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Background
Refractive error is a type of vision problem that makes it difficult to see clearly; the inci-
dence of refractive error is increasing, especially in the case of myopia [1]. The number 
of people with myopia worldwide is approximately 2.6 billion, 312 million of which are 
under the age of 19, and this number is continuously rising [2]. Early refractive error 
detection plays an essential role in controlling the development of myopia, and currently 
there are two main refractive error detection methods: autorefraction and eccentric pho-
torefraction. Eccentric photorefraction has the characteristics of simplicity and speed, 
and it requires less cooperation from individuals, making it suitable for large-scale or 
infant-vision screening. However, it is lower in accuracy [3, 4].
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Background:  Refractive error detection is a significant factor in preventing the devel-
opment of myopia. To improve the efficiency and accuracy of refractive error detection, 
a refractive error detection network (REDNet) is proposed that combines the advan-
tages of a convolutional neural network (CNN) and a recurrent neural network (RNN). 
It not only extracts the features of each image, but also fully utilizes the sequential 
relationship between images. In this article, we develop a system to predict the spheri-
cal power, cylindrical power, and spherical equivalent in multiple eccentric photore-
fraction images.

Approach

First, images of the pupil area are extracted from multiple eccentric photorefraction 
images; then, the features of each pupil image are extracted using the REDNet convo-
lution layers. Finally, the features are fused by the recurrent layers in REDNet to predict 
the spherical power, cylindrical power, and spherical equivalent.

Results:  The results show that the mean absolute error (MAE) values of the spherical 
power, cylindrical power, and spherical equivalent can reach 0.1740 D (diopters), 0.0702 
D, and 0.1835 D, respectively.

Significance:  This method demonstrates a much higher accuracy than those of cur-
rent state-of-the-art deep-learning methods. Moreover, it is effective and practical.
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In recent years, deep learning has achieved much in several fields. Deep learning can 
automatically extract features without manual rules setting [5]. In medicine, deep learn-
ing has been applied in the diagnosis of brain diseases [6], retinal diseases [7], COVID-
19 [8], and breast cancer [9]. Many researchers have used deep-learning methods for 
refractive detection. Some researchers have used fundus images to detect refractive 
errors. Varadarajan et al. [10] first proposed a deep-learning method for refractive error 
detection in 2018. Tan et  al. [11] developed a deep-learning system to predict refrac-
tive error and myopic macular degeneration from color fundus images. Manivannan 
et al. [12] used wide-field fundus images to estimate refractive errors and axial lengths. 
Some researchers, such as Chun et al. [13] and Fu et al. [14] have used eccentric pho-
torefraction images taken by mobile phones. Other special methods have also been 
used to detect refractive errors, for example, from posterior segment optical coherence 
tomography (OCT) or ocular appearance images [15, 16]. However, the results of the 
aforementioned studies showed a lack of precision. The best mean absolute error (MAE) 
value of the spherical equivalent (SE) was only 0.56 D, which was obtained by Manivan-
nan et al. [12], and the cylindrical power was not predicted; these results indicated that 
the related methods remain far from practical application.

There are two factors that can account for the low accuracy of the aforementioned 
studies: algorithms and images. Currently, most of the algorithms use the popular neu-
ral networks, which are proposed for tasks, such as image classification, object detec-
tion, and semantic segmentation, instead of unusual tasks, such as diopter detection. 
In addition, these studies often employ the fundus images, eccentric photorefraction 
images taken by mobile phones, OCT images, and other ocular images. Fundus and 
OCT images are mainly used for fundus disease detection, and mobile phones only have 
a fixed eccentric distance and meridian direction. Neither method is suitable for high-
precision diopter detection.

Therefore, a refractive error detection network (REDNet) is proposed for the detection 
of refractive error in multiple eccentric photorefraction images with different meridian 
directions. First, a convolutional neural network (CNN) with few parameters and high 
precision is employed to extract the features of six images, and then a recurrent neu-
ral network (RNN) is used to fuse the feature sequences through sequence processing. 
The spherical power, cylindrical power, and spherical equivalent are predicted with high 
accuracy using our method.

Results
Evaluation index

In the training process of the network, the MAE, defined in Eq. (1), was used as the pri-
mary evaluation index:

This evaluation index is simple to calculate and can speed-up the training process. To 
compare the proposed method with existing methods of deep learning for refraction 
detection and evaluate the performance of our algorithm more specifically, we also used 
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accuracy as an evaluation index. If the predicted value was within 0.5 D of the true value, 
we considered the prediction to be correct.

Performance of the proposed feature extractor

Our proposed feature extractor was compared with a selection of traditional CNNs: 
VGG16 [17], ResNet18 [18], Xception [19], and mini-Xception [20]. Mini-Xception was 
inspired by Xception and is a lightweight network for facial expression recognition. A 
fully connected network with no activation function was added after the feature extrac-
tion layer of our network to output the predicted value of the diopter, thus forming a 
complete neural network. The neural network was trained using the eccentric photore-
fraction image in one direction as the input and the diopter value in the corresponding 
direction as the output. The single-orientation diopter was calculated using the spherical 
power (S), cylindrical power (C), and the cylindrical axis (A) as follows:

where Dα is the diopter in the meridian direction of α [21]. The results are presented in 
Table 1 and show that our proposed network has a positive effect on the diopter predic-
tion from a single image while having a relatively small number of parameters.

Performance of the proposed feature fusion

After feature extraction, 6 vectors of length 256 were extracted, and the effects of four 
fusion methods were compared: addition, concatenation, adaptive feature fusion (AFF), 
and long short-term memory (LSTM). To ensure fairness of the comparison, that is, to 
ensure that the parameters of the four comparison methods are approximately the same, 
two fully connected layers were added after the addition, concatenation, and AFF meth-
ods, corresponding to two layers of the LSTM. The results in Table 2 indicate that using 
LSTM to fuse features yields an exceptional result in the prediction of spherical power, 
cylindrical power, and spherical equivalent.

Activation function

According to the theory of eccentric photorefraction, the diopter is mainly obtained 
from the grayscale change in the pupil image in the meridian direction. However, actual 
pupil images often have occlusions due to eyelashes and the existence of Purkinje images 
in the center of the cornea [22], as shown in Fig. 6(g). Therefore, ReLU6 was selected as 
our activation function because the grayscale change in the area of interest should be 

(2)Dα = C sin
2 A+ S

Table 1  Detection results for different network structures

Bold values indicate the best results

Network MAE (D) Accuracy (%) No. parameters

Vgg16 0.7916 45.41 19.19 M

ResNet18 0.8617 42.34 11.18 M

Xception 0.3204 82.35 7.24 M

Mini-Xception 0.3440 79.26 0.79 M

Ours 0.2792 86.46 1.19 M
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filtered to exclude eyelashes and Purkinje images. The gradient values of the eyelashes 
and Purkinje images were relatively large, and this relatively large response should be 
suppressed for accurate results. The ReLU6 activation function is highly suitable for this 
task, and it is simple to calculate and fast to train. We compared the performance of 
several common activation functions, such as sigmoid, ELU [23], Swish [24], leaky ReLU 
[25], ReLU, and ReLU6 [19]. The results are presented in Table 3 and indicate that the 
ReLU6 obtained the best MAE and accuracy, and a higher training speed.

Performance in predicting high myopia

Meanwhile, the performance of REDNet was evaluated in the prediction of high myo-
pia using the receiver operating characteristic (ROC) curve, area under the curve (AUC) 
value, accuracy, specificity, and sensitivity. For evaluation, the diopter value was con-
sidered to represent the probability of high myopia. Fig.  1 shows the prediction per-
formance of the proposed model. The results indicate that the proposed model has a 
significantly high AUC of 0.9942 [95% confidence interval(95% CI), 99.34–99.50%], accu-
racy of 97.13% (95% CI 96.93–97.34%), specificity of 97.19% (95% CI 96.95–97.43%), and 
sensitivity of 96.97% (95% CI 96.63–97.31%). This is not surprising because our model 
was designed to predict precise diopter value, and predicting high myopia is relatively 
simple.

Visualization

Gradient-weighted class activation mapping (Grad-CAM) [26] was used to explain the 
proposed neural network. The heat map drawn by Grad-CAM can detail the key areas 
emphasized by the neural network in the learning process, allowing us to determine 

Table 2  Experimental results for different feature fusion methods

Bold values indicate the best results

Methods MAE (D) Accuracy (%) MAE (D) Accuracy (%) MAE (D) Accuracy (%)
Spherical component Cylindrical component Spherical equivalent

Addition 0.2818 83.06 0.1210 96.39 0.2593 85.98

Concatenation 0.3663 74.02 0.1590 96.59 0.3196 78.19

AFF 0.2443 87.05 0.0761 96.40 0.2109 89.00

LSTM 0.1740 89.50 0.0702 96.70 0.1835 89.38

Table 3  Experimental results for different activation functions

Bold values indicate the best results

Activation function MAE (D) Accuracy (%) Time/
step 
(ms)

Sigmoid 0.3636 75.85 20

ELU 0.3072 83.15 21

Swish 0.2874 84.78 22

Leaky ReLU 0.2843 85.00 20

ReLU 0.2792 86.46 20

ReLU6 0.2703 87.03 20
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whether the neural network has learned meaningful features. The heat map indicates 
that the key positions considered by the network are all in the pupil area (Fig. 2), which is 
consistent with the theory of eccentric photorefraction. In particular, our model avoids 
the region blocked by eyelashes and pays less attention to the regions of the Purkinje 
image, which are considered as noise for refractive detection; this demonstrates that our 
model obtains useful features.

Validation of LSTM

This study also verified the importance of LSTM in improving network performance. 
We constructed and named two additional neural networks: REDNet-SimpleRNN that 
uses a simple RNN unit without gates, and REDNet-N that neither uses an RNN nor 
gates. The experimental results of the 3 networks on the spherical equivalent are listed 
in Table 4.

The results indicated that REDNet-N performed better than REDNet-SimpleRNN 
because of the long-term dependence problem of RNN, which means that the output 
result was only based on the last few sequences and previous sequences were ignored. 
However, the result of REDNet-N was the output of 6 sequences that were processed 
through the fully connected network, which involved the context relationship between 
sequences. Moreover, the results of REDNet were significantly superior, which indicated 

Fig. 1  ROC curve and AUC value

Fig. 2  Visualization heat map of different refractive error
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that the LSTM with gates solved the problem of long-term dependency, and the contex-
tual information between the six sequences was effectively extracted; thus, the lowest 
MAE and highest accuracy was obtained.

Discussion
Compared with other classical neural networks, the neural network based on the pro-
posed feature extractor improved the prediction of single-orientation diopter from a sin-
gle image with a smaller number of parameters. We demonstrated that the proposed 
feature extractor could effectively extract feature information, including unidirectional 
diopters, for unidirectional eccentric photorefraction images.

Our feature fusion method used an LSTM and performed better than addition, con-
catenation, and AFF. The results also demonstrated that the LSTM could effectively 
utilize the features containing six-direction diopter information and extract contextual 
relationships among the feature sequences; it could also effectively predict the spherical 
power, cylindrical power, and spherical equivalent.

The experimental results yielded MAE values of 0.1740, 0.0702, and 0.1835 D for 
spherical power, cylindrical power, and spherical equivalent, respectively. Additionally, 
the accuracy was much higher than current state-of-the-art deep-learning methods 
(0.56 D). The proposed method can predict the cylindrical power, and its accuracy is 
very close to automatic optometry. In addition, we can measure both eyes simultane-
ously; the object does not need to be fixed, and the operation is very simple and fast. 
Therefore, our method can be practically applied to large-scale vision screening and can 
play an important role in preventing and controlling myopia.

However, the number of subjects were relatively small, and the subjects were not dis-
tributed across all age groups and races, which affects the generalization of the model. 
This could be addressed with large-scale data collection in the future. Our images were 
obtained based on the theory of eccentric photography optometry. During the acquisi-
tion process, the distance between people and camera must be 1 m, which is relatively 
inconvenient in actual application. This limitation could be addressed by improving the 
method in the future.

Conclusion
This paper proposed the REDNet, a neural network for refractive error detection that 
not only extracts the features of each image, but also fully utilizes the contextual rela-
tionship between images. The refractive error prediction method proposed in this study 
demonstrated high accuracy, which is superior to current deep learning-based meth-
ods, with the capability of predicting spherical power, cylindrical power, and spherical 

Table 4  Experimental results for the other two networks

Bold values indicate the best results

Networks RNN Gate MAE (D) Accuracy (%)

REDNet-N 0.2890 84.32

REDNet-SimpleRNN √ 0.3428 80.04

REDNet √ √ 0.1835 89.38
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equivalent. In contrast, current deep-learning methods can only predict the spherical 
equivalent. However, the problems of generalization and distance limit the practical 
applicability of our method. Therefore, we will improve our method to tackle the afore-
mentioned problems in future work.

Methods
The prediction of spherical power is relatively simple because all the required informa-
tion about spherical power is included in a single image. However, cylindrical power 
cannot be predicted from a single image, as it is calculated by the difference in diopters 
in different meridian directions. In this study, we proposed REDNet, outlined in Fig. 3. 
First, 6 CNNs with the same structure were used to extract the features of six images, 
which were then fused into feature sequences. Next, we employed an RNN to process 
the sequence information to effectively fuse the features and predict the spherical power, 
cylindrical power, and spherical equivalent. The method proposed in this study included 
the following four steps: image acquisition and preprocessing, base model construction, 
feature fusion, and network training.

Data acquisition and preprocessing

Data acquisition

All experiments were conducted indoors because the large amount of infrared light pre-
sent outside would have affected the images we took. There were no specific require-
ments for the indoor conditions and the near-infrared (NIR) band-pass filter was able to 
ignore extra light.

The method of data collection is shown in Fig. 4. Infrared light emitted from the NIR 
light source (850  nm in wavelength), was used to illuminate the face through a Pelli-
cle mirror [27]. The reflected light from the face passed through the NIR band-pass 
filter (800–900 nm) and was captured by the camera (Basler ace 2). Six face images in 

Fig. 3  Overall structure of the proposed REDNet
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meridian directions (0°, 60°, 120°, 180°, 240°, and 300°) were obtained using NIR light 
sources at different locations [28]. The distance between the camera and the human eye 
was 1 m, and the distance between the light source and the human eye was also 1 m. The 
subject was not required to remain in a fixed position and was allowed to move slightly. 
The measurement process took approximately 15–30 s to complete.

A professional optometrist operated a TOPCON RM-800 automatic optometer to 
obtain the diopter using conventional optometry. During the measurements, the sub-
ject’s chin was placed on the bracket to adjust the distance between the lens and the 
human eye. One eye was measured three times and the results were averaged. Because 
only one eye could be measured at a time, we switched to the other eye to continue the 
measurements. The subject was required to remain fixed throughout the process. The 
total measurement time was approximately 90–120 s.

Data preprocessing

An example of a captured face image is shown in Fig. 5. Because only the pupil region is 
related to the refraction, the rest of the face outside the pupil, such as the eyebrows and 

Fig. 4  Method of data collection

Fig. 5  Example of a captured face image
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nose, should be removed. This is the purpose of image preprocessing. In this image, the 
brightness on the left side of the pupil is slightly higher than on the right, and this is the 
basis for our diopter prediction.

Six images of human pupils were used for prediction, and they only differed in terms 
of diopter information. However, in the process of image collection, the movement of 
the subject caused the pupils to be in different positions in the image; hence, data pre-
processing was required. Data preprocessing was performed as follows: First, six images 
1920 × 1080 in size of human faces including their pupils, were obtained. Then, the posi-
tion of the pupil was located through threshold segmentation and template matching. 
Next, circle fitting for the pupil was performed, with the center of the circle as the center 
of the image. Finally, the pupil image was cropped to a size of 128 × 128; in the resulting 
6 images, the pupil was approximately in the same position.

Each group of facial images can be used to extract two groups of pupil images, with 
one group containing six meridian directions, as shown in Fig.  6. The diopter was 
obtained by evaluating the reflection type and position of the eccentric crescent in the 
pupil image [27, 28]. Figure 5(a) shows an eccentric photorefraction image with a merid-
ian direction of 0°, where the pixel changes are unnoticeable. By contrast, Fig. 5(g) shows 
that in the pupil area of the human eye, the pixel gray value changes from high to low 
along the direction of 0° after contrast stretching. Although such changes are unnotice-
able and there is no clear boundary for us to evaluate the type and position of the eccen-
tric crescent, we used deep learning to extract such obscure features.

A total of 3103 sets of eccentric photorefraction images of faces were collected. The 
age distribution of subjects ranged from 18–56  years. The mean age was 31.54  years, 
and the median age was 37 years. The proportion of the age groups is 38.54, 34.77, and 
26.69% for age groups 18–25, 25–40, and 40–56  years, respectively. All samples with 
eye diseases, such as cataract, glaucoma, macular deformation, or a history of surgery 
were excluded to ensure that the collected data were normal. After extracting the pupil 
area from the images through image preprocessing, a total of 6146 groups of pupil 
images were obtained. Images that were blurred due to an incorrect focus position were 

Fig. 6  Eccentric photorefraction images of the same pupil with a meridian direction of a 0°, b 60°, c 120°, d 
180°, e 240°, f 300°, and g 0° after contrast stretching
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eliminated, leaving 6074 groups of images. Among them, 3907 groups were used for the 
training set, 1167 groups were used for the validation set, and 1000 groups were used for 
the test set. The distribution of the datasets is presented in Table 5.

Network architecture

In this section, we present the design concepts of CNNs and RNNs. A CNN extracts 
features from multiple directional images to obtain a feature sequence. An RNN is used 
to process the feature sequence and then fuses the features. Finally, the fused features 
are sent to the fully connected neural network to obtain the spherical power, cylindrical 
power, and spherical equivalent.

We separated the six pupil images for feature extraction because they came from six 
different facial images. Even after image preprocessing, the content within the same 
position in the different images was not exactly the same. If they were to be combined 
into a six-channel image, the information from the six channels is mixed after convolu-
tion, and the cylindrical power information could not be effectively predicted.

In the present study, the last layer of feature fusion of the CNN was used. The last layer 
was the result of the global average pooling of multi-channel feature maps, which not 
only contained sufficient information but also had a small number of parameters. Fea-
ture fusion was highly efficient in this case.

Feature sequence extraction

The CNN was designed to ensure that sufficient features can be extracted while hav-
ing fewer parameters. The proposed network structure was inspired by the Xception 
network structure. The purpose of Xception was to reduce the number of parameters, 
but its original structure was still redundant. However, its use of residual modules and 
a depthwise separable convolution is useful for reducing the number of network param-
eters [19]. The network proposed in this study was composed of an automatic selection 
feature (ASF) block and depthwise separable residual (DSR) block. The network struc-
ture is shown in Fig. 7.

The residual connection directly connects the two-layer networks with gaps and 
prevents some convolutional layers from learning redundant features through 
identity mapping, thereby avoiding network redundancy and solving the problem 
of gradient disappearance in overly deep networks [18]. In the ASF block, a direct 
residual connection was not used; instead, a convolution was added to the position 
of the residual connection so that the network can automatically choose whether to 
go through two layers of depthwise separable convolution and maximum pooling or 

Table 5  Data distribution before and after data cleaning

Characteristic Before cleaning After cleaning

Number of image groups 6146 6074

Severe myopia (SE < -6 D) 1708 1699

Moderate myopia (−6 D ≤ SE < -3 D) 2395 2378

Mild myopia (−3 D ≤ SE < 0 D) 1919 1879

Emmetropia and hyperopia (SE ≥ 0 D) 124 118
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direct convolution features. In the DSR block, the residual connection was directly 
used, and the depthwise separable convolution of the three layers was directly con-
nected, which avoids the problem of gradient disappearance and gradient explosion 
caused by too many convolution layers.

A depthwise separable convolution comprises depthwise and pointwise convolu-
tions. The depthwise convolution uses a single convolutional filter for each feature 
map, and only calculates the spatial correlation within each feature map. The number 
of feature maps before and after the calculation was the same. Pointwise convolution 
projects the output of the depthwise convolution onto a new channel space and calcu-
lates the channel correlation of the feature maps. The number of output feature maps 
depends on the number of pointwise convolution kernels. Using depthwise separable 
convolutions decouples spatial and channel correlations while reducing the param-
eters of the network [29].

Global average pooling was used in the last layer. In some CNNs, such as VGG16 
[17], the last few layers use fully connected neural networks, which make up a large 
part of the parameters. However, global average pooling can greatly reduce param-
eters and extract features that represent the whole, which satisfies the purpose of 
extracting features with CNNs.

Fig. 7  Structure of the constructed CNN
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Feature sequence fusion based on LSTM

Commonly used feature fusion methods in deep learning are feature map concatena-
tion [30] or the direct addition of feature maps [18]; some researchers have also pro-
posed AFF [31]. When the number of feature maps is large, concatenation increases 
the amount of computation and causes information redundancy. The direct addition of 
feature maps causes a discrimination conflict. AFF can automatically assign different 
weights to different feature maps and then add them together. Although AFF solves the 
problems of concatenation and addition, it is still unsuitable for this study.

In this study, we have six feature sequences that represent the diopter in six directions. 
The cylindrical power, which describes the diopter difference in various directions of the 
human eye, is obtained through the relationship between the diopters in the six direc-
tions. This means that the feature fusion focuses on the contextual relationship between 
feature sequences, whereas the purpose of the AFF is to work with one or several fea-
tures, and the contextual relationship between sequences cannot be extracted. There-
fore, we introduce an RNN to effectively learn the contextual relationship between the 
six feature sequences.

An LSTM is used to process feature sequences [32] and is a type of RNN that is usu-
ally applied to time sequences, such as in natural language processing. The LSTM has 
three gates: input, forget, and output gates. These three gates selectively store and out-
put information and solve the problem of gradient disappearance and gradient explosion 
in a simple RNN [33]. These three gates also solve the long-term dependency problem 
of a simple RNN, which can only handle relatively close contextual information; this is 
important for the present study, as we had 6 sequences of equal importance. Hence, it 
would have been inappropriate to only focus on close contextual information.

After the CNN was constructed, 6 sequences were extracted from the six images, and 
the 6 sequences were sent to the RNN to predict the overall diopter.

Network training

During the process of network training, the initial weights of the network are not ran-
dom; if the initial weight of the network is given random parameters, the feature 
sequence extracted by the CNN is random, and the RNN has difficulty learning the rela-
tionship between the six sequences. Hence, the error cannot be effectively backpropa-
gated into the CNN, and the cylinder cannot be accurately predicted. Therefore, an 
image from a single direction was taken as input and the diopter in a single direction 
was output. To pretrain the CNN, the pretrained parameters were taken as the initial 
weights, and then the overall training of the network was performed.

During training, we used the TensorFlow framework to implement our network 
model, the Adam optimization algorithm was used first for rapid gradient descent, and 
then the stochastic gradient descent optimization algorithm was used for fine-tuning 
[34]. The mean squared error was used as the loss function.
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