Skip to main content
. 2022 Aug 9;81(26):37657–37680. doi: 10.1007/s11042-022-13509-4

Table 2.

Performance of VGG16, MobileNetV2, ResNet18, and AlexNet on training and testing set

Models Splits Classes Precision Recall F1-Score Accuracy
VGG16 Training Normal 0.97 0.99 0.98 0.98
Viral Pneumonia 0.99 0.97 0.98
COVID-19 0.99 0.99 0.99
Testing Normal 0.91 0.93 0.91 0.97
Viral Pneumonia 0.91 0.9 0.904
COVID-19 0.93 0.95 0.939
AlexNet Training Normal 0.96 0.99 0.98 0.98
Viral Pneumonia 0.98 0.96 0.96
COVID-19 0.98 1 0.99
Testing Normal 0.94 0.92 0.92 0.98
Viral Pneumonia 0.98 0.93 0.94
COVID-19 0.97 0.98 0.979
MobileNetV2 Training Normal 0.94 1 0.97 0.97
Viral Pneumonia 1 0.93 0.96
COVID-19 0.98 1 0.99
Testing Normal 0.91 0.95 0.92 0.97
Viral Pneumonia 0.94 0.97 0.95
COVID-19 0.90 0.93 0.91
ResNet18 Training Normal 0.95 0.98 0.96 0.96
Viral Pneumonia 0.98 0.95 0.96
COVID-19 1 0.94 0.97
Testing Normal 0.88 0.96 0.91 0.89
Viral Pneumonia 0.82 0.93 0.87
COVID-19 0.92 0.73 0.81