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Background and Objective: Although epimedium herb (EH) has been widely used in ancient Chinese 
medicine to enhance sexual activity, its pharmacological mechanism is not clear. Modern studies have shown 
that epimedium herb is rich in icariin (ICA, a flavonoid compound), and 91.2% of icariin is converted to 
icariside II (ICA II) by hydrolytic enzymes in intestinal bacteria after oral administration. YS-10 is a synthetic 
derivative of icariside II. The aim of this review was to summarize the contemporary evidence regarding 
the pharmacokinetics, therapeutic properties, and molecular biological mechanisms of ICA and some ICA 
derivatives for erectile dysfunction therapy. 
Methods: A detailed search was conducted in the PubMed database using keywords and phrases, such as 
“icariin” AND “erectile dysfunction”, “icariside II” AND “erectile dysfunction”. The publication time is 
limited to last 20 years. Articles had to be published in peer reviewed journals.
Key Content and Findings: ICA and its some derivatives showed the specific inhibition on 
phosphodiesterase type 5 (PDE5) and the promotion of testosterone synthesis. In addition, by regulating 
various reliable evidence of signaling pathways such as PI3K/AKT, TGFβ1/Smad2, p38/MAPK, Wnt and 
secretion of various cytokines, ICA and ICA derivatives can activate endogenous stem cells (ESCs) leading 
to endothelial cell and smooth muscle cell proliferation, nerve regeneration and fibrosis inhibition, repair 
pathological changes in penile tissue and improve erectile function. 
Conclusions: ICA and some of its derivatives could be a potential treatment for restoring spontaneous 
erections. In addition ICA and his derivatives may also be valuable as a regenerative medicine approach for 
other diseases, but more clinical and basic researches with high quality and large samples are recommended.
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Introduction

Erectile dysfunction (ED) is defined as the inability to 
obtain and/or maintain a sufficient erection for satisfying 
sex over three months. Currently, oral administration of 
type 5 phosphodiesterase inhibitors (PDE5Is) given before 
intercourse are the first-line treatment for ED patients (1).  
Second-line treatments for ED, including the vacuum 
devices and intracavernose injection therapy (ICI), present 
numerous complications like penile pain, priapism, and 
fibrosis. The overall efficiency of both was about 70%, 
however, these treatments were only used to relieve ED 
symptoms. The implantation of a penile prosthesis might be 
the last option, but is highly cost with the risks of infection, 
erosion and device failure (2). Recent researches on ED 
regenerative therapies including gene therapy and stem 
cell therapy have shown significant benefits in repairing 
pathological changes of penile tissue of various ED animal 
models and are important attempts to restore natural 
erections. However, their clinical application is limited by 
ethical and potential safety issues (3). Anyhow, a natural 
erection restoration is always the primary pursuit.

Traditional Chinese medicine has a long history in 
exploring ED therapy. Many studies have demonstrated the 
effectiveness of Epimedium for the treatment of ED. The 
history of Epimedium in ED therapy can be traced back 
to the ancient Chinese North and South Dynasties (420-
589 AD). Tao Hongjing, a famous medical scientist, learned 
from the shepherds that male sheep consumed a plant 
that significantly increased the times of penile erections 
and mating. Tao believed this plant could enhance the 
“YANG” energy (in Chinese, “Yin Yang Huo”, in English, 
Epimedium Herb, EH). It has also been widely used in East 
Asian countries for centuries, with different names such as 
Epimedium Brevicornum Maxim, E. Sagittatum Maxim, E. 
Pubescens Maxim, and E. Koreanu Nakai. 

Flavonoids have been reported to be the main bioactive 
components of Epimedium (4). Icariin (ICA) is one of 
the most abundant flavonoids in Epimedium and is often 
used as a marker for quality control in Epimedium herbal 
preparation and chemical taxonomy (5,6). ICA has a similar 

structure to PDE5Is. In addition, it has a wide range of other 
pharmacological effects, including anticancer activity (7),  
anti-osteoporotic activity (8,9), antidepressant activity 
(10,11), and aphrodisiac (12). ICA is a disaccharide, and 
several studies have shown that flavonoids in the form 
of glycosides have low bioactivity because of their low 
intrinsic absorption permeability (13-15). Both in vivo and 
in vitro metabolic studies demonstrated that the intestinal 
microbiota can convert ICA into icariside I, icariside II 
(ICAII) by hydrolyzing C-3-O-rhamnoside (R1) and C-7-
O-glucopyranoside (R2) molecule, respectively (16-19). 
Pharmacokinetic studies have shown that the intestinal 
bacterial metabolites of ICA have better biological 
activity (20,21). Previous studies found that after oral 
administration, 91.2% of ICA was converted to ICA 
II. The maximum blood concentration (Cmax) and the 
degree of absorption (AUC0-t) that occurred after ICA II 
administration were 3.8 and 13.0 times higher than those of 
ICA, respectively. Therefore, ICA II, which lacks a glucose 
group at C-7, is the major metabolite of ICA and has higher 
activity than ICA (22).

By administering different doses of ICA or ICA II 
treatment, it was found that appropriate doses (generally 
low dose, ranging from 10–200 mg/kg) significantly 
improved erectile function in various ED animal models. 
Moreover, ICA and ICAII are able to reverse the injury 
of penile corpus cavernosum, such as restoring the 
content of cavernous endothelium (23) and smooth 
muscle (24), regenerating damaged cavernous nerves (25), 
inhibiting cavernous fibrosis (26), restoring the normal 
level of testosterone and the ratio of extracellular matrix 
(27,28). Therefore, ICA/ICAII may have the potential to 
rehabilitate the pathological injury and achieve spontaneous 
erection.

In current review, we summarized the advancements in 
terms of the biological effect of ICA and ICA derivatives 
on type 5 phosphodiesterase (PDE5) expression and 
enzymatic function, the modulation of tissue resident 
stem cells to regenerate penile damaged tissues, and the 
restoration of testosterone level. We present the following 
article in accordance with the Narrative Review reporting 
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checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-22-232/rc).

Methods

We conducted a literature search for PUBMED in March 
2022 following the Table 1 search strategy. The publication 
time is limited to last 20 years. Articles had to be published 
in peer reviewed journals. Keyword searches including 
“erectile dysfunction” AND “icariin”, “erectile dysfunction” 
AND “icariside II”, “erectile dysfunction” AND “icariin 
derivative”， “PDE5” AND “icariin”, “PDE5” AND 
“icariside II”, “PDE5” AND “icariin derivative”, “testis” 
AND “testosterone” AND “icariin” ,  and “testis” 
AND “testosterone” AND “icariside II”, “testis” AND 
“testosterone” AND “icariin derivative”. Articles without 
experimental data related to the search terms and data that 
did not support relevant conclusions were excluded, as 
well as articles with low quality. The data were extracted 
from each study by two investigators (JCP and YHF) 
independently. After the search, summarized the literature 
and discussed the different literature. Another researcher 
(ZCX) was invited to discuss and identify the literature 
on which consensus could not be reached (Table S1). Our 
literature search covered English-language clinical or basic 
research articles published from January 1, 2003 to March 1, 

2022, as well as related reviews and meta analyses. 

Discussions

Modulating PDE5 expression and function

Numerous studies have shown that ICA and ICA derivatives 
affected the enzymatic function of PDE5 mainly through 
competitive inhibition, while the possible regulatory role of 
PDE5 expression needs to be further investigated (Table 2). 
Protein binding of ICA/ICA derivatives and PDE5.

The catalytic domain of PDE5 can and the active 
site, which realizes the role of bind and hydrolyze cyclic 
guanosine monophosphate (cGMP), while the H-loop 
structure can modulate the enzyme affinity. Crystal structure 
of ICAII binding to PDE5 shows that the 7-o-glucose 
structure is located near the entrance of the active binding 
site and forms hydrogen bonds with ser668 residues on the 
flexible H-loop. In addition, the 3-o-rhamnose structure 
is located in the hydrophobic region that may affect the 
catalytic efficiency of the enzyme (29,37). In 2019, Chau 
et al. (30) demonstrated that different functional groups at 
the 3-o and 7-o positions of the ICA derivative backbone 
play a role in modulating the ability of ICA to inhibit 
PDE5. The substitution of the 3-o and 7-o positions using 
different hydrophilic and hydrophobic groups revealed 
that the hydrophobic group at the 3-o position had a more 

Table 1 The search strategy summary

Items Specification

Date of search (specified to date, month and year) January 1, 2003 to March 1, 2022

Databases and other sources searched PubMed

Search terms used (including MeSH and free text 
search terms and filters) (Note: please use an 
independent supplement table to present detailed 
search strategy of one database as an example)

As shown in Table S1

Timeframe The publication time is limited to last 20 years

Inclusion and exclusion criteria (study type, 
language restrictions etc.)

1. Articles had to be published in peer reviewed journals

2. Articles without experimental data related to the search terms and data that did 
not support relevant conclusions were excluded, as well as articles with low quality

3. Written by English

Selection process (who conducted the selection, 
whether it was conducted independently, how 
consensus was obtained, etc.)

Two experimenters were searched and screened separately. Discussion of the 
discrepancy literature and invitation to the other experimenter to participate

Any additional considerations, if applicable None

https://tau.amegroups.com/article/view/10.21037/tau-22-232/rc
https://tau.amegroups.com/article/view/10.21037/tau-22-232/rc
https://cdn.amegroups.cn/static/public/TAU-22-232-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-22-232-Supplementary.pdf
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Table 2 PDE5 inhibition by ICA /ICA derivatives and mechanism

ICA and ICA 
derivative

Year of 
publication

Study type
Mechanism of PDE5 

inhibition
The inhibition Effect for PDE5 Key reference

ICAII 2006 In vitro (crystal structure and 
enzyme  kinetics)

Bonding with PDE5A1 
flexible H-loop

Selectively inhibiting PDE5A1 
with an IC50 of 2M

(29)

ICA derivative-
Compounds 3

2019 In vitro (crystal structure and 
enzyme  kinetics)

The hydrophobic group 
at the 3-o position more 

significantly inhibiting PDE5

Inhibiting PDE5 with an IC50 of 
0.083±0.01 μM 

(30)

ICA 2003 In vitro (enzyme  kinetics) – Inhibiting PDE5 with an IC50 of 
0.432 µM

(31)

ICA 2006 In vitro (rat cavernous smooth 
muscle cells and enzyme kinetics)

– Inhibiting PDE5A1, A2, and A3 
with an IC50 value of 1.0, 0.75, 

and 1.1 M

(32)

ICAII 2012 In vitro (rat corpus cavernosum 
tissue and enzyme kinetics)

– about 50% of Sildenafil (33)

3,7-bis(2-
hydroxyethyl) 
Icaritin

2008 In vitro (enzyme kinetics) – With a similar IC50 to that of 
sildenafil (IC50 75 vs. 74 nM)

(34)

ICA 2006 In vitro (rat corpus cavernosum 
tissue and enzyme kinetics)

Inhibit PDE5 mRNA 
expression

Inhibiting PDE5 with EC50 was 
4.62 micromol/L

(35)

ICA 2014 In vivo (rat corpus cavernosum 
tissue and enzyme kinetics)

Inhibit PDE5 expression – (36)

PDE5, phosphodiesterase type 5; ICA, icariin; ICAII, icariside II; IC50, the half maximal inhibitory concentration; EC50, concentration for 
50% of maximal effect.

pronounced effect on the inhibition of PDE5. 

Enzymatic inhibition of PDE5 function by ICA and 
ICA derivatives
A previous study showed that ICA exhibited a dose-
dependent inhibition of PDE5 activity (31). The half-
maximal inhibitory concentrations (IC50) of ICA for PDE5 
and phosphodiesterase-4 (PDE4) were 0.432 mmol/L and 
73.50 mmol/L, respectively. Ning and colleagues (32) also 
reported that ICA inhibited all three PDE5 isomers with 
similar IC50 values. However, the inhibitory effect of ICA 
on PDE5 is about one-tenth that of sildenafil, while the 
effect of ICA II is significantly higher than ICA, about 50% 
of sildenafil (33). 

In addition, Dell’Agli et al. (34) showed that 3,7-bis 
(2-hydroxyethyl) icaritin has a strong inhibitory effect on 
PDE5A1 with a similar IC50 to that of sildenafil (IC50 75 
vs. 74 nM) and 80 times than ICA. Therefore, chemical 
modifications of the ICA molecular structure have been 
investigated with the aim of obtaining more specific PDE5 
inhibitory activity. Recently, Chau et al. (30) developed 
several novel semi-synthetic ICA derivatives, among 

which compounds 3 and 7 synthesized by modification 
with hydroxyethyl substitution of C-3-O-rhamnoside 
showed specific PDE5 inhibitory activity close to that of 
commercially available PDE5 inhibitors. Additionally, 
compound 3 showed less phosphodiesterase-6C (PDE6C) 
inhibitory effect compared to sildenafil. Compared to 
naturally derived ICA, synthetic and chemically modified 
ICA derivatives have good PDE5 inhibition and specificity, 
and may be promising for further development as better 
PDE5Is candidates. However, studies on the efficacy 
of ICA chemically modified compounds are limited to  
in vitro experiments, while safety needs to be verified in 
more animal experiments and even clinical trials.

ICA regulates PDE5 expression 
In contrast to commercial PDE5Is such as sildenafil, a 
previous study suggested that ICA may have the ability to 
inhibit PDE5 expression. Jiang et al. (35) compared the 
differences of cGMP, cyclic adenosine monophosphate 
(cAMP) and PDE5 mRNA by exposing isolated rabbit 
penile corpus cavernosum to ICA solution and sildenafil 
solution. The results showed an increase in tissue cGMP 

https://pubmed.ncbi.nlm.nih.gov/34272704/
https://pubmed.ncbi.nlm.nih.gov/34272704/
https://pubmed.ncbi.nlm.nih.gov/34272704/
https://pubmed.ncbi.nlm.nih.gov/34272704/
https://pubmed.ncbi.nlm.nih.gov/34272704/
https://pubmed.ncbi.nlm.nih.gov/34272704/
https://pubmed.ncbi.nlm.nih.gov/34272704/
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levels in both solutions, with no significant change in cAMP. 
The term-half maximal effective concentration (EC50) was 
4.62 (ICA) and 0.42 (Sildenafil) μmol/L respectively. More 
importantly, ICA treatment also differentially inhibited 
PDE5A1 and PDE5A2 mRNA levels in rat penile corpus 
cavernosum compared with sildenafil. Another study in 
which ICA was administered to adult rats showed that 
ICA significantly reduced PDE5 levels in penile tissues, 
and these results may be related to the reduction of Rho 
signaling pathway associated coiled-coil containing protein 
kinase 1 and 2 (ROCK1 and ROCK2) levels by ICA (36). 
Thus, ICA treatment is considered to have a longer-
term PDE5 inhibitory effect than commercially available 
PDE5Is. This study suggests another possible direction for 
future research. However, there are only a few studies on 
the regulation of PDE5 expression by ICA, and definite 
conclusions need to be confirmed by clear mechanistic 
studies and experiments in large sample to exclude 
distortion of results due to individual differences.

Repair of penile tissue mainly through regulation of tissue-
resident stem cells 

In fact, the majority of ED patients are not satisfied with 
one-time symptom improvement and want new therapies 
that are safer and more effective in restoring erectile 
function by repairing the pathological changes in ED. 
Numerous studies have demonstrated the effectiveness of 
ICA and its derivatives in repairing injured penile tissue. 
The above-mentioned effect through the regulation of 
tissue-resident stem cell proliferation and differentiation 
is one of the most important mechanisms currently being 
investigated for the treatment of ED (Table 3). Therefore, 
ICA and its derivatives are considered to be regenerative 
medicine therapies with the potential to restore spontaneous 
erections in patients with ED. 

Tissue resident stem cells activation
Stem cells can self-replicate and differentiate into multiple 
cell types, which are widely used in regenerative medicine 
research. Recently, many studies have shown that ICA and 
ICAII can regulate the biological behaviors of a variety of 
stem cells, including bone marrow mesenchymal stem cells 
(BMSCs), adipose-derived stem cells (ADSCs), neural stem 
cells (NSC), endothelial progenitor cells, human umbilical 
cord mesenchymal stem cells (53-56). Previous studies have 
demonstrated that ICA could induce BMSC proliferation, 
differentiation, and ameliorate prednisolone-induced BMSC 

apoptosis in vitro and in vivo (57,58). Ye et al. (54) reported 
that diabetic ED rats treated with ADSCs and ICA showed 
significant improvement in the intracranial pressure (ICP) 
and ICP/mean arterial pressure (MAP) values. Besides, 
ICA application increased the survival rate of transplanted 
ADSCs and repaired the damaged structures of the corpus 
cavernosum (59). Exogenous stem cell transplantation 
combined with ICA is effective in treating ED methods, 
but the escape of stem cells after transplantation and 
proliferation can lead to side effects such as pulmonary 
embolism, which has hindered the clinical application (60).

In contrast, endogenous stem cells residing in tissues 
are safer. Endogenous stem cells (ESCs) or progenitor cells 
(EPCs), also known as tissue resident stem cells, are present 
in many organs. In recent years, Scholars are gradually 
turning their attention to endogenous stem cell research 
in the penis, and some breakthroughs have been achieved. 
The label-retaining cell (LRC) strategy is a commonly used 
technique for identification of stem cells in tissue (61,62). 
Its mechanism is based on the principle that the rapidly 
proliferating cells will lose the cell label in a short period 
of time, while quiescent cells and slow-cycling cells will 
retain the label for a longer period. A recent research had 
identified potential stem/progenitor cells in the penis by 
using a co-localization strategy of 5-ethynyl-2-deoxyuridine 
(EDU)-LRC and cell differentiation markers (63).  
Treatment with ICAII in obese and cavernous nerve-
injured rats showed that penile stem cell mitosis was 
significantly increased and multidirectional differentiation 
occurred to repair histopathological changes in the penile 
corpus cavernosum (64,65). Researches on the molecular 
mechanisms involved has increased significantly in recent 
years. Wingless-type MMTV integration site family (Wnt)/
β-catenin, p38 mitogen-activated protein kinase (p38 
MAPK), transforming growth factor-β (TGF-β)/Smad, 
phosphatidyl inositol 3-kinase (PI3K)/serine/threonine-
specific protein kinase Akt (Akt) and mammalian target 
of rapamycin (mTOR) signaling pathways are well-
documented signaling pathways in the study of ICA-
regulated stem cells (Figure 1) (38-41,66-70). Therefore, 
ICAII may have a role in regulating penile stem cells to 
repair pathological damage to the corpus cavernosum and 
restore erectile function.

It should first be stated that the pathophysiology of ED 
is often interconnected and coexistent, including loss of 
smooth muscle and endothelial cells, abnormal collagen 
ratios, and reduction of neural nitric oxide synthase 
(nNOS)-positive nerves, and that the role of ICA in 
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Figure 1 ICA and ICA derivatives regulate PI3K/AKT, Wnt/β-catenin and TGF-β/Smad signaling pathways to regulate stem cell biological 
behavior. ICA and ICA derivatives promote p-AKT expression, which in turn promotes downstream eNOS/NO expression, activate 
mTORC1/p70S6K/4EBP1 to promote cell proliferation, inhibits Bcl-2 and GSK3 expression to inhibit apoptosis, and inhibits transcription 
factor CREB expression. ICA and ICA derivatives regulate the TGF-β/Smad and p38 MAPK pathways mainly by inhibiting Smad2/3 and 
p38 MAPK phosphorylation, while regulation of the Wnt pathway may be achieved by increasing frizzled class receptor expression and 
β-catenin phosphorylation. The regulation of these pathways by ICA and ICA derivatives ultimately leads to increased proliferation and 
differentiation of stem cells and inhibition of apoptosis and fibrosis. ICA, icariin; PI3K, phosphoinositide 3-kinases; Akt, threonine-specific 
protein kinase Akt; mTORC1, mechanistic target of rapamycin complex 1; ROS, reactive oxygen species; CREB, cAMP-response element 
binding protein; GSK3β, glycogen synthase kinase 3β; Wnt, wingless-Type MMTV Integration Site Family; AGE, advanced glycation end 
products; TGFβ1, transforming growth factor-β1; Smad2/3, mothers against decapentaplegic homolog 2/3; p70S6K, ribosomal protein S6 
kinase, 70kDa; 4EBP1, 4E-binding protein 1; PIP2, phosphatidylinositol-3,4-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; 
ATF-2, activating transcription factor-2; DVL, dishevelled segment polarity protein; Bcl-2, B-cell lymphoma-2; NO, nitric oxide; eNOS, 
endothelial nitric oxide synthase; PRAS60, rolin-rich Akt substrate of 60 kD; CK1α, casein kinase 1α.

repairing penile injured and restoring erectile function 
should be studied as a whole. In order to more clearly 
illustrate the therapeutic effect of ICA, it was classified 
according to the study type of animal model and stem cell.

Cavernous nerve regeneration
Erection is a complex physiological process. After the brain 
receives sexual stimulation, nerves transmit it to the target 
organ and secrete nitric oxide synthase (nNOS), which 
coordinates three downstream hemodynamic events: smooth 
muscle relaxation, arterial dilation and venous restriction, 
culminating in penile erection. The cavernous nerve (CN) 
originating from the pelvic ganglion (PG), with sympathetic 
and parasympathetic fibers, is capable of releasing nitric 
oxide (NO) and nNOS and activating endothelial cell NOS 

(eNOS), resulting in a rise in NO content in the relaxed 
smooth muscle of the cavernous tissue. 

ICAII restored nerve density and microstructure of 
pelvic floor ganglia in the penile corpus cavernosum of ED 
rats with diabetes-induced nerve damage, and in vitro ICAII 
resulted in longer synapses and more branching of ganglion 
tissue (42). In addition, YS-10, a new flavonoid based on the 
ICA II structure, treated rats with bilateral cavernous nerve 
injury (BCNI) and showed a significant reduction in smooth 
muscle atrophy, collagen deposition, endothelial and 
neurological dysfunction (43). In order to assess the efficacy 
and mechanisms of ICA treated BCNI rat. Newborn male 
rats were injected with 5-ethynyl-2-deoxyuridine (EdU, 
50 mg/kg) to track endogenous stem cells in penis. Adult 
rats underwent bilateral cavernous nerve injury in the 
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penis, and the experimental group was treated with ICA 
(1.5 mg/kg/d) by gavage for 8 weeks. Nerve structures 
at the ICA-treated injury were restored to normal, and 
the number of EDU and S100 (a nervous specificity 
protein)-positive co-expressing cells and nNOS levels 
were positively correlated and significantly increased (25).  
It is suggested that promoting endogenous stem cell 
differentiation is an important mechanism for ICA to repair 
damaged cavernous nerves. Further studies confirmed the 
role of ICA to stimulate NSCs self-renewal, proliferation 
and differentiation in vitro (44,45). 

Previous study found that ICAII significantly increased 
the levels of S100 and NGF in the penile tissue of rats 
after cavernous nerve injury and prevented distortion 
of neuroanatomical structures and neurotransmission 
dysfunction. Meanwhile, the expression trend of p38 
MAPK in the penis was basically the same as that of S100, 
suggesting that the p38 MAPK signaling pathway may be 
involved in this process (69). In vitro experiments reveal 
more mechanisms of ICA regulation of NSCs. Yang  
et al. (46) found that ICA (10 µM for 7 days) enhanced 
NSCs proliferation and neurosphere formation, by 
upregulating the expression of frizzled class receptor 7 
(the key proteins of Wnt pathway), dishevelled segment 
polarity protein 3 (the key proteins of Wnt pathway), 
bFGF receptor 1, and downregulating glycogen synthase 
kinase-3β (the Wnt pathway inhibitor) in NSCs. In another 
study suggested that ICA promoted the proliferation 
and differentiation of NSCs through the brain-derived 
neurotrophic factor (BDNF)-tyrosine kinase receptor B 
(TrkB)-extracellular regulated protein kinases (ERK)/Akt 
signaling pathway. By treating β-amyloid protein (Aβ)-
damaged NSCs cells, the scholars found that ICA reversed 
the reduction of BDNF and TrkB expression and ERK/Akt 
phosphorylation caused by Aβ toxicity, and promoted NSCs 
proliferation and differentiation (47). In addition, the PI3K/
Akt and IL-17 pathways were found to play a role in the 
regulation of functional proteins such as Rps14, Hsp90b1 
and Htra1 in the cerebrospinal fluid by ICA (48). 

However, it should be cautioned that mechanistic studies 
are often more advantageous in in vitro experiments, 
but due to technical limitations, penile stem cells and 
cavernous nerve stem cells are difficult to isolate. With the 
improvement of technology various tissue stem cell isolation 
will also be an important research direction.

Endothelium regeneration
After receiving sexual stimulation from cavernous nerve, the 

cavernous endothelial cells secrete NO to maintain smooth 
muscle relaxation. Therefore, normal function and number 
of endothelial cells are important for erectile function of 
the penis. Studies found that the content of smooth muscle 
and endothelial cells were significantly reduced in diabetic 
rats. The expression of platelet endothelial cell adhesion 
molecule-1 (PECAM-1), eNOS and Von Willebrand factor 
(vWF) in the cavernous sinus endothelium were also reduced. 
ICA and ICAII treatments reversed these changes and 
increased the number of endothelial cells and smooth muscle 
cells (SMCs), possibly associated with downregulation of the 
TGFβ1/Smad2 signaling pathway (26,49). 

Chen et al. (71) used high glucose to inhibit endothelial 
progenitor cell viability in a dose-dependent manner, while 
1 μM ICA treatment partially restored glucose-induced 
impairment of EPCs migration and tube formation. One 
μM ICA significantly inhibited high glucose-induced 
phosphorylation of p38 and CREB (cAMP-response 
element binding protein) and increased Akt and eNOS 
activity in endothelial progenitor cells. Activation of Akt/
eNOS could increase NO expression to regulate migration 
of endothelial progenitor cells. Tang et al. (50) found that 
ICA had the ability to activate rapamycin/70 kDa ribosomal 
protein S6 kinase (p70S6K)/eukaryotic translation initiation 
factor 4E (eIF4E)-binding protein 1 (4EBP1) and increased 
ATF2 and ERK1/2 protein levels to inhibit oxidative stress-
induced damage to EPCs and promoted proliferation and 
differentiation of EPCs, and augmented capillary tube 
formation. Similar findings on the effects of ICA treatment 
on EPCs across different causes of injury further added 
credibility to the protection and activation effects of ICA 
for aforementioned signaling pathways on ECP.

Cavernous smooth muscle regeneration
Smooth muscle relaxation leads to rapid filling of the 
cavernous sinus with arterial blood, resulting in penile 
erection. Vascular smooth muscle has multiple sources, 
including mainly the proliferation of smooth muscle itself 
settled in the vasculature, transdifferentiation of circulating 
hematopoietic stem cells, and transdifferentiation of stem 
cells in the outer stromal layer of the vasculature.

Previous studies have demonstrated that ICA and ICAII 
treatment may reverse the reduction of penile SMCs 
caused by diabetes through downregulation of the TGF-β1 
signaling and upregulate α-smooth muscle actin (α-SMA) 
(26,49). Furthermore, Ruan et al. (64) found that ICA II 
(1.5 mg/kg/day for 4 weeks) improved erectile function and 
smooth muscle pathological changes through activation 
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of endogenous stem cells in obesity-related ED rats. 
Zhang et al. (24) demonstrated that ICA II (10 mg/kg for 
8 weeks) ameliorated SMCs injury and restored smooth 
muscle to collagen ratio in diabetic rats. In this study, the 
percentage of SMCs in S phase (DNA synthesis phase), 
proliferation index (PI) were higher in the ICAII-treated 
group compared to the diabetic ED group. These effects 
may be related to the upregulation of the NO-cGMP 
pathway and the inhibition of excessive SMC autophagy 
and advanced glycation end products (AGE) deposition 
by ICAII. However, Hu et al. (72) showed that ICA dose-
dependently (10 and 40 μM) inhibited oxidized low-density 
lipoprotein (ox-LDL)-induced vascular SMC proliferation 
and suppressed ERK1/2 pathway and PCNA expression. 
The findings of this study diverge from those mentioned 
above but seem to be explicable. The complex processes 
and mechanisms such as oxidative stress in the penis of 
diabetic and obese rats ultimately lead to reduced damage 
to SMCs, and ox-LDL in vitro may be a stronger stimulus 
to activate the ERK1/2 pathway and promote SMC 
proliferation. Inhibition of oxidative stress by ICAII may 
be responsible for the discrepancy in the above findings. 
However, this study has less experimental data and lack of 
in vitro mechanism studies. Further experimental validation 
is necessary.

Modulation extracellular matrix and inhibition of 
fibrosis
Recent studies reported that diabetic rats had a lower ratio 
of type I to type III collagen, fragmented elastic fibers, and 
decreased elastic fiber content (27,73). After treating with 
ICA II (10 mg/kg/day) for 12 weeks, the α-SMA content 
and the ratio of collagen I to III were significantly higher 
in penis of diabetic rat compared to the untreated diabetic 
group. The results also showed a dramatic change in elastic 
fibers (71), which might be related to the fact that ICA II 
has the ability to improve lipid metabolism, reduce AGE 
concentration and mitochondrial autophagy.

There are at least 60 related genes that are downstream 
targets of TGF-β1 (74). TGF-β1 has been shown to increase 
collagen synthesis in cultured human corpus cavernosa 
SMCs in vitro (75). TGF-β1 activated Smad2 and Smad3, 
leading to fibrosis-related changes (76,77). Connective 
tissue growth factor (CTGF), which plays an important role 
in connective tissue homeostasis, fibroblast proliferation, 
migration, and adhesion, is another downstream target of 
TGF-β1 (78). The expression of TGF-β1, total Smad2 
and phospho-Smad2 was significantly higher in arteries, 

vena cava and penile corpus cavernosum of diabetic 
rats. In addition, higher CTGF expression was shown 
in fibroblasts, endothelial cells and SMCs in the penile 
tissue of diabetic rats (51,52,79). In contrast, ICA II (1, 5,  
10 mg/kg) treatment significantly reduced the expression of 
TGF-β1/Smad/CTGF signaling pathway members in brain 
and penile tissues of diabetic rats and inhibited the fibrotic 
process in penile tissues (80).

Regulating endogenous testosterone (Table 4)

ICA and testosterone production 
In the absence of testosterone, men may have symptoms 
including decreased libido, erectile dysfunction, reduced 
muscle mass and bone density, depression, and anemia. 
Although testosterone supplementation therapy (TST) 
has been reported to be potentially effective for these 
conditions, TST has potential adverse effects (81). The 
effect of ICA and ICAII in increasing testosterone levels 
could be related to their ability to mitigate the effects of 
Leydig cell damage in a variety of testicular damaging 
environmental exposures (e.g., diabetes, toxic substances) 
(82,84,85). More importantly, ICA and ICAII directly 
increase the level of steroids (the raw material required for 
testosterone production) and the expression of several key 
enzymes in testosterone synthesis (86-88). 

Biological effects and molecular mechanisms of ICA in 
alleviating Leydig cell injury
Approximately 90% of testosterone is derived from the 
conversion of cholesterol by testicular Leydig cells and its 
level is regulated by follicle stimulating hormone (FSH) and 
luteinizing hormone (LH). Sun and his colleagues showed 
the protective effect of ICA (1 μm/mL) reduced diethylhexyl 
phthalate (DEHP) injury-induced reactive oxygen species 
(ROS) levels of Leydig cells In vitro experiments, and 
increased mitochondrial membrane potential (ΔΨm) (82). 
Further study Sun et al. found that estrogen receptor 1 
(Esr1)/Src family kinases (Src)/Akt/CREB/steroidogenic 
factor-1 (Sf-1) pathway may play an important role in ICA 
to protect Leydig cells from DEHP damage (83).

In addition, ICAII treatment (1.5 or 4.5 mg/kg/d for  
28 days) increased superoxide dismutase (SOD), glutathione 
peroxidase (GPx) activity and inhibited malondialdehyde 
(MDA) activity, thereby attenuating diabetes, nicotine and 
aging on rat testicular Leydig cell damage (28,85).

Oxidative stress is one of the most important pathogenesis 
of testicular and penile tissue damage. Current study found 

https://www.greenfacts.org/en/dehp-dietylhexyl-phthalate/
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Table 4 Effect of ICA and ICA II repair on testosterone production of animals with testicular injury

ICA/ICA 
II

Year of 
publication

Study design Study type Treatment results Molecular mechanisms Effective dose 
STAIR list 
score (full  
7 points)

Key 
reference

ICA 2020 Mice with 
nicotine 

In vivo Improved sperm 
density, hormone 
levels and 
antioxidant enzyme 
activity

Activated antioxidant 
enzymes 

75 mg/kg/day 5 (28)

ICA 2019 Mouse 
and Leydig 
cells with 
(2-Ethylhexyl) 
Phthalate

In vivo and  
in vitro

Promoted cell 
proliferation, and 
testosterone levels; 
Inhibited reactive 
oxygen species 
levels, mitochondrial 
membrane potential 

Increased SF-1 and 
steroidogenic enzymes 
(CYP11, 3β-HSD and 
17β-HSD)

50, 100 or  
150 mg/kg/day 
in vivo; 1 μg/mL, 
and 5 μg/mL  
in vitro

5 (80)

ICA 2021 Rat with high 
fat diet and 
streptozotocin

In vivo recovered the 
number of 
spermatogonia, 
primary 
spermatocytes and 
Sertoli cells

upregulated the 
expression of PCNA, 
activated SRIT1-HIF-1α 
signaling pathway; Up-
regulated the expression 
of Bcl-2 and down-
regulated the expression 
of Bax and caspase 3

80 mg/kg/day 4 (81)

ICAII 2014 Rat with 
streptozotocin

In vivo Increased 
epididymal sperm 
parameters and 
testicular Johnsen’s 
scores

Increased antioxidant 
enzyme activities and the 
expression of Sertoli cell 
Vimentin filaments, and 

0.5, 1.5 or  
4.5 mg/kg/day 

4 (82)

ICA 2022 Mice and 
Leydig 
cells with 
(2-Ethylhexyl) 
Phthalate

In vivo and  
in vitro

Promotes 
testosterone 
synthesis

Activated Esr1/Src/
Akt/Creb/Sf-1 signaling 
pathway

100 mg/kg/day 
in vivo; 5 μg/mL 
in vitro

5 (83)

ICA, icariin; ICAII, icariside II; ROS, reactive oxygen species; PBR, peripheral-type benzodiazepine receptor; SF-1, Steroidogenic 
factor-1; CYP11, Cytochrome P450 Family 11; 3β-HSD, 3-beta (β)-hydroxysteroid dehydrogenase; 17β-HSD, 3-beta (β)-hydroxysteroid 
dehydrogenase; STAIR list, The Initial Stroke Therapy Academic Industry Roundtable (Evaluation tools commonly used in quality 
assessment of animal experiments); PCNA, proliferating cell nuclear antigen; SRIT1, sirtuin 1; HIF-1α, hypoxia-inducible factor-1; Bcl-2, 
B-cell lymphoma-2; Bax, Bcl-2-associated X; Esr1, estrogen receptor 1; Src, Src family kinases; Akt, threonine-specific protein kinase Akt; 
Creb, cAMP response element binding protein.

that nuclear factor- e2-related factor 2 (Nrf2) could prevent 
ROS overexpression and accumulation (86,87). ICA can 
upregulate the expression of Nrf2 and its downstream heme 
oxygenase-1 (HO-1), nicotinamide adenine dinucleotide 
phosphate (NADPH), quinone oxidoreductase-1 (NQO-1) in 
high glucose-stimulated TM4 cells, which can increase SOD 
activity, decrease MDA content, and inhibit the production 
of ROS by high glucose stimulation. The above effects of 
ICA were diminished after Nrf2 knockdown treatment. 
These results suggest that the Nrf2 pathway is an important 

molecular to mediate excessive oxidative stress inhibition 
activity of ICA. Further study revealed that the activation of 
Nrf2 pathway by ICA was mainly mediated by G protein-
coupled estrogen receptor (GPER), which further promoted 
the dissociation of Nrf2/keap1 complex and the translocation 
of Nrf2 to nucleus (88).

Molecular mechanism of ICA on testosterone 
production 
In addition to protecting testicular Leydig cells, ICA 

https://abclonal.com.cn/catalog/A19277
https://abclonal.com.cn/catalog/A19277


Niu et al. The mechanisms for ICA and ICA derivatives to treat ED1018

© Translational Andrology and Urology. All rights reserved.   Transl Androl Urol 2022;11(7):1007-1022 | https://dx.doi.org/10.21037/tau-22-232

plays an important regulatory role in testosterone 
production. Steroids are the precursors of testosterone, 
which are transported to the mitochondria of Leydig 
cells by acute regulatory protein (StAR) and then 
converted to testosterone through a series of cleavage 
and dehydrogenation reactions by enzymes including 
3β-Hydroxysteroid Dehydrogenase (3β-HSD) and 
17β-Hydroxysteroid Dehydrogenase (17β-HSD) (89). 
ICA (1 μg/mL) treatment can reverse the DEPH-induced 
decrease of steroid levels and expression of StAR, 3β-HSD, 
17β-HSD, and SF-1 in Leydig cells, enhancing testosterone 
synthesis (82).

In addition, the cGMP/PKG signaling pathway in 
Leydig cells is involved in the regulation of steroidogenic 
activity. It has been demonstrated that cGMP and protein 
kinase G (PKG) promote phosphorylation of StAR protein 
involved in testosterone synthesis, which can be inhibited by 
PDE5 (90). Therefore, the activation of cGMP and PKG 
by ICA and ICA derivatives and the inhibition of PDE5 
may also be a mechanism for the regulation of testosterone 
production.

Summary

Researches in recent years have demonstrated the 
therapeutic effects of ICA, ICAII (an ICA metabolite 
isolated from epimedium herb)  and i ts  synthetic 
derivative YS-10 on ED, including inhibition of PDE5 
enzymatic activity, promotion of testosterone production, 
and modulation of endogenous stem cells to promote 
regeneration of damaged penile tissues. As novel candidate 
agents for regenerative medicine on ED, the ICA, ICAII 
and YS-10 displayed bright application and research 
prospects. There are also several aspects that need to be 
studied in future research: (I) Flavonoids are generally 
insoluble in water, and experiments usually require the 
use of toxic organic solvents such as DMSO, so chemical 
modifications are also needed to increase the solubility of 
ICA and its derivatives; (II) The safety of the chemically 
modified compounds and the possible metabolic pathways 
need to be investigated; (III) ICA and ICA derivatives 
increase the number of penile stem cells and may also be the 
result of recruitment of stem cells from other sources, which 
warrants further investigation; (IV) ICA has been used for 
efficacy and mechanism studies in a variety of diseases, but 
no human data is currently available. This is likely to be the 
most important direction for future research. High quality 
and large sample of clinical and evidence-based medicine 

studies are recommended while ensuring safety.
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