G, Fig. S1E). These data indicate that groups of ORNs must be
activated together to promote upwind orientation and that substantial
silencing of most olfactory neurons is required to abolish upwind
movement in response to vinegar.

A subset of LHONs and MBONs drive wind navigation and
encode a non-directional odor signal
We next asked whether activation of central neurons in the LH andMB
could similarly produce wind navigation phenotypes. We activated
several groups of LHONs and MBONs that were previously shown to
produce attraction or aversion in quadrant preference assays15,17. We
found that several of these neuron groups drove robust upwind
movement when activated (Fig, 2A, B, Fig. S2A). Neurons promoting
upwind movement included the cholinergic LHON cluster AD1b2
(labeled by LH1396, LH1538, and LH1539 (Fig. 2A), and the cholinergic
MBON lines MB052B (labeling MBONs 15–19), MB077B (labeling
MBON12), and MB082C (labeling MBONs 13 and 14, Fig. 2B). AD1b2
drivers andMB052B also elicited significant increases inOFF curvature
when activated (Fig. 2A, B), while activating individual MBONs within
MB052B (MBONs 15–19) did not drive significant upwind movement
(Fig. S2B). Silencing single MBON or LHON lines that drove navigation
phenotypes did not abolish upwind movement in response to odor
(Fig. S2C) consistent with models suggesting that odor valence is
encoded by population output at the level of the MB16 and with our
findings at the periphery that very broad silencing is required to
eliminate behavioral responses to vinegar.

We also identified MBONs that produced other navigational phe-
notypes. For example, the glutamatergic (inhibitory) MBON line
MB434B (labeling MBONs 5 and 6), which was previously shown to
produce aversion15 generated downwind movement in our paradigm
(Fig. 2C). Moreover, twoMBON lines produced straightening (reduced
curvature) in our paradigm (Fig. 2D) but no change in movement
relative towind (Fig. 2D, Fig. S2A): the GABAergic lineMB112C (labeling
MBON 11), which evoked attraction in quadrant assays, and the gluta-
matergic lineMB011B (labelingMBONs 1,3,4), which evoked aversion15.
Overall, these results indicate that LH/MB outputs can drive coordi-
nated suites of locomotorbehavior thatpromote attractionor aversion
in different environments. Several LHONs and MBONs redundantly
drive upwind movement, key to attraction in windy environments,
while other MBONs drive straightening, which promotes attraction in
odor gradients11 or in response to familiar visual stimuli42.
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Are the LHONs andMBONs thatdrive upwindmovement sensitive
to wind direction, or do they encode a non-directional odor signal that
is integrated with wind direction downstream? To answer this ques-
tion, we used calcium imaging to measure responses to calibrated
wind and odor stimuli delivered from five different directions
(Fig. S2D). Across all four upwind-promoting lines (MB052B, LH1396,
MB077B, and MB082C), we observed responses to vinegar, but no

tuning for wind direction (Fig. 2E, S2E, ANOVA: F(4,35) = 0.35,
p =0.8408, F(4,40) = 0.3, p = 0.8794, F(4,25) = 0.2, p = 0.9989,
F(4,35) = 0.67, p =0.6166). We separately used electrophysiology to
show that theα’3 compartmentof theMB,whichwaspreviously shown
to respond to airflow20 does not encode wind direction (Fig. S2F). To
rigorously test whether MB/LH responses carry wind direction infor-
mation, we generated tree classifiers (seeMethods) and asked them to
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decode if wind was presented from the left, right, or center relative to
the fly (Fig. 2F) based on responses during the odor period. We found
that classifiers trained on MB/LH responses performed no better than
shuffled controls (Fig. 2F). In contrast, classifiers trained on the
responses of wind pathway neurons (PFNa, or the difference between
left and right LNa neurons)21 performed significantly better than
shuffled controls.We trained a second set of classifiers to discriminate
between odor and wind ON (Fig. 2G). In this case, MB052B and
MB082C performed significantly better than control, while neither
wind pathway neuron showed significant discrimination. All neurons
significantly discriminated odor from baseline (Fig. S2G). We also
applied our wind direction classifiers to other phases of the response,
such as wind ON and OFF (Fig. S2H). LH1396, but no other neuron
group or phase, showed some discrimination at wind ON. This was
largely due to responses that were stronger in front of the fly than at
the sides. Taken together, these analyses support the idea that MB/LH
neurons that promote upwind orientation largely encode odor pre-
sence independent of wind direction.

Multiple tangential FB inputs promote upwind orientation and
respond to odor
The FB is anatomically downstream of the MB and LH25,26 and has
previously been shown to encode wind direction. We, therefore, asked
whether inputs to the FB are likewise capable of driving movement
relative to wind direction. We first confirmed that the FB is anatomi-
cally downstream of our neurons of interest by performing ante-
rograde trans-synaptic tracing43 on two of our lines that drove upwind
movement (MB052B and LH1396); we observed signal in the dorsal
layers of the FB in both cases (Fig. 3A).

To ask whether the FB plays a role in wind-guided navigation, we
performed an activation screen of ~40 lines labeling FB input neurons,
including dorsal and ventral FB tangential inputs, and columnar PFNs,
as well as additional CX neurons (Fig. 3B, Fig. S3). We performed this
screen using genetically blind flies (see Methods) and in the presence
of teashirt-Gal8044 to reduce potential Chrimson expression in the
ventral-nerve cord (VNC) (seeMethods).We found that 4 lines labeling
FB tangential inputs, but no lines labeling PFNs, generated significant
movement upwind (Fig. 3B, S4A). Two dorsal FB input lines that were
previously shown to promote sleep (23E10 and 84C1045) did not pro-
duce any wind-oriented movement in our assay, although we did
observe a decrease in groundspeed in 23E10. FB tangential lines driv-
ing upwind phenotypes targeted both dorsal and ventral layers of the

FB. We attempted to refine these lines by making split-Gal4 drivers
from combinations of these hemidrivers, but only one of these,
labeling a set of ventral FB tangential inputs, also drove an upwind
phenotype (Fig. 3C). Most split-Gal4 drivers labeled only a very small
number of neurons.

In addition to the lines identified through our screen, we identi-
fied the neuron FB5AB using the connectome (Fig. 3D, E). This single
pair of neurons stood out as the only FB input that receives at least one
direct synaptic input from each of the MBON lines with wind naviga-
tion phenotypes (Fig. 3D). In addition, FB5AB receives the largest
number of di-synaptic LH inputs from vinegar-responsive glomeruli of
any FB input neuron (Fig. 3E, see Methods). We identified a GAL4 line
that labels FB5AB neurons (21D07). As 21D07 labels some neurons in
the antennal lobe, a primary olfactory area, we used the cell class-
lineage intersection (CLIN46) technique to limit the expression of
Chrimson to neurons in the FB (see Methods). High intensity light
activation of this driver, which weakly but specifically labels FB5AB,
also drove upwind orientation (Figs. 3C, 4A, B).

Overall, upwind velocity responses to FB tangential input stimu-
lation were more persistent than those evoked by optogenetic acti-
vation in theMB and LH, continuing to promote upwind displacement
after light OFF, rather than evoking search behavior (Figs. 3F, 4A, S4A).
We characterized the neurotransmitter phenotypes of each of the hits
from our screen and found that all were cholinergic, and thus excita-
tory (Fig, S4B). As in the MB and LH, silencing of individual FB input
lines that drove upwind movement was not sufficient to block upwind
movement in response to odor (Fig. S4C). Together these results
support the hypothesis that patterns of population activity in FB tan-
gential inputs can promote upwind movement.

We next sought to characterize the sensory responses of upwind-
promoting FB tangential inputs (Fig. 4A, B) by performing calcium
imaging in response to wind and odor from different directions
(Fig. 4C, S4D). We observed responses to vinegar in all but one line
(45D04). No FB tangential line showed significant directional tuning
(ANOVA: 21D07: F(4,40) = 2.14, p =0.0938, 65C03: F(4,30) = 0.68,
p =0.6096, 12D12: F(4,25) = 0.13, p =0.971, vFB split: F(4,25) = 0.64,
p =0.6358) nor were tree classifiers trained on their odor responses
able to distinguish between odor delivered from the left, right or
center (Fig. 4D, S4E). In contrast, tree classifiers trained to distinguish
odor ON from wind ON performed better than shuffled controls for 2
of 4 lines (vFB split andFB5AB, Fig. 4D), while all performedbetter than
shuffled control when trained to distinguish odor from baseline

Fig. 2 | LH and MB output neurons promote wind navigation behavior but
encode odor independent of wind direction. A Optogenetic activation of AD1b2
LHONs drives upwind movement and OFF search. Left: Example behavioral tra-
jectories driven by optogenetic activation of AD1b2 neurons labeled by LH1396
(left). Right: Upwind velocity andOFFcurvature (as in Fig. 1E) for three lines labeling
AD1b2 LHONs: LH1538 (N = 21 flies), LH1539 (N = 22), LH1396 (N = 24). All three lines
significantly increase both upwind velocity andOFF curvature (upwind:p = 2.4548e
−04, 7.9941e−05, 1.8215e−05; OFF-curvature: p = 3.6712e−04, 1.7699e−04, 1.8215e
−05 respectively).BOptogenetic activation of attraction-promoting MBONs drives
upwindmovement and OFF search. Left: Example behavioral trajectories driven by
optogenetic activation of MBONs 15–19 labeled by MB052B (left). Right: Upwind
velocity and OFF curvature for three cholinergic MB lines: MB052B (N = 27),
MB077B (N = 21), andMB082C (N = 24). Each line labels distinctMBONs. All increase
upwind velocity (p = 1.0997e−05, 1.2267e−04, 2.0378e−04) while MB052B increa-
ses OFF curvature (p = 6.2811e−06), MB077B does not (p =0.0046) and MB082C
reduced OFF curvature (p =0.0018). C Activation of aversion-promoting MBONs
promotes downwind movement. Left: Example behavioral trajectories in response
to optogenetic activation of glutamatergic MBONs 5 and 6, labeled by the line
MB434B (left). Right: Upwind velocity and OFF curvature for MB434B (N = 24).
MB434B significantly decreases upwind velocity (p = 2.2806e−04) but not OFF
curvature (p =0.0258). D MBONs promoting straighter trajectories. Example
behavioral trajectories in response to optogenetic activation of the GABAergic

MBON11, labeled by the lineMB112C (left). Right: Curvatureduring stimulus (from2
to 5 s after stimulus ON) for MB112C (N = 29), and MB011B (N = 28). MB112C and
MB011B significantly reduce curvature during the stimulus (MB112C: p = 3.5150e
−06, MB011B: p = 3.407e−05). E Upwind-promoting LHONs and MBONs encode
odor independent of wind direction. Calcium responses (ΔF/F) measured in four
lines that all drove upwind movement. Responses were measured in LH dendritic
processes of LH1396 (N = 8 flies), in output processes of MB052B (N = 9 flies),
MB082C (N = 5), MB077B (N = 8). All responses measured using GCaMP6f in
response to odor (10% vinegar, purple) and wind (gray) delivered from five direc-
tions (schematic). Gray traces represent individual flies, black traces represent
mean across flies. F Performance of a wind direction (left, center, right) tree clas-
sifier trained on the first 5 s of the odor period. Gray dots represent a classifier
trained with the same data and shuffled labels. PFNa (N = 11) p = 3.5063e−09, LNa
(N = 5) p = 5.3035e−04, MB052B (N = 9) p =0.1044, MB077B (N = 8) p = 0.7911,
MB082C(N = 5) p =0.7116, LH1396 (N = 8) p =0.6229. G Performance of an odor
versus wind classifier trained on the first 5 s of wind or odor. Gray dots represent a
classifier trained with the same data and shuffled labels. PFNa (N = 11) p =0.0657,
LNa (N = 5) p =0.3231, MB052B (N = 9) p = 2.7204e−08, MB077B (N = 8) p =0.4104,
MB082C (N = 5) p = 4.2903e−04, LH1396 (N = 8) p =0.0909. All statistics in
A–D used two-sidedWilcoxon signed rank test and showmean± STD. Classifiers in
F, G used two-sided Student’s t-tests and showmean± SEM. All statistics corrected
using the Bonferroni method.
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(Fig. S4F). The largest odor responseswereobserved in FB5AB (21D07),
although these (but not other FB tangential line responses) decayed
over trials (Fig. 4E). In the line 65C03,weobservedodor responses only
from the dorsal layers of the FB, while in the line 12D12, we observed

odor responses only from the ventral layers of the FB. Together these
data identify a population of olfactory FB tangential inputs, targeting
multiple layers of the FB, that respond to attractive odor and promote
upwind movement.
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Fig. 3 | A set of FB tangential inputs promote wind navigation behavior.
A Trans-synaptic tracing reveals connections between upwind-promoting MB/LH
neurons and FB tangential neurons. Trans-tango signal driven by LH1396-GAL4
(top) and MB052B-GAL4 (bottom). Trans-synaptic signal (magenta) was observed
in horizontal layers of the dorsal FB in both cases. Neuropil is shown in blue. The FB
is outlined in gray. Scale bar 50 µm. B Optogenetic activation results for FB inputs,
including dorsal tangential inputs, ventral tangential inputs, columnar PFNs, and
empty-GAL4 and empty-split-GAL4 controls. Two dorsal inputs and two ventral
inputs drove significant increases in upwind velocity. Control lines drove no sig-
nificant change in any measured behavioral parameter (see Methods). C Optoge-
netic activation results for split GAL4 lines labeling dorsal and ventral tangential FB
inputs, and for a line labeling FB5AB (21D07-GAL4||CLIN). One split-GAL4 line
labeling ventral FB tangential inputs drove a significant increase in upwind velocity.
Legend applies to B and C. D Schematic showing feedforward connectivity onto
FB5AB from three upwind-promoting MBONs (MBON 19, MBON 12, MBON 13), one
upwind-promoting LHON (AD1b2), and one downwind-promoting MBON

(MBON05). Pathways converge onto FB5ABdirectly or indirectly through LHCENT3
and LHPV5e1. Numbers represent the average synaptic weight between each cell
type and the right-sided LHCENT3 (id: 487144598), LHPV5e1 (id: 328611004), or
right-sided FB5AB (id: 5813047763). E Number of parallel lateral horn pathways
from vinegar-responsive projection neurons (estimated from ORN responses in41)
to each FB tangential input neuron. Pathways consist of two synapses: projection
neuron to lateral horn neuron, and lateral horn neuron to FB tangential input
neuron. Blue bar represents the number of pathways converging onto FB5AB.
F Upwind displacement responses to optogenetic activation of FB tangential input
lines outlast the stimulus while responses to activation of MB/LH lines do not.
Timecourses of average relative y-displacement (arena position) across flies, fol-
lowing stimulus OFF for each line. Individual fly’s average positions across trials
were set to 0 and relative change in position for 10 s following stimulus OFF was
averaged across flies for each genotype. All statistics in B, C used two-sided Wil-
coxon signed rank test and corrected using the Bonferroni method. Legend dis-
plays equivalent uncorrected alpha level.
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Fig. 4 | Multiple FB tangential inputs respond to attractive odor and drive
upwind movement. A Confocal images of lines that showed FB responses to
vinegar and drove upwind movement when activated. Each image shows stain for
mVenus expressed with UAS-Chrimson in flies of the same genotype used for
activation experiments (abbreviated genotypes shown at left). Scale bar 50 µm.
B Example behavioral trajectories and quantification of upwind velocity and OFF
curvature in each line shown at left. For FB5AB only light intensity was 34 µW/mm2.
For all drivers, upwind velocity was quantified over 0–10 s after odor ON. Right:
upwind velocity, OFF curvature 21D07||CLIN (N = 27): p =0.0306, 8.1448e−05,
65C03 (N = 24): p = 4.1850e−04, 0.5841, 12D12 (N = 19): p = 1.8218e−04, 0.0055 vFB
split (N = 38): p = 3.4153e−07, 0.1155, VT029515-GAL4 (N = 38): p = 4.3255e−07,
0.0024). C Calcium responses in each line shown at left in response to odor
delivered from five different directions (as in Fig. 2E). Shaded purple region indi-
cates odor period. Gray lines represent individual flies and black represents the
mean across flies: 21D07 (N = 9), 65C03 (N = 7), 12D12 (N = 6), vFB split (N = 6 flies).

D Performance of tree classifiers for wind direction (left) and odor presence (right)
for FB tangential inputs. Gray dots represent classifiers trained with the same data
and shuffled labels. Left: Performance of wind direction (left, center, right) classi-
fier trained on the first 5 s of odor period. 65C03 p =0.6450, vFB p =0.4100, FB5AB
p =0.7882, 12D12 p =0.0177. Right: Performance of odor versus wind classifier
trained on first 5 s of wind and odor ON. 65C03(N = 7) p =0.0203, vFB (N = 6)
p = 1.0934e−06, FB5AB (N = 9) p = 2.8375e−04, 12D12 (N = 6) p =0.0383. E Decay of
fluorescence response to odor over trial blocks. The response to each trial block
was calculated as the average odor response to 5 consecutive trials (each from one
of the directions), averaged across all flies of a genotype. Response magnitude
was normalized by the average response to the first block for each line.
Shaded area represents standard error across flies. Statistics in B used two-sided
Wilcoxon signed rank test and show mean± STD. Classifiers in D used two-sided
Student’s t-tests and show mean ± SEM. All statistics corrected using the Bonfer-
roni method.
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hΔC neurons encode a wind direction signal that is modulated
ON by odor
Our functional imaging data suggest that, like the upwind-promoting
neurons in theMB/LH, FB tangential inputs are not directionally tuned
for wind. In contrast, PFNa and LNa encodewind direction, but not the
presence of vinegar (Fig. 2F). Together these data suggest that
columnar and tangential inputs to the FB encode directional and non-
directional information, respectively. We therefore hypothesized that
FB local neurons, which receive input from both columnar and tan-
gential inputs, might integrate these two types of information.

To identify FB local neurons that integrate odor and wind direc-
tion signals, we used the hemibrain connectome22 to search for neu-
rons that receive input both from FB5AB and from the most wind-
sensitive PFNs in our previous survey (PFNa, p, and m21). This analysis
revealed apopulationof 20 hΔCneurons that tile the vertical columnar

structure of the FB (Fig. 5A31). Each hΔC neuron receives input from
both left and right-preferring wind-sensitive PFNs at its ventral den-
drites, and from FB5AB at its dorsal axons, where excitatory olfactory
input might gate synaptic output through axo-axonic connections
(Fig. 5B, C).

To ask whether hΔC neurons respond to wind and odor signals,
we identified a GAL4 line—VT062617—that appears to label hΔC neu-
rons (although it may also label other local neuron types), and per-
formed calcium imaging from the FB while presenting odor and wind
from different directions. Stains revealed these neurons to be choli-
nergic (Fig. S5A). We observed calcium responses in the dorsal FB,
where hΔC neurons form output tufts (Fig. 5D, S5B). In several exam-
ples, we observed odor responses that were strongest for a particular
direction of wind (Fig. 5E). hΔC responses were strongest to odorized
wind from +45° and −45° (Fig. 5F), although the relationship between

Fig. 5 | hΔC neurons exhibit odor-modulated wind direction tuning.
A Schematic of an individual hΔC neuron (purple). 20 hΔC neurons tile the FB
receiving input in layers 2–6 in a single column, and projecting halfway across the
FB to output in layer 6. B Number of FB5AB synapses onto the input and output
tufts of hΔC for every FB5AB-hΔC pair. C Number of synapses from left and right
wind-sensitive PFNs (PFNa, PFNp, and PFNm, tuned to 45° left and right respec-
tively) onto hΔC neurons, summed within columns. D 2-photon image of tdTOM
expressed with GCaMP6f under VT062617-GAL4 which labels hΔC neurons. Purple
ROI drawn around output tuft of a single column for analysis. Scale bar 25 µm.
E Odor responses of two example flies/columns showing directionally tuned odor
responses. F Summary of all measured odor responses >2STD above baseline

across columns andflies. Gray traces represent individual columns andblack traces
represent mean across columns. G Directional responses are restricted to nearby
columns: maximally responsive direction for each fly, where data are phase shifted
so maximum columns align at column 4. Each fly normalized tomaximum column
response. H Summary of wind and odor responses for all measured responses
>2STD above baseline across columns and directions. Responses to odor are
stronger than those to wind ON, odor OFF and wind OFF (n = 87 responsive col-
umns from N = 16 Flies). I Summary of wind and odor phase activity of maximally
responsive column, aligned to maximally responsive direction. Data are shifted to
be aligned to the maximal direction and each row represents different stimulus
period. Each color represents a different fly (N = 16).
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wind direction and peak response was not consistent across flies
(Fig. 5E). hΔC responses were typically localized to a few nearby col-
umns (Fig. 5G), and we observed no consistent relationship between
column location and preferred wind direction when pooling data
across flies (Fig. S5C). Thus, the wind direction representation in hΔC
neurons appears to be unique to each fly, similar to what has been
observed for heading representations in compass neurons47, and dis-
tinct from thewind representation in PFNs,which isuniformly tuned to
45° ipsilateral21.

We next examined hΔC responses as a function of stimulus phase.
Across flies and columns, the strongest andmost consistent responses
occurred during the odor, althoughweaker responses also occurred at
wind ON, odor OFF, and wind OFF (Fig. 5H). To examine whether wind
tuning differed across these phases, we selected the maximally
responsive column for each fly, and aligned responses to the peak
direction of that response, then plotted responses to other phases of
the stimulus relative to that wind direction. Responses in other sti-
mulus phases tended to be in the same direction or nearby directions
to the odor response (Fig. 5I). Taken together, our results suggest that
hΔC neurons exhibit a bump of activity that depends on wind direc-
tion, but whose columnar position is unique for each fly. This bump is
activatedmost strongly during odor, although it can also appearmore
weakly during other phases of the stimulus.

hΔC neurons promote diverse navigation phenotypes and con-
tribute to persistent upwind walking
Do hΔC neurons contribute to navigation behavior? To address this
question, we activated hΔC neurons optogenetically using various
spatial activation patterns, and examined the resulting behavioral
trajectories (Fig. 6). Because our imaging data suggest that hΔC
neurons show a bump of activity during odor and wind stimulation,
we first asked what behavior was produced by sparsely activating
hΔC neurons. We used SPARC2-I48 to activate a random ~15% of hΔC
neurons in each flywhile theywalked in thepresence of laminarwind.
Activation of sparse subsets of hΔC neurons (Fig, 6A) caused many
flies to re-orient and then walk in a specific reproducible direction
(Fig. 6B, C). Each fly walked in a distinct direction, suggesting that
this was specified by the particular pattern of hΔC neurons activated
in that fly (Fig. 6A, B). Directions were biased towards the long axis of
our arena, but equally distributed up- and downwind (Fig. 6C).
Directional walking was not due to the arena walls, as fly behavior
near the walls was excluded from our analysis (see Methods). To
assess the significance of this directional walking, we compared the
strength of orientation in hΔC > SPARC flies to empty-GAL4 > SPARC
flies (Fig. 6C, D, S6A). Empty-Gal4>SPARC flies showed significantly
weaker orientation behavior (Fig. 6D). To determine whether the
pattern of hΔC activation was related to walking direction, we dis-
sected and stained each hΔC > SPARC fly. However, we observed no
relationship between the anatomy of the activated columns, and the
direction or strength of oriented walking (Fig S6A-E). We interpret
these results to suggest that sparse activation in hΔC neurons can
produce a reliable heading, and that this heading is encoded in fly-
specific (not fixed) coordinates.

In addition, we asked whether broad activation of hΔC neurons
could drive a behavioral phenotype. For these experiments, we gen-
erated a split-GAL4 line selectively labeling FB local neurons within
VT062617, and expressed Chrimson throughout this population
(Fig. 6E). Activation of this line caused unstable reorientation beha-
viors. At medium light levels (26 µW/mm2), fly walking was interrupted
by frequent left and right turns, while at higher light levels (34 µW/
mm2), flies displayed tight turns that were clockwise, counter-
clockwise, or alternating between clockwise and counterclockwise
(Fig. 6F). Across flies, these behaviors were captured by an increase in
curvature with no change in upwind velocity (Fig. 6G). Similar increa-
ses in curvature were obtained using a variety of drivers for hΔC

neurons (Fig. S6F). Therefore, uniform activation of hΔC neurons
causes unstable reorientation behaviors.

Finally we asked whether hΔC activity is required for upwind
orientation. In preliminary experiments, we found constitutive silen-
cing of hΔC neurons to be lethal. We therefore used the light-activated
chloride channel GtACR49 to acutely silence hΔC neurons during odor
presentation. We compared the effects of acutely silencing hΔC neu-
rons to silencing of olfactory receptor neurons using orco,IR8a and
FB5AB.Consistentwith our constitutive silencing results (Fig. 1F, G),we
found that acute silencing of olfactory receptor neurons impaired
upwind orientation throughout the odor period (Fig. 6H). In contrast,
silencing of FB5AB had no effect on upwind orientation, as we
observed for other FB tangential inputs (Fig. 6H, Fig. S4C). In flies with
hΔCneurons silenced,weobservednormalupwindorientation early in
the odor period, however trajectories then deviated significantly from
upwind later in the odor period (Fig. 6H, I). We conclude that hΔC
activity is required for persistent upwind fixation throughout the odor
stimulus.

A computational model of hΔC neurons’ contribution to navi-
gation behavior
Our data suggest that hΔC activity contributes to persistent upwind
orientation during odor and that sparse activation of hΔC neurons can
promote navigation in a reproducible direction. To understand how
different patterns of hΔC neuron activation can evoke diverse beha-
vioral phenotypes, we developed a computational model. The ele-
ments of our model are all based on neurons and connection motifs
(direct or indirect) found in the hemibrain connectome (Fig. 7A22,31),
although we imagine that additional neurons and connections may
play a role in natural olfactory navigation behavior.

We first asked whether odor-gated wind direction information in
hΔC neurons could be used to promote upwind movement. Although
the nature of the wind representation in hΔC neurons is not entirely
clear fromour imaging experiments, our results are broadly consistent
with a bump of activity that is tuned to wind-direction in a fly-specific
manner, likely reflecting the fly-specific coordinates of the compass in
each animal47. Thus, we imagine that hΔC neuronsmight show a bump
of activity whose location reflects the allocentric wind direction
(Fig. 7B), as has previously been described for traveling direction sig-
nals in other FB local neurons23,24. Alternatively, hΔC might show a
bump of activity related to wind direction only in the frontal hemi-
sphere, which could be computed based on the known frontally tuned
responses of wind-sensitive PFNs (Fig. S7A, B). In either case, in our
model, this bumpbecomes activewhen thefly encountersodor, due to
gating input from FB5AB and other FB tangential neurons, although it
could, in principle, also be activated at other times.

Activity in hΔC neurons is then translated into locomotor com-
mands by a set of previously described output neurons: PFL3 and PFL2
(Fig. 7C, seeMethods). PFL3 neurons project unilaterally to the right or
left LAL and are thought to drive turning31–34,50 while PFL2 neurons
project bilaterally to the right and left LAL and are hypothesized to
modulate forward walking speed31. PFL neurons compare the repre-
sentation arriving from hΔC neurons (a bump of activity flipped by
180° due to hΔC neurons projecting to columns halfway across the FB)
with a shifted representation of the fly’s current heading arriving from
compass neurons31,33. The heading representation in PFL3 neurons is
shiftedby−90° for right PFL3s and+90° for left PFL3s. This allows PFL3
neurons to determine whether a left or right turn will bring the fly in
line with the heading specified by the hΔCbump. For example, wind to
the right of the fly will generate a wind bump that overlaps more with
the right PFL3 heading bump than the left (Fig. 7C). This system will
cause the fly to turn until its heading bump aligns with the hΔC wind
bump. In parallel, PFL2 neurons cause the fly to accelerate when the
heading from hΔC overlaps with the compass heading representation.
This heading representation is shifted by 180°, so it will overlap the
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wind bump when the wind is directly in front of the fly. Thus, PFL2
neurons drive the fly to walk faster when it is pointed upwind.

We added one additional element to our model that has not been
previously described. This is a second set of mutually inhibitory FB
local neurons (light blue in Fig. 7C) that receive input from hΔC neu-
rons and also send information to the PFL output system. This motif is
not observed in hΔC neurons but reciprocal connections between

opposing columns can be seen in several other FB local neuron types
downstream of hΔC, such as hΔA, hΔG, hΔH, and hΔM, which all send
strong projections to PFL3. As we show below, this motif is required to
account for the unstable reorientation behavior we observe during
broad activation of hΔC neurons.

We first asked whether this simplified FB model could promote
upwindmovement when the hΔCwind bump is activated (Fig. 7D, E).
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We simulated the circuit described above using rate-based neurons
(see Methods), and simulated odor input by turning on the bump of
wind activity in hΔC neurons. As predicted, the odor-gated wind
bump in hΔC neurons generated stable upwind orientation that was
robust to allocentric wind direction and initial heading (Fig. 7E). Flies
also oriented upwind using a frontal wind representation in hΔC,
although this was less reliable than using an allocentric representa-
tion (Fig. S7A-D). We did not observe local search after odor OFF in
our simulations, consistent with our finding that FB tangential inputs
do not drive this behavior.

We next asked whether the same model could recapitulate the
directional walking we observed with sparse random hΔC activation.
To simulate the sparse activation experiment, we replaced the hΔC
wind bump with random activation of 15% of the hΔC population in a
fly-specific pattern (Fig. 7F). Similar to our behavioral results, simu-
lated flies reoriented and then walked in an arbitrary but reproducible
direction, where the direction was stable for each fly. This result
occurred because the random optogenetic input provided stable non-
uniform input to the PFL3neurons, and themaximumof this input (i.e.,
the FB columns opposite to the highest density of ‘active’ hΔC neu-
rons) establishes a stable direction. These directions were distributed
in 360° space (Fig. 7G) because our simulation lacked arena con-
straints. Oriented walking was significantly reduced when we simu-
lated empty-GAL4 > SPARC controls by omitting hΔC activity from our
simulation (Fig. 7G).

Finally we askedwhether ourmodel could reproduce the unstable
reorientation we observed with broad hΔC activation (Fig. 7H). To
simulate these experiments, we uniformly activated hΔC neurons at
two different intensities, corresponding to the two light levels in our
experiment. Like our behavioral results, low activation generated
walking interrupted with left and right turns, while high activation
generated tight turns that were clockwise, counterclockwise, or
alternating between clockwise and counterclockwise. Consistent with
our experiments, simulated flies displayed elevated curvature that
depended on the light level (Fig. 7I). The unstable reorientation
behaviors in our simulations stemmed from oscillations within the
mutual inhibition layer of the circuit; in the absence of this layer,
uniform activation did not alter turning statistics (Fig. S7E–G). Taken
together, our experiments and modeling suggest that sensory repre-
sentations in FB local neurons such as hΔC can provide a goal heading
that promotes stable navigation towards an environmental target such
as an upwind odor source.

Discussion
Distinct direction andcontextpathways forolfactorynavigation
Wind-guided olfactory navigation is an ancient and conserved beha-
vior used by many organisms to locate odor sources in turbulent
environments. Despite large differences in the types of odors they
seek, and in the physics of odor dispersal, very similar behaviors have

been observed in pheromone-tracking moths51 food-seeking
crustaceans8 and ants seeking both food and their nest52. Thus, this
behavior is required in many animals for survival and reproduction,
and likely mediated by conserved neural circuits.

In a previous study, we identified inputs to the FB that encode
wind direction21. Neurons throughout this pathway, including both
LNa neurons and PFNs, show activity that is strongly modulated by
wind direction, but weakly modulated by odor. Other LN and PFN
neurons have been shown to strongly encode optic flow direction23,33

another cue that signals self-motion andwinddirection—particularly in
flight. Taken together, current data thus suggest that the columnar
pathway to the FB encodes information about self-movement and
environmentalflowuseful for recognizingwhere the fly is relative to its
environment.

In contrast, the present study identifies an olfactory pathway to
the FB that encodes odor information largely independent of the wind
direction fromwhich it is delivered.We found that neurons in both the
MB (a center for associative learning) and the LH (a center for innate
olfactory and multi-modal processing) are capable of driving upwind
movement. However, very few of these upwind-promoting neurons
exhibited wind-direction tuning, particularly during the odor period.
Thus, the outputs of these regions likely represent odor identity or
value signals, as has been suggested by several recent models42,53. We
further characterized a large population of olfactory tangential inputs
to the FB that likewise promote upwind movement and encode odor
independent of wind direction. At least one of these neurons is ana-
tomically downstream of upwind-promoting MB and LH neurons.
These data are consistent with previous studies showing that other
FB tangential inputs encode non-spatial variables such as sleep state45

and food choice54. Together, these data suggest that the pathway
running from the MB/LH to the FB encodes non-spatial contextual
information.

The segregation of direction and context inputs to the FB that we
observe here shows some similarities to the organization of visual
circuits in primates and of navigation circuits in rodents. In primate
vision, processing of object location and object identity are famously
thought to occur in distinct pathways55. In the hippocampus, inputs
from the medial entorhinal cortex encode spatial cues, while anato-
mically distinct inputs from the lateral entorhinal cortex encode non-
spatial context cues, including odors56,57. Thus, a segregation between
the computation of spatial/directional information and context/iden-
tity information may be a general feature of central neural processing
in both vertebrate and invertebrate brains.

Whatmight be the advantage of this type of organization (Fig. 8)?
One hypothesis is that it allows learning about non-spatial cues to be
generalized to different spatial contexts. For example, during food-
guided search, innate information about which odors signal palatable
food must be integrated with learned odor associations13,14 as well as
with internal state variables such as hunger54,58. However, the fly may

Fig. 6 | Role of hΔC neurons in navigation behavior. A Anatomical and behavior
data from two representative hΔC> SPARC flies. Left: confocal images of tdTomato
expressed with UAS-SPARC2-I-Chrimson. Scale bar 25 µm. B Behavior of two
representative hΔC> SPARC flies from A, Left: example behavioral trajectories of
flies before, during, and after optogenetic activation. Right: orientation histograms
for each fly for the period 2–6 s after light ON. Radial axis represents probability.
C Preferred orientations across all flies, where the vector direction corresponds to
the preferred direction and the vector strength corresponds to the orientation
index (see Methods, Fig. S6A). Top: hΔC>SPARC. Representative flies from A, B)
are shown in orange and blue. Bottom: empty-GAL4 > SPARC. D hΔC> SPARC flies
(N = 65) show stronger oriented walking than empty-GAL4> SPARC2 flies (N = 34,
see Fig. S6A for Methods, mean ± STD, two-sided ranksum test p =0.0035). E Con-
focal image of hΔC split > Chrimson. Scale bar 50 µm (top), and 25 µm (bottom).
F Example behavioral trajectories driven by hΔC split activation with 26 µW/mm2

light (left) or 34 µW/mm2 light (right). G Upwind velocity, curvature, and

groundspeed (mean ± SEM) across hΔC split > Chrimson flies before, during, and
after optogenetic activation using 26 µW/mm2 light (light gray, N = 32) or 34 µW/
mm2 light (dark gray, N = 14). H Optogenetic inactivation of hΔC neurons using
GtACR disrupts persistent upwind orientation. Each plot shows orientation histo-
grams during light-evoked silencing (blue) compared to no-light control (black) for
the first 5 s of odor (top) and last 5 s of odor (bottom). Shaded regions represent
SEM. Optogenetic silencing of ORNs (orco,IR8a, N = 24) significantly reduces the
probability of orienting upwind (±10°) during both phases (p = 9.2724e−04 early,
0.0090 late), while silencing of FB5AB (N = 32) does not (p =0.3848 early,
p =0.3259 late). Silencing of hΔC neurons (N = 24) reduces upwind orientation only
during the late phase (p =0.8512 early, p =0.0475 late). Two-sided t-test without
correction for multiple comparisons. I Example behavioral trajectories in hΔC>
GtACR flies in response to odor. Top: blue light off (non-silenced). Bottom: blue
light on (hΔC neurons silenced).
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wish togeneralize information learnedwhilewalking to search inflight,
as has been demonstrated in bees59. Inwalking flies, wind direction can
be computed directly from mechanosensors in the antennae60,61. In
flight however, wind only transiently activates mechanosensors62 but
then displaces the fly as a whole, leading to an optic flow signal
opposed to the fly’s direction of movement9,63. As different PFNs carry

airflow and optic flow signals in a similar format21,23 this circuit may be
well-poised to compute wind direction in both walking and flying flies.
Separating the computation of stimulus value, in the MB/LH and tan-
gential FB inputs, from the computation of wind direction, in PFNs,
may allow flies to generalize stimulus associations learned in one
context (walking) to another (flight).
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Specification of a goal direction by FB local neurons
How does the nervous system represent goals for navigation? When
sensory cues are continuously available, no explicit goal representa-
tion may be required, andmovement towards a goal such as foodmay
be accomplished through chains of sensory-motor reflexes9–11. In
contrast, when sensory cues are unavailable, such as during navigation
towards a remembered shelter, the nervous system must build and
store a representation of the goal location33. Navigation towards an
odor source presents an interesting intermediate case. Food sources
generally produce strong sensory cues that can be used to drive
chained reflexes.However, thewinddirection andodor cues produced
by turbulent plumes are fluctuating, variable, and uncertain, meaning

that memory and internal estimates of source position can make an
important contribution to effective navigation64–66. Understanding
how nervous systems represent and use internal variables during this
task may help us to design robust search algorithms for noisy
environments.

Here we present evidence that hΔC neurons participate in speci-
fying a goal heading during olfactory navigation. Silencing of hΔC
neurons impairs persistent upwind orientation during odor, suggest-
ing that the activity of these neurons is required to maintain upwind
fixation. hΔC neurons receive input from an odor-tuned, upwind-
promoting pathway through the MB/LH to FB tangential neurons. Our
imaging results are consistent with a model in which hΔC neurons

Fig. 7 | A model of FB circuitry that translates hΔC activity into goal-directed
walking. AOverviewof cell types and informationflow in anFBcircuitmodel. Odor
gates a wind direction signal in hΔC neurons (red), which is processed by a mutual
inhibition circuit (blue) as well as fed forward to PFL output neurons (green). PFL
neurons (purple, orange, yellow) integrate goal information fromhΔCwith heading
information from compass neurons (black) to control turning (PFL3) and forward
velocity (PFL2). BModeled allocentric wind representation in hΔC neurons, shown
as a bump of activity (circles) and as a vector (red arrow). Heading vector in gray.
Leftward rotations of the fly cause rightward rotations of the heading vector. Wind
and heading vectors align when the fly is pointed upwind (bottom row). Leftward
wind leads to a wind vector right of the heading vector, while rightward wind leads
to a wind vector to the left (top row). An alternate wind representation is depicted
in Fig. S7A.CModel circuit diagram showing transformationof awindbump in hΔC
neurons into upwindmovement by PFL3 and PFL2 neurons. Activity patterns across
each population are represented as a bump of activity across the FB (lines and
circles, dotted line = 0 activity), and as a vector. An odor-gated wind bump in hΔC
neurons (red) is fed forward directly to PFL2/3 neurons (green) and indirectly via a
mutual inhibition circuit (blue). 180° shifts in the output of each populations
transform the wind bump in hΔC into a stable bump in PFL2/3 (green). PFL3
(purple/orange) receive a heading bump from the compass system (black) shifted
by 90° ipsilateral, as well as goal input from hΔC (green). Overlapping bumps lead
to constructive summation, shown here for right PFL3 (orange) driving right turns.
Non-overlapping bumps lead to destructive summation, shown here for left PFL3
driving left turns. Total turning represents the sum of left and right PFL3 activity.

PFL2 (yellow) receive a heading bump from the compass system (black) shifted by
180°, together with goal input from hΔC (green). Overlapping bumps lead to
constructive summation that promotes faster walking. Model causes the fly to turn
until the goal and heading bumps align, and to increase speed when bumps are
aligned. D Simulated circuit activity and trajectories when odor gates the expres-
sion of an allocentric wind bump as in B during odor. Example trajectories (right)
shown for three model flies. E Headings of simulated flies with different initial
headings in response to odorized wind arriving from 90° (left), 180° (center), and
270° (right). Heading converges to upwind despite turning noise which drives the
fly off course. F Simulated circuit activity and trajectories during sparse optoge-
netic activation (random 15% of hΔC neurons on during light). Example trajectories
(center) are shown for onemodel fly on three different trials in which the same hΔC
neurons were activated. Heading converges to the same reproducible walking
direction. Orientation histogram (right) for model flies with different hΔC activa-
tion patterns. G Preferred orientations across simulated hΔC> SPARC flies (top)
and empty-GAL4> SPARC flies (bottom). Empty-GAL4 > SPARC (N = 72) flies were
simulatedby setting hΔCactivity to zero. Simulated hΔC> SPARC (N = 72) flies have
stronger orientation indices than simulated empty-GAL4 > SPARC flies (mean ±
STD, two-sided ranksum test p =0.0032). H Simulated circuit activity and trajec-
tories during broad optogenetic activation. All hΔC neurons activated equally
during light at medium (center) or high level (right). I Average curvature across
simulated flies before, during, and after broad optogenetic activation using med-
ium (light gray) or high light (dark gray), showing an intensity-dependent increase.
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(integrated odor value)
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(innate odor value)
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Fig. 8 | Conceptualmodel of sensory integration for olfactory navigation in the
Drosophila central brain. Conceptual model of central olfactory navigation cir-
cuitry as suggested by this and previous studies. MBONs, LHONs, and FB tangential
inputs promote wind navigation and encode odor information but not wind
direction information. FB tangential inputs are a likely locus where learned and
innate odor information may be integrated to drive behavior. In contrast, FB
columnar inputs (PFNs) encodewinddirection but not odor presence. hΔCneurons
receive input both from directionally tuned PFNs at their dendrites and from odor-

tuned FB tangential inputs at their axons. They encode a fly-specific wind direction
signal that can be modulated ON by odor. Sparse activation of hΔC neurons can
drive movement in a reproducible direction and activity in these neurons is
required for sustained upwind orientation during odor. Our data support a model
in which columnar and tangential inputs to the FB encode directional and non-
directional information respectively, and where tangential input can gate the
expression of directional information in local neurons outputs to specify
navigational goals.
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represent wind direction (likely through inputs from wind-sensitive
PFNs) and modulate the strength of this representation during odor
(perhaps through axo-axonic gating input from FB tangential neu-
rons). Thus, hΔC neurons are well-poised to construct an internal
representation of the goal direction during olfactory navigation.
However, understanding the precise nature of wind, odor, and goal
representations in hΔC neurons will require future imaging of popu-
lation activity during ongoing navigation.

We also show here that sparse random activation of hΔC neurons
can evoke locomotion in a reproducible direction, consistent with the
idea that hΔC activity patterns can specify a goal heading. We were
unable to determine from our data whether hΔC activation specifies a
distance (and thus a vector) as well as a direction, although many
trajectories from the same fly were of similar length. Curiously, we
found that hΔC activity had to be non-uniform in order to evoke
directional walking, but need not be organized as a bump of activity—
any asymmetry in the response across columns was sufficient.
Although we produced this activity through sparse optogenetic sti-
mulation, similar asymmetries could be generated and stored as pat-
terns of asymmetric synaptic input fromFB tangential neurons onto FB
local neurons, or as asymmetric synaptic weights between inter-
connected FB local neurons. Because the Drosophila FB contains at
least 27 local neuron types targeted by ~145 tangential neuron types31

this structure could provide a reasonably large capacity for storing
diverse direction or vector memories.

To understand how hΔC activity might specify a goal heading,
either upwind or in an arbitrary reproducible direction, we developed
a computational model. This model is based on motifs found in the
Drosophila connectome, such as the phase shifts between compass
neurons and PFL neurons31,33 and mutual connections found in certain
local neuron populations. However, the connection schemes used in
ourmodel are simplified compared to the real circuit. In ourmodel, the
architecture of the FB is used to compare a goal heading in hΔC neu-
rons with the current heading represented in compass neurons, and
then drive turning to minimize discrepancies between these direc-
tions. This computation is implemented by the convergence of hΔC
input and compass neuron input onto PFL output neurons that control
steering and forward velocity. Our steering model is similar to several
recent models proposed for path integration and visual landmark-
guided navigation31–33. However, our model differs in the proposed
location and nature of the goal representation. In previous models,
goals were stored in PFN activity33 or in plastic synapses between
compass neurons and PFLs32. Here the goal is instead stored in the
dynamic activity pattern of a population of local neurons. One
advantage of our model is that different local neurons can be rapidly
switched on and off through tangential input, allowing the fly to
rapidly update its goals depending on behavioral demands. A further
advantage is the large number of local neurons and tangential inputs,
which as noted above provide a substrate for learning, storing, and
releasing multiple goal memories.

Although our results implicate hΔC neurons in the integration
of odor and wind cues and the specification of a target walking
direction, flies with hΔC neurons silenced were still able to initially
turn upwind in response to odor, suggesting that other neurons
play a role in this initial upwind turn. These might be additional FB
local neuron types—we identified multiple FB tangential inputs
that drive upwind movement and not all of these target hΔC. They
may also include neurons that bypass the central complex. In
addition to targeting the FB, MBONs also make direct connections
to the lateral accessory lobe (LAL) a region implicated in motor
control and steering, including odor-evoked steering behavior in
moths25,26,50,67. As the LAL also receives wind direction input68 it
could form a second site of wind and odor integration. In this
study, we found that activation of FB neurons produced more
persistent wind orientation phenotypes than activation of MB/ LH

output neurons. Thus, parallel pathways from olfactory centers to
motor centers could regulate behavior on different timescales. FB
representations of odor and wind might also allow a fly to adopt
courses at particular angles to the wind, or to generate an internal
estimate of the direction of the odor source. Determining how
activity in these different pathways shapes behavior on different
timescales, and in different spatial contexts, will provide addi-
tional insight into the organization of central circuits for
navigation.

Methods
Our research complies with all relevant ethical regulations. Because
only invertebrate organisms were used in this study, no protocol
approval was required.

Fly stocks
A complete table of fly genotypes and ages for each figure panel is
given in Table S1. Information on parental stocks is given in Table S2.
All experimental flies (except trans-tango flies) were raised at 25 °C on
a standard cornmeal-agar medium, with a 12 h light-dark cycle. For
optogenetic activation, experiments were run in genetically blindmale
norpA hemizygotes. All other flies were female. We previously showed
no difference in olfactory behavior of male versus female flies in our
assay10. For calcium imaging, we used older flies (5–21 days) to max-
imize indicator expression. For electrophysiology, we used younger
flies (2–3 days) to minimize glial ensheathing. Trans-tango flies were
raised at 18 °C and aged until they were 10–20 days old following
recommended protocols43.

Behavioral experiments
Behavioral experiments were performed in a miniature wind tunnel
setup modified from ref. 10 (plans and code at https://github.com/
nagellab/AlvarezSalvado_ElementaryTransformations). Flies walked in a
shallow acrylic arena with constant laminar airflow at ~12 cm/s and were
tracked using IR LEDS (850 nm, Environmental Lights) and a camera
(Basler acA1920-155um). For odor experiments, a 10 s pulse of 1% apple
cider vinegar (Pastorelli) was introduced through solenoid valves
(LHDA1233115HA, Lee Company) immediately below the arena. Three
70 s trial conditions (wind plus odor, wind alone, and no wind), were
randomly interleaved with odor starting at 30 s. For Chrimson experi-
ments, we used red LEDs (626nm, SuperBrightLEDS) at an intensity of
26 µW/mm2 (626nm) for most experiments, and 34 µW/mm2 for high
light level and CLIN experiments, all with ambient lighting, except for
SPARC experiment which were run in the dark. Four trial conditions
(wind plus light pulse, light pulse alone, wind alone, blank) were ran-
domly interleaved. ForGtACRexperiments,weusedblueLEDs (470nm,
Environmental Lights) at an intensity of 58 µW/mm2 (530nm), and ran
experiments in the dark. Four trial conditions (wind plus light pulse,
wind plus odor pulse, wind plus odor and light, wind only) were ran-
domly interleaved.

Two to seven days before the experiment, flies were collected and
housed in time-shifted boxes. All flies were run between subjective
ZT1–ZT4 and starved for ~24 h before the experiment. Fly food for
optogenetic experimentswas supplementedwith 50 µL all-trans retinal
(35mM stock: Sigma, R2500, dissolved in ethanol, stored at −20 °C)
mixed into ~1 teaspoon of hydrated potato flakes. Flies were briefly
anaesthetized with ice for ~1min before loading and allowed 5–10min
to recover before the experiment began.

We tracked X,Y coordinates and orientation in real time at 50Hz
using custom Labview code then analyzed data offline using
Matlab (Labview code at https://github.com/nagellab/AlvarezSalvado_
ElementaryTransformations:, Matlab code at https://github.com/
nagellab/Mathesonetal2022). We low-pass filtered raw data at 2.5 Hz
using a 2-pole Butterworth filter and removed trials where the fly
moved <25mm, and flies thatmoved on <5 trials for a condition. Odor
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trials were aligned to the time of actual odor encounter based on PID
measurements. To compute behavioral parameters as a function of
time, we omitted time periods when the fly moved at <1mm/s.
Groundspeed was calculated as the distance between adjacent X,Y
samples dividedby the frame interval (20ms).Upwind velocitywas the
difference in Y-coordinates divided by the frame interval. Angular
velocity was the absolute value of the difference in unwrapped orien-
tation dividedby the frame interval. Curvaturewas the angular velocity
divided by the groundspeed. Probability of movement (pmove) was
the probability of groundspeed being above 1mm/s. For quantifica-
tions, we compared average parameter values for each fly to a baseline
period (10–25 s after trial onset). For place preference baseline was
25–30 s (immediately before stimulus ON).

We used the following time windows for analysis: pmove: 0–5 s
from stimulus ON, upwind velocity (upwind): 0–5 s from stimulus ON
for periphery, LH, MB, 0–10 s from stimulus ON for FB, OFF upwind
velocity (upwindoff): 0–2 s after stimulus OFF, groundspeed: 2s–5s
from stimulusON,OFF groundspeed: 0–2 s after stimulusOFF, angular
velocity (angv): 2s–5s from stimulus ON, OFF angular velocity
(angvoff): 0–2 s after stimulusOFF,ONangular velocity (angvon): 0–1 s
from stimulus ON, curvature: 2s–5s from stimulus ON, OFF curvature
(curvatureoff): 0–2 s after stimulus OFF, ON curvature (curvature on):
0–1 s from stimulus ON, place preference (placepref): 7.5 s from sti-
mulus ON to 2.5 s after stimulus OFF. For display purposes we do not
depict significance values in tables (Fig. 3B, C, Fig. S3) for upwind
velocity for smallmagnitude increases (<1mm/s), or for curvature (ON
and OFF) if angular velocity is <50 deg/s and groundspeed is <4mm/s.
In these cases, curvature increase was due mostly to a drop in
groundspeed and trajectories did not exhibit characteristics of search.
Tomeasure upwinddisplacement (Fig. 3F)we computed displacement
relative to position at stimulus OFF for each fly and show the mean
across flies. For orientation histograms (Figs. 6H, 7F, S6B) we plotted
the histogram of orientations that each fly adopted while moving
>1mm/s.We compared the probability of adopting anorientation ±10˚
from upwind between odor and odor+light conditions using a stu-
dent’s t-test.

For SPARC experiments, we analyzed the orientation index and
preferred direction using data from 2–6 s from stimulus ON. We
excluded all data points where the fly was within 3mm of the arena
walls as well as points where they fly moved at <1 mm/s. The orienta-
tion index was computed by taking the SVD of the orientation histo-
gram, projecting the data onto the two largest principal components
(PCs), and then calculating the ratio of the standard deviations along
these two dimensions. Histograms that show more pronounced
orientation exhibit higher ratios (see Fig. S6A). Preferred direction was
the direction along the first PC with the highest value. Flies with fewer
than 15 trials or fewer than 2000orientation data pointswereexcluded
from analysis. We obtained anatomy for 51 hΔC> SPARC flies. We
quantified anatomy by counting cell body numbers near the FB. To
compute the expression vector (Fig. S6B), we drew an ROI around the
dorsal FB layer containing hΔC output tufts, split this ROI into 12 col-
umns, converted normalized expression across these columns into a
360° polar plot, then converted the polar plot into a vector.

Calcium imaging
For calcium imaging, we anaesthetized flies on ice and mounted them
in a holder (https://ptweir.github.io/flyHolder/) using UV glue. We
stabilized the head, proboscis, and body, removed the two front legs,
and dissected the cuticle over the back of the head, removing trachea,
airsacs, and muscles that covered the brain. The brain was bathed in
extracellular saline (103mM NaCl, 3mM KCl, 5mM TES, 8mM treha-
lose dihydrate, 10mM glucose, 26mM NaHCO3, 1mM NaH2PO4H20,
1.5mM CaCl22H2O, and 4mM MgCl26H2O, pH 7.1–7.4, osmolarity
270–274mOsm) bubbled with carbogen (5% CO2, 95% O2) during dis-
section and imaging.

2-photon imaging was performed using a pulsed infrared laser
(Mai Tai DeepSea, Spectraphysics) at 920nm with a Bergamo II
microscope (Thorlabs), using a 20× water immersion objective
(Olympus XLUMPLFLN 20×) and ThorImage 3.0 software. Power at the
sample was 13–66mW. Emitted photons were spectrally separated
using red (tdTOM, 607/70 nm) and green (GCamp6f, 525/50nm)
bandpass filters and detected by GaAsP PMTs. Imaging area ranged
from 47 × 47 µM to 122 × 74 µM and was identified using the tdTOM
signal under epifluorescence. Images were acquired at ~5.0 frames
per second. We excluded flies where we were unable to obtain 5 trials
of each stimulus direction, 2 65C03 flies which showed rhythmic spike-
like activity and did not respond to any phase of our stimulus, and one
VT062617 fly in which no columns responded >2STD above baseline.

Wind and odor stimuli were delivered using a custom five-
direction manifold61 (MB052B, LH1396, 65C03-GAL4, 21D07, vFB split,
and VT062617) or rotary union apparatus21 (MB077B, MB082C, and
12D12). Charcoal-filtered air was passed through a flowmeter (Cole-
Parmer) to direct air and odor at the fly from one of five directions
using either proportional valves (manifold, EV-05-0905; Clippard
Instruments) or solenoid valves (rotary union, LHDA1233115HA, Lee
Company). Odor (apple cider vinegar, 10%) was diluted in distilled
water on the day of the experiment. Airflow was ~25 cm/s for manifold
experiments and 40 cm/s for rotary union experiments and main-
tained at a constant level throughout the experiment. Trials consisted
of 5–10 s without stimuli, 10 s of wind alone, 10 s of odorizedwind, 10 s
of wind alone followed by 8–10 s of no stimulus. Odor/wind direction
was randomized in blocks of five trials, with five blocks per fly (25 total
trials). Imaging position, z-plane, gain, and power levels were adjusted
as needed between blocks.

To extract time courses from calcium imaging data, we first used
the CalmAn package69 (Matlab) to implement the NoRMCorre rigid
motion correction algorithm70. Motion correction was performed on
the red (tdTOM) time series, then applied to the green (GCaMP6f)
times series. ROIs were drawn by hand in ImageJ on a maximum
intensity projection of the first trial of the tdTom time series, then
manually adjusted for drift between trials. We targeted the following
regions in each line. LH1396: dendritic processes in the LH; MB052B,
MB082C and MB077B: putative axonal processes in the proto-
cerebrum; FB5AB, 65C03, 12D12, and vFB split: FB layer innervated by
each line. For hΔC imaging (VT062617) imaging, we drew ROIs
across eight putative columns of the FB based on glomerular struc-
ture in the tdTom signal. ROIs were imported into MATLAB using
ReadImageJROI71. ΔF/F was computed by dividing the green
(GCaMP6f) time series by the average fluorescence of the baseline
period (first 5 s of the trial, excluding the first sample due to shutter
lag). Traces were resampled to 5 Hz if frame rate varied between
experiments to compute means. Supplemental heat maps were
normalized to maximum response across all trials within an
individual fly.

Electrophysiology
For whole cell patch clamp recordings, flies were mounted in a
holder with hot wax and dissected. We used collagenase (5% in
extracellular saline, Worthington Biochemical Corporation Col-
lagenase Type 4) to remove the sheath over the brain. We visualized
cell bodies using a 40× objective (Olympus, LUMPLFLN40XW), an
LED source (Cairn Research MONOLED), and a filter (U-N19002 AT-
GFP/F LP C164404), and cleaned them using extracellular saline and
light positive pressure.

Glass pipettes (6–10 µOhms, World Precision Instruments
1B150F-3) were pulled using a Sutter P-1000 puller and filled with
intracellular solution (140mM KOH, 140mM aspartic acid, 10mM
HEPES, 1 mM EGTA, 1 mM KCl, 4 mM MgATP, 0.5 mM Na3GFP, and
13mM biocytin hydrazide). Current and voltage signals were
amplified using either an A-M systems Model 2400 amplifier with
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Brownlee Precision 410 preamplifier or a Molecular Devices Mul-
ticlamp 700B and digitized at 10 kz. We recorded from a total of 12
MBONs, 6 on each side that met our criteria of access:input ratio
great than 5:1. Resting membrane potential ranged from −34.6 mV
to −25.2 mV (mean −30.8 mV).

Stimuli for electrophysiology were delivered using simple
olfactometer comprising a charcoal filter, flowmeter, and Teflon
tube (4 mm OD, 2.5 mm ID) positioned <1 mm from the fly head on
the right side. Solenoid valves (Lee company, LFAA1201610H)
switched between humidified and odorized air. Odor pulses shown
(10% apple cider vinegar) are 10 s long. Total airflow was 1.3 L/min.
Membrane potential was extracted in Matlab by applying a 2.5 Hz
low-pass Butterworth filter to raw voltage signals. Responses
during the first 4 s of the odor period were compared to 2 s of
baseline during wind only.

Immunohistochemistry
Dissected brains were fixed for 15 min in 4% paraformaldehyde (in
1× PBS), washed 3× in PBS and stored at 4 °C until staining (within
2 weeks). To stain, fixed brains were incubated in 5% normal goat
serum in PBST (1× PBS with 0.2% Triton-X) for 20–60min, incu-
bated overnight at room temperature in primary antibody (Table 1),
washed 3× in PBST, incubated overnight in secondary antibody
(Table 1), washed 3× in PBST then stored in PBS at 4 °C until ima-
ging. Mounted brains were covered in vectashield (Vector Labs H-
1000), sealed with coverslips, and imaged using a 20× objective
(Zeiss W Plan-Apochromat 20×/1.0 DIC CG 0.17 M27 75 mm) on a
Zeiss LSM 800 confocal microscope at 1–1.25 μM depth resolution.
Images presented are maximum z-projections over relevant
depths.

Wedissected, stained, and imaged the following number of brains
to determine expression patterns: Fig. 3a: MB052B > transtango N = 2,
LH1396 > transtango N = 3, Fig. 4A: FB5AB (21D07||CLIN) > Chrimson
N = 3, 65C03 >Chrimson N = 1, 12D12 >Chrimson N = 2, vFB split>-
Chrimson N = 1. Figure 6A: hΔC> SPARC N = 51, Fig. 6E: hΔC split>-
Chrimson N = 1, Fig. S4B: 21D07||ChAT N = 2, 21D07 GABA N = 2,
65C03||ChAT N = 1, 65C03||GAD1 N = 1, 12D12||ChAT N = 1, 12D12||GAD1
N = 1, vFBsplit||ChAT N = 3 Fig. S5A: VT062617||ChAT N = 2, VT062617||
GAD1 N = 1. For Chrimson experiments, we dissected females from the
same cross as experimental males.

Connectomic analysis
Data from the hemibrain connectome22 were obtained from neuprint
explorer (https://neuprint.janelia.org, hemibrain:v1.1) and analyzed
using MATLAB and Python (see Code availability). For the analysis
shown in Fig. 5B, the location of FB5AB synapses onto hΔC was
determined by their x-position, with no filtering or constraints. For the
analysis in Fig. 4B, we counted all FB tangential neurons two synapses
downstream of the following projection neurons: VM7d_adPN,
VM7v_adPN, DM1_lPN, DM4_adPN, DM4_vPN, VA2_adPN, DP1l_adPN,
DP1l_vPN, DL2d_adPN, DL2d_vPN, DL2v_adPN, DC4_adPN, DC4_vPN,
DP1m_adPN, DP1m_vPN in which the intermediate neurons contained
LH (they were lateral horn neurons) and where synaptic weights
exceeded a weight of 3.

Modeling
TheFB steering circuitmodel implemented in this study contains three
types of inputs—heading, wind, and odor; two intermediate layers
corresponding to hΔC and mutual inhibition local neurons; and an
output layer corresponding to left PFL3, right PFL3, and PFL2 neurons,
which modulate angular velocity and walking speed. Heading inputs
godirectly to PFL3andPFL2,while odor andwind inputs are integrated
by hΔC neurons, processed by the mutual inhibition layer, and then
integrated by PFL3 and PFL2. Angular velocity depends on the relative
activity of left and right PFL3, while speed depends on the activity of

PFL2. All modeling was performed in Matlab (see Code availability).
Model parameters are given in Table 2. All dynamic systems were
computationally approximated using Euler’s method of integration
with a time step of 0.05 s.

Input layer: heading. Heading input to PFL3 and PFL2 was simulated
by phase-shifting heading-tuned one-cycle sinusoids:

heading input = cosðFBlocation � ð180� � heading +phase shiftÞÞ+ 1
ð1Þ

where FBlocation refers to the spatial locationwithin the FB (0° = left FB,
360° = right FB), heading refers to the heading direction of the fly, and
phase_shift refers to the anatomical shift introduced by PFL neurons
entering the FB. The phase shift parameters were taken directly from
the connectome31 and were defined as the following: phase_-
shiftleft_PFL3 = −90°, phase_shiftright_PFL3 = +90°, phase_shiftPFL2 = +180.

Input layer: wind. Wind-tuned bumps of activity in hΔC neurons were
simulated using one-cycle sinusoids that depended on the encoding
strategy. For allocentric representation (Fig. 7), the bump of activity in
hΔC neurons follows the allocentric direction of wind and was defined
by the following:

wind inputallocentric = cosðFBlocation � ð180� �wind directionallocentricÞÞ+ 1 ð2Þ

where wind_direction refers to the allocentric wind direction. For
frontal representation (Fig. S7) hΔC wind activity was constructed by
phase shifting and summing the activity of a left and right population
of wind-sensitive PFNs21, each displaying a heading-tuned bump scaled
by wind direction:

wind inputfrontal = cosðFBlocation � ð180� � heading+phase shiftleftÞÞ � scaleleft
+ cosðFBlocation � ð180� � heading+phase shiftrightÞÞ � scaleright

ð3Þ

where phase_shift refers to the anatomical shift introduced by PFN
neurons entering the FB, and scale refers to the wind-tuned scaling of
bump amplitude. The phase shifts differed for the two populations of
PFNs and were defined as: phase_shiftleft = +45°, phase_shiftright = −4531

The scaling corresponded to the wind tuning of the PFNs, which
differed between the left and right PFN populations21

scale= sinðwind directionegocentric + ð90� � peakÞÞ ð4Þ

where wind_directionegocentric is the egocentric wind direction and
peak is the egocentric wind direction that maximally activates the PFN
cell type (peakleft = −45°, peakright = +45°).

Table 1 | Antibody sources and dilutions

Antibody Source Dilution Identifier

Chicken anti-GFP Fisher
Scientific

1:50 RRID:AB_1074893

Mouse anti-nc82 DSHB 1:50 RRID:AB_2314866

Rabbit anti-DsRed Clontech 1:500 632496

Rabbit anti-GABA Sigma 1:100 RRID:AB_477652

Alexa488-conjugated goat
anti-chicken

Fisher
Scientific

1:250 RRID:AB_2534096

Alexa633-conjugated goat
anti-mouse

Fisher
Scientific

1:250 RRID:AB_2535719

Alexa568-conjugated goat
anti-rabbit

Fisher
Scientific

1:250 RRID:AB_2315774

Alexa568-conjugated
streptavidin

Fisher
Scientific

1:1000 RRID:AB_2576217
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Intermediate layer 1: hΔC neurons. The total activity of hΔC neurons
was calculated as the sum of wind input and optogenetic input:

hΔC input =wind input �wind gain +optogenetic input ð5Þ

where wind_gain is a binary variable set to 1 only if odor is present
and optogenetic_input is a vector of sparse or broad optogenetic
patterns. Sparse optogenetic patterns were generated by creating
a 20-element vector, with each element stochastically set to 0 or
2.3 at a 15% probability. Broad optogenetic patterns were
generated by creating a 20-element vector with every value set
to the same value (low light = 0.75, high light = 2.3). These values
were chosen to best match simulated trajectories with real
behavior.

The output of the hΔC population was calculated by phase-
shifting the hΔC activity by 180°. To simplify the pathways con-
necting hΔC neurons with mutual inhibition circuits, PFL3 neurons,
and PFL2 neurons, which all involve at least one additional cell type,
the output of hΔC neurons was transformed from 20-neuron space
into 8-column space and then thresholded using a sigmoidal activa-
tion function:

hΔCoutput = ShΔC
�
WhΔC �ϕ�

hΔCactivity

��
+n ð6Þ

where ShΔC is the hΔC sigmoid activation function with slope khΔC and
threshold θhΔC, WhΔC is the feedforward transformation matrix, ϕ is
the 180° phase shift function, and n is exponentially filtered white

noise. The matrix used for the space transformation was inspired by
the connectivity between local neurons in the fan-shaped body. To
construct this matrix, each neuron’s output was set as the size of one
column, such that there were 20 overlapping column-sized outputs.
The matrix element for columni and neuronj was then set as the
amount of overlapbetween columni and theoutput of neuronj, and the
total input to columni from all neurons was normalized to equal 1. The
exact structure of WhΔC was not critical, as long as the matrix was
normalized and maintained the approximate location of wind
sinusoids in FB space. The filtered white noise was defined by the
following equation72

dn
dt

=
�n
taun

+ σn �
ffiffiffiffiffiffiffiffiffiffi
2

taun

s
� η tð Þ ð7Þ

where n is the noise variable, taun is the noise time constant, σn is the
noise standard deviation, and ηðtÞ is white noise with zero mean and
unit variance.

Intermediate layer 2:mutual inhibition local neurons. hΔC columnar
output was relayed into an inhibitory recurrent network, consisting of
eight inhibitory neurons with mutual connections between neurons
located in opposite columns. Neurons in this network also contained a
slow adaptation parameter, a, that curtailed input when neural
activity was high. This system was described using the following

Table 2 | Values of steering circuit model parameters with their units, roles, and sources listed

Parameter Value Units Role Source

phase_shiftleft_PFL3 −90 deg Anatomical shift of left PFL3 neurons entering FB 31

phase_shiftright_PFL3 90 deg Anatomical shift of right PFL3 neurons entering FB 31

phase_shiftPFL2 180 deg Anatomical shift of PFL2 neurons entering FB 31

phase_shiftleft_PFN 45 deg Anatomical shift of left PFN neurons entering FB 31

phase_shiftright_PFN −45 deg Anatomical shift of right PFN neurons entering FB 31

peakleft −45 deg Peak wind direction tuning of left PFNs 21

peakright 45 deg Peak wind direction tuning of right PFNs 21

optogenetic_power Low: 0.75, High: 2.3 Activity Activation of hΔC neurons by optogenetic stimulus Optimized to match behavior

khΔC 0.1 – Slope of hΔC activation function 72

θhΔC 0.7 Input Threshold of hΔC activation function Optimized to match behavior

taun 10 ms Time constant for exponentially filtered white noise 72

σn 0.03 Activity Standard deviation of exponentially filtered white noise 72

Wii I <-> i+4: 1.1 Otherwise: 0 – Synaptic strength between mutually inhibited neurons 72

g 0.5 – Adaptation weight for mutual inhibition neurons 72

tauu 1 ms Time constant for mutual inhibition neurons 72

taua 100 ms Time constant for slow feedback adaptation 72

kmi 0.1 – Slope of mutual inhibition activation function 72

θmi −0.15 Input Threshold of mutual inhibition activation function Adjusted from72

taupfl 1 ms Time constant for PFL3 and PFL2 neurons 72

kpfl 0.1 – Slope of PFL activation function 72

θpfl 1.7 Input Threshold of PFL activation function Optimized to match behavior

λ 0.0003 Rate Baseline turn rate for 20000Hz simulated data 10

σturn 20 deg/s Standard deviation of angular velocity distribution 10

m1 0.03 deg/(s*activity) Constant coupling PFL3 activity to angular velocity at
20,000Hz

Optimized to match behavior

vbase 6 mm/s Baseline groundspeed 10

m2 0.25 mm/(s*activity) Constant coupling PFL2 activity to groundspeed Optimized to match behavior

Note:manyparametersweremanuallyfit tomatch simulation datawithbehavioral trajectories.While not explored in this study,manyof theseparameters (e.g., activation thresholds) areflexible and
can be adjusted together to keep the steering circuit functioning across a range of sinusoid amplitudes.
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differential equations:

tauu �
du
dt

=�u +Smi

��Wii � u� g � a+hΔCoutput

� ð8Þ

taua �
da
dt

=�a+u ð9Þ

Where u is an 8-element vector corresponding to the activity of each
inhibitory neuron, a is an 8-element vector corresponding to the
adaptation of each inhibitory neuron, Wii is the recurrent weight
matrix connecting the inhibitory neurons, g is the adaptation
weight, hΔCoutput is the columnar output of the hΔC neurons, tauu is
the time constant for neural activity, taua is the time constant for
adaptation, and Smi is the mutual inhibition sigmoid activation
function with slope kmi and threshold θmi. The equations and
parameters used to model the mutual inhibition circuit were taken
from ref. 72.

The output of themutual inhibition layerwas calculated by phase-
shifting u by 180°. This output was subtracted from the hΔC output to
create the total local output sent to PFL3 and PFL2.

Output layer: PFL2 andPFL3 neurons. The activity of left PFL3, right
PFL3, and PFL2 were calculated by summing the excitatory output
of hΔC neurons, inhibitory output of the mutual inhibition layer,
and phase-shifted excitatory output of the heading system, and
then converting this input into activity using the following dynamic
system:

taupfl �
dpfl
dt

=�pfl + SpflðinputÞ ð10Þ

where taupfl is the time constant for PFL neurons and Spfl is the PFL
sigmoid activation function with slope kpfl and threshold θpfl.

Output layer: navigation modulation. Turning was calculated by
comparing the activity of right PFL3neurons and left PFL3 neurons and
adding a noise term:

4heading=m1 � �∑ PFL3right �∑ PFL3left

�
+p tð Þ � G ð11Þ

wherem1 is the coupling constant between PFL3 activity and turning,
p tð Þ is a binary Poisson variable with λ rate, and G are angular velocity
values drawn from a Gaussian distribution with zero mean and σturn

variance. The random turn equations and parameters were taken from
ref. 10 while the coupling constant was selected to best match beha-
vioral trajectories.

Groundspeed was calculated by summing the activity of PFL2
neurons according to the following equation:

v= vbase +m2 �∑ PFL2 ð12Þ

where vbase is the baseline speed and m2 is the coupling constant
between PFL2 activity and speed. The baseline speed was taken
from ref. 10 while the coupling constant was selected to best match
behavioral trajectories.

Output layer: simulated trajectories. The model simulates heading
and groundspeed over time in response to wind/odor or optogenetic
stimuli. These values were converted into movement in x and y using:

xn+ 1 = xn +4t � vn � sinðheadingnÞ
yn + 1 = yn +4t � vn � cosðheadingnÞ

ð13Þ

where 4t is the time step between data points, vn is the current
groundspeed, and headingn is the current heading.

Other. The sigmoid activation function used for hΔC neurons, the
mutual inhibition circuit, and PFL neurons was the following.

activity =
1

1 + e
�ðx�θÞ

k

� � ð14Þ

where x is the input, θ is the activation threshold, and k is the activa-
tion slope.

Quantification and statistical analysis
Behavior. Based on previous behavior data10 we assumed these data
were not normally distributed and applied non-parametric statistics.
We used the two-sided Wilcoxon signed rank test (MATLAB signrank)
to compare the average baseline value of each parameter to the
average of the parameter over awindowof interest. Between genotype
comparisons (genetic silencing experiments) were made between
baseline subtracted parameter values using the two-sided
Mann–Whitney U test (MATLAB ranksum). For behavioral time cour-
ses we display standard error around themean. For summary plots we
present standard deviation around the mean. Bonferroni corrections
for multiple comparisons were applied based on the number of gen-
otypes tested labeling similar neuron types (i.e. 6 in Fig. 1D, 21 for all
dorsal FB inputs in Fig. 3B, C) or on the number of comparisons made
to control in genetic silencing experiments (3 in Fig. 1F).

Imaging and physiology. We used parametric tests for calcium ima-
ging and electrophysiological data. When testing for significant dif-
ferences in odor responses across directions we averaged individual
trials across flies, and performed a one-way ANOVA across pooled
trials across flies (MATLAB anova1). When assessing differences
between wind ON responses and odor responses we calculated mean
wind and odor responses in 10 s windows following ON.We compared
wind and odor periods using a two-tailed paired student’s t-test
(MATLAB ttest, Fig. S4E, Fig. S5A). Similarly, we performed two-tailed
paired student’s t-test when comparing wind and odor responses in
MBON electrophysiology experiments and a two-tailed unpaired stu-
dent’s t-test (MATLAB ttest2) when comparing odor responses
between ipsilateral and contralateral MBONs. To assess the decay of
fluorescence response to odor over time (Fig. 4D), we computed the
average response to the odor presentation period across flies for five
trial blocks, including one trial of each direction. We averaged the
response across all flies imaged, and normalized by themean response
in trial block one. Shaded regions depict standard error across flies
around the mean.

Classification training. We trained classifiers to assess if an observer
could correctly identify whether wind was coming from the left, right
or front relative to the fly based on calcium imaging data from select
neuron groups.Wepooled thedata for 45 and90degrees left and right
for this analysis. We trained classification tree models on calcium
response data during odor ON (5 s, Figs. 2F, 4D) and during wind ON
and OFF (5 s, Supplementary Figs. 2H, 4E). Model were trained using
two predictors: the fly identity, and the Z-score of the calcium
response during the specified window. We took the Z-score of the
response to standardize the data between electrophysiology firing
rates (PFNa) and calciumresponses (all other neurons). Aswe recorded
both left and right LNa neurons simultaneously we asked how well the
difference between the activity of the two performed. We trained
classification trees (Matlab’s fitctree) to identify wind direction and
tested model performance using 10-fold cross validation error
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(Matlab’s KfoldLoss). We compared this error to classification trees
that were trained on the same data with shuffled labels, with 50 ran-
dom iterations of shuffled labels.

We also designed classifier to assess if an observer could distin-
guish between wind ON activity and odor ON activity. We used the
same parameters in the direction classifier but pooled all data across
all wind directions. We performed the same analysis to assess if an
observer could distinguish between baseline activity and odor ON
activity in Supplementary Figs. 2F and 4F.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Behavior and imaging data generated in this study have been depos-
ited on Zenodo at https://zenodo.org/record/6863832#.Ytlati-B3UJ,
DOI: 10.5281/zenodo.6863832. The connectomic data used in this
study (hemibrain version 1.1) are available on neuprint https://
neuprint.janelia.org/. Source data are provided with this paper. Any
additional information required to reanalyze the data reported in this
paper is available from the Lead Contact upon request.

Code availability
All original code is available on Github at https://github.com/nagellab/
Mathesonetal2022. Model code is available on Zenodo at https://
zenodo.org/record/6762105#.YtlbYi-B3UJ, https://doi.org/10.5281/
zenodo.6762105.

Materials availability
No new transgenes were created for this study. Transgenic stocks are
available on request from the Lead Contact.
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