Skip to main content
. Author manuscript; available in PMC: 2022 Aug 9.
Published in final edited form as: Cancer Res. 2020 Aug 31;80(20):4476–4486. doi: 10.1158/0008-5472.CAN-20-0977

Table 2.

Main genomic characteristics predicting outcome in HGT1 bladder cancer.

Good outcome Recurrent Progression Microstaging pT1b
(deeper level of invasion)
TMB High Low Intermediate
Mutation frequency analysis ERCC2 (P#< 0.003, q = 0.1) RHOB and ARID1A (q > 0.1, P# < 0.05) TP53, ATM, ARID1A, AHR, SMARCB1 (q > 0.1, P# < 0.05)
BRCA2 (P# < 0.05) but q > 0.1
Mutations in DDR genes (P = 0.007)
Mutational signature analysis COSMIC2 (C>T mutations at TCW; P = 0.047)
COSMIC 5 in ERCC2 mutants (P = 0.0002)
MSig clustering MSig3 (associated with ERCC2 mutations and COSMIC5; 7/7 GO; P = 0.13) MSig1 (P = 0.04) MSig4 with high APOBEC activity and TP53 mutations (3/6 PD) MSig4 (highest APOBEC with TP53 mut; 5/6 pT1b)
CN alterations Focal PVRL4 amplification (P = 0.08)
CDKN2A deletion (PD&R, P = 0.04)
Focal CCNE1 amplification (PD&R, P = 0.04)
MutCN clusters MutCN2 in 73% of GO (P = 0.04) MutCN1 cluster-enrich (PD&R, P = 0.04) MutCN1 clustering has 89% of pT1b samples (P = 0.05; TP53, E2F3.amp, CCNE1.amp, other focal CN events)

Note: P#, empirical P value from the random permutation method correcting for heterogeneous mutation burdens among different outcome groups.