Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jul 26;78(Pt 8):829–832. doi: 10.1107/S2056989022007460

Synthesis and crystal structure of hydrated μ-oxa­lato-bis­{bis­[3-methyl-5-(pyridin-2-yl)-1H-1,2,4-triazole]iron(II)} bis­(toluene­sulfonate) 2.75-hydrate

Yuliia P Petrenko a, Yurii S Bibik a, Dmytro M Khomenko a,b, Roman O Doroshchuk a,b, Il‘ya A Gural’skiy a, Sergiu Shova c, Rostyslav D Lampeka a, Ilona V Raspertova a,*
Editor: L Van Meerveltd
PMCID: PMC9361385  PMID: 35974812

A bis-bidentate oxalate bridging anion connects two FeII ions further surrounded by bidentate pyridyl-triazole ligands.

Keywords: crystal structure; iron(II) complex; 1,2,4-triazole; oxalato-bridged complex; X-ray crystallography

Abstract

In the title compound [Fe2(C2O4)(C8H8N4)4](CH3C6H4SO3)2·2.75H2O, the two FeII ions have a highly distorted octa­hedral FeN4O2 environment formed by two bidentate triazole-based chelating ligands and a bis-bidentate oxalate bridging anion that connects the metal ions. Stabilization within the crystal structure is provided via a system of O—H⋯O and N—H⋯O hydrogen bonding, which determines the formation of a two-dimensional architecture along the a-axis direction.

1. Chemical context

The study of coordination compounds based on substituted 1,2,4-triazoles and 3d and 4d transition metals allows the design of supra­molecular structures that can find applications in various fields such as mol­ecular magnetism, catalysis, electrochemistry or cluster engineering (Zhang et al., 2017; Zakharchenko et al., 2019; Chen et al., 2015; Petrenko et al., 2020, 2021). The presence of the pyridine ring in such triazole systems leads to the formation of inter­esting isolated metal–organic frameworks that demonstrate promising magnetic properties, making them suitable for application as mol­ecule-based magnets (Yao et al., 2015; Han et al., 2017; Li et al., 2015; Huang et al., 2015). Moreover, a combination of 3d 4–3d 7 metals with N-donor bridging ligands may form coordination compounds with switchable spin states (Aromí et al., 2011; Kucheriv et al., 2021). This phenomenon is called spin crossover. Changes in the external temperature, pressure, magnetic field, light radiation or the presence of a guest alters the magnetic, electrical, mechanical and optical properties significantly in these compounds (Gütlich & Goodwin, 2004). Therefore, the synthesis and crystallographic characterization of these complexes are of current inter­est.

On the other hand, the ability of the oxalate anion to generate homobinuclear complexes is well known (Craig et al., 2010; Selmi et al., 2021; Karimpour et al., 2013; Paine et al., 2007). The coordination chemistry of oxalato-bridged binuclear FeII complexes with pyridyl-triazole chelating ligands is less studied. A few examples with a similar type of ligand indicate that complexes of this kind possess inter­esting magnetic and oxidizing properties (de Ruiter et al., 2008; Oliveira et al., 2018). In order to continue research in this field and in the course of our studies dedicated to the investigation of triazoles and, in particular, 3-methyl-5-(pyrid-2-yl)-2H-1,2,4-triazole (metrzpy) (Zakharchenko et al., 2017; Zakharchenko, Khomenko, Doroschuk, Raspertova, Fesych et al., 2021; Zakharchenko, Khomenko, Doroshchuk, Raspertova, Shova et al., 2021), we report herein the synthesis and crystal structure of a new binuclear iron(II) complex with this ligand. 1.

2. Structural commentary

The structure of the title compound is built up from dinuclear [Fe2(metrzpy)4(C2O4)]2+ complex cations, p-toluene­sulfonate anions and co-crystallized water mol­ecules in a 1:2:2.75 ratio. It crystallizes in the triclinic space group P Inline graphic with two complex mol­ecules per unit cell. Each iron(II) ion has an N4O2 coordination environment in a distorted octa­hedral geometry provided by two chelating metrzpy ligands in cis positions and a bidentate bridging oxalate anion (Fig. 1, Table 1). The reduced values of the angles subtended at the iron atom by the metrzpy and oxalate ligands are the main factors behind this distortion. The Fe—N and Fe—O bond lengths vary in the ranges 2.150 (3)–2.209 (3) Å and 2.123 (2)–2.171 (2) Å, respectively. The Fe1⋯Fe2 separation across the oxalate bridge of 5.576 (6) Å is in good agreement with previously reported values for other oxalate-bridged iron(II) complexes. The sets of coordinating atoms (O1/O2/N2/N6 for Fe1 and O3/O4/N10/N14 for Fe2) defining the mean equatorial planes are co-planar within 0.22 and 0.20 Å, while the displacement of the metal atom from these planes is 0.015 (1) and 0.037 (1) Å, respectively. The dihedral angle formed by each plane and the mean plane of the oxalate atoms is of 9.74 (6)° for Fe1 and 10.04 (7)° for Fe2.

Figure 1.

Figure 1

X-ray mol­ecular structure of the title compound with selected atom labels and displacement ellipsoids drawn at the 50% level. Some H atoms are omitted for clarity. Key: carbon, grey; nitrogen, blue; oxygen, red; sulfur, yellow; iron, light green.

Table 1. Selected bond lengths (Å).

Fe1—O1 2.171 (2) Fe2—O3 2.123 (2)
Fe1—O2 2.123 (2) Fe2—O4 2.157 (2)
Fe1—N1 2.203 (3) Fe2—N9 2.209 (3)
Fe1—N2 2.150 (3) Fe2—N10 2.165 (3)
Fe1—N5 2.197 (3) Fe2—N13 2.206 (3)
Fe1—N6 2.162 (3) Fe2—N14 2.159 (3)

3. Supra­molecular features

All the species present in the structure are inter­connected via a system of O—H⋯O and N—H⋯O hydrogen bonds (Table 2), which determines the formation of a two-dimensional architecture, as shown in Fig. 2. Further analysis has shown that the main crystal-structure motif consists of the parallel packing of 2D layers consolidated by the ππ stacking inter­actions observed between triazole and pyridine rings of adjacent cationic entities (Fig. 3) with a centroid-to-centroid distance of 3.746 (1) Å.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O10i 0.86 1.95 2.766 (4) 159
N7—H7⋯O6ii 0.86 2.34 3.064 (5) 142
N7—H7⋯O7ii 0.86 2.34 3.141 (6) 154
N11—H11⋯O9iii 0.86 1.92 2.769 (4) 170
N15—H15⋯O5iv 0.86 1.99 2.825 (4) 163
C4—H4⋯O2W v 0.93 2.48 3.383 (5) 165
C11—H11A⋯O5W 0.93 2.49 3.206 (8) 134
C28—H28⋯O4W vi 0.93 2.54 3.421 (6) 159
O2W—H2WA⋯O4 0.85 2.10 2.949 (4) 174
O2W—H2WB⋯O5 0.86 1.99 2.838 (4) 172
O4W—H4WA⋯O1 0.87 2.34 3.123 (5) 150
O4W—H4WA⋯O3 0.87 2.25 3.037 (4) 151
O4W—H4WB⋯O10 0.87 1.92 2.788 (5) 174
O5W—H5WA⋯O4W vi 0.86 1.98 2.810 (11) 159
O5W—H5WB⋯O4W 0.86 2.28 2.850 (10) 123
C13—H13⋯O8vi 0.93 2.57 3.256 (5) 131
C21—H21⋯O7v 0.93 2.44 3.280 (6) 150

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

Two-dimensional supra­molecular network viewed along the a axis.

Figure 3.

Figure 3

π--π stacking between adjacent complex cations. Centroid-to-centroid contacts are shown as green dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update November 2021; Groom et al., 2016) gave 189 hits for the Fe2(μ-C2O4) unit, the majority of which are iron(II)-based metal–organic coordination polymers. Besides them, there are several homobimetallic structures with an [FeN4O2] coordination environment: AVIMUN (Spek et al., 2004), LOZHOA (Oliveira et al., 2018), NOLSUF and NOLTAM (Gusev et al., 2019) and VIHCIZ (Paine et al., 2007). It must be noted that AVIMUN is a homologue of the title compound and contains a 3-ethyl-1,2,4-triazole fragment; however, it has a different packing and the crystal structure belongs to the monoclinic system.

A search for the structures of coordination compounds based on 3-methyl-5-(pyrid-2-yl)-2H-1,2,4-triazole revealed ten hits. Three of these structures represent our previous studies: CAMSUI (Zakharchenko, Khomenko, Doroschuk, Raspertova, Shova et al., 2021), IXIBID and IXIBOJ (Petrenko et al., 2021). The other structures correspond to mixed-ligand complexes with various metals, among them: NIYRAQ (Cao et al., 2014), QURBIQ (Guetlich & Schollmeyer, 2015), REWSOC (Cheng et al., 2007), SARQIO (Muller et al., 2013) and VESZOI (Buchanan et al., 1990).

5. Synthesis and crystallization

The triazole ligand was prepared according to a synthesis described in the literature (Zakharchenko et al., 2017). Single crystals of [Fe2(C2O4)(metrzpy)4](CH3C6H4SO3)2·2.75H2O were obtained by the liquid-to-liquid diffusion technique using a layering tube. The bottom was filled with Fe(CH3C6H4SO3)2·6H2O (50.6 mg, 0.1 mmol) in 2 ml of water. The middle was filled with a solution of 2 ml methanol/water (1:1) containing ascorbic acid (35.2 mg, 0.2 mmol). Then the top was filled with a solution of metrzpy ligand (32.0 mg, 0.2 mmol) in 2 ml of methanol. Afterwards, the tube was sealed with parafilm and light brown square-plate single crystals were formed within 3 days in relative high yield (ca 50%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were placed geometrically and refined as riding, with C—H = 0.96 (CH3), 0.93 Å (Carom), N—H = 0.86 Å and O—H = 0.85–0.87Å, and with U iso(H) = 1.2U eq(Carom) or 1.5U eq(C-meth­yl). N-bound H atoms were refined with U iso(H) = 1.2U eq(N). The idealized OH2 mol­ecule was fixed using an AFIX 3, U iso(H) = 1.5U eq(Owater).

Table 3. Experimental details.

Crystal data
Chemical formula [Fe2(C2O4)(C8H8N4)4](C7H7O3S)2·2.75H2O
M r 1232.37
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 9.9635 (4), 14.4905 (6), 20.1131 (8)
α, β, γ (°) 96.736 (4), 101.490 (4), 95.216 (4)
V3) 2806.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.35 × 0.2 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.923, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20140, 9886, 7117
R int 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.132, 1.06
No. of reflections 9886
No. of parameters 739
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.52

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007460/vm2269sup1.cif

e-78-00829-sup1.cif (832.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007460/vm2269Isup2.hkl

e-78-00829-Isup2.hkl (784.4KB, hkl)

CCDC reference: 2191587

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the courage of the Armed Forces of Ukraine that made the submission of this manuscript possible.

supplementary crystallographic information

Crystal data

[Fe2(C2O4)(C8H8N4)4](C7H7O3S)2·2.75H2O Z = 2
Mr = 1232.37 F(000) = 1275
Triclinic, P1 Dx = 1.458 Mg m3
a = 9.9635 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.4905 (6) Å Cell parameters from 5996 reflections
c = 20.1131 (8) Å θ = 2.0–26.2°
α = 96.736 (4)° µ = 0.67 mm1
β = 101.490 (4)° T = 293 K
γ = 95.216 (4)° Block, clear light brown
V = 2806.5 (2) Å3 0.35 × 0.2 × 0.15 mm

Data collection

Rigaku Oxford Diffraction Xcalibur, Eos diffractometer 9886 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 7117 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 8.0797 pixels mm-1 θmax = 25.0°, θmin = 1.7°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −17→15
Tmin = 0.923, Tmax = 1.000 l = −23→23
20140 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0447P)2 + 1.2466P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
9886 reflections Δρmax = 0.59 e Å3
739 parameters Δρmin = −0.52 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.06627 (5) 0.33384 (3) 0.24663 (2) 0.04095 (15)
Fe2 0.46059 (5) 0.63703 (3) 0.25705 (2) 0.04295 (15)
O1 0.1636 (2) 0.46283 (16) 0.31108 (11) 0.0477 (6)
O2 0.2035 (3) 0.38999 (16) 0.18929 (11) 0.0485 (6)
O3 0.3255 (3) 0.58058 (16) 0.31534 (11) 0.0505 (6)
O4 0.3654 (3) 0.50805 (16) 0.19378 (11) 0.0487 (6)
N1 −0.1150 (3) 0.38744 (19) 0.18860 (13) 0.0445 (7)
N2 −0.0855 (3) 0.3172 (2) 0.30813 (13) 0.0451 (7)
N3 −0.2364 (3) 0.2948 (2) 0.36995 (14) 0.0553 (8)
H3 −0.271736 0.279820 0.403417 0.066*
N4 −0.3071 (3) 0.3274 (2) 0.31482 (15) 0.0540 (8)
N5 0.2127 (3) 0.2521 (2) 0.30396 (13) 0.0462 (7)
N6 0.0155 (3) 0.19564 (19) 0.18814 (13) 0.0440 (7)
N7 −0.0330 (4) 0.0583 (2) 0.13003 (17) 0.0922 (14)
H7 −0.071277 0.014005 0.097691 0.111*
N8 0.0632 (4) 0.0470 (2) 0.18557 (17) 0.0848 (13)
N9 0.3081 (3) 0.7159 (2) 0.19942 (14) 0.0507 (8)
N10 0.5106 (3) 0.77723 (19) 0.31263 (13) 0.0432 (7)
N11 0.5722 (3) 0.9187 (2) 0.36334 (15) 0.0597 (9)
H11 0.615093 0.965062 0.392887 0.072*
N12 0.4736 (4) 0.9271 (2) 0.30800 (16) 0.0621 (9)
N13 0.6489 (3) 0.58921 (19) 0.31364 (13) 0.0455 (7)
N14 0.6070 (3) 0.65457 (19) 0.19219 (13) 0.0445 (7)
N15 0.7518 (3) 0.6810 (2) 0.12811 (14) 0.0543 (8)
H15 0.783958 0.695836 0.093650 0.065*
N16 0.8289 (3) 0.6538 (2) 0.18426 (14) 0.0529 (8)
C1 0.2527 (4) 0.5063 (2) 0.28770 (16) 0.0386 (8)
C2 0.2758 (3) 0.4641 (2) 0.21719 (16) 0.0374 (8)
C3 −0.1234 (4) 0.4204 (3) 0.12807 (18) 0.0589 (11)
H3A −0.043788 0.429579 0.110984 0.071*
C4 −0.2462 (5) 0.4407 (3) 0.0907 (2) 0.0667 (12)
H4 −0.249256 0.462694 0.048877 0.080*
C5 −0.3627 (5) 0.4285 (3) 0.1156 (2) 0.0702 (13)
H5 −0.446072 0.441986 0.090806 0.084*
C6 −0.3568 (4) 0.3958 (3) 0.17799 (19) 0.0575 (10)
H6 −0.435366 0.387506 0.196046 0.069*
C7 −0.2312 (4) 0.3760 (2) 0.21249 (16) 0.0427 (8)
C8 −0.2112 (4) 0.3405 (2) 0.27900 (16) 0.0421 (8)
C9 −0.1053 (4) 0.2887 (3) 0.36643 (17) 0.0503 (9)
C10 −0.0023 (4) 0.2548 (4) 0.4192 (2) 0.0807 (14)
H10A 0.024759 0.197175 0.400311 0.121*
H10B −0.042144 0.244484 0.457843 0.121*
H10C 0.077127 0.300738 0.433744 0.121*
C11 0.3084 (4) 0.2830 (3) 0.36143 (18) 0.0577 (10)
H11A 0.326791 0.347058 0.375872 0.069*
C12 0.3799 (4) 0.2239 (3) 0.3996 (2) 0.0659 (12)
H12 0.446270 0.247802 0.438745 0.079*
C13 0.3528 (4) 0.1295 (3) 0.3796 (2) 0.0704 (13)
H13 0.398179 0.088386 0.405802 0.084*
C14 0.2570 (4) 0.0956 (3) 0.31978 (18) 0.0625 (11)
H14 0.237582 0.031753 0.304686 0.075*
C15 0.1912 (4) 0.1594 (3) 0.28328 (17) 0.0463 (9)
C16 0.0893 (4) 0.1317 (3) 0.21895 (17) 0.0491 (9)
C17 −0.0606 (4) 0.1457 (3) 0.13178 (19) 0.0617 (11)
C18 −0.1622 (5) 0.1779 (3) 0.0775 (2) 0.0832 (15)
H18A −0.235851 0.200596 0.096682 0.125*
H18B −0.198935 0.126680 0.041786 0.125*
H18C −0.117722 0.227346 0.058849 0.125*
C19 0.2082 (4) 0.6836 (3) 0.14435 (19) 0.0642 (11)
H19 0.188657 0.619209 0.131749 0.077*
C20 0.1332 (4) 0.7406 (4) 0.1055 (2) 0.0755 (14)
H20 0.063650 0.715303 0.067988 0.091*
C21 0.1627 (5) 0.8348 (4) 0.1230 (2) 0.0803 (15)
H21 0.114664 0.874722 0.096693 0.096*
C22 0.2640 (5) 0.8712 (3) 0.17987 (19) 0.0702 (13)
H22 0.284770 0.935471 0.192785 0.084*
C23 0.3334 (4) 0.8092 (3) 0.21697 (17) 0.0501 (9)
C24 0.4396 (4) 0.8401 (3) 0.27894 (17) 0.0485 (9)
C25 0.5944 (4) 0.8301 (3) 0.36629 (17) 0.0487 (9)
C26 0.6950 (4) 0.8004 (3) 0.42185 (18) 0.0677 (12)
H26A 0.650605 0.751460 0.440960 0.102*
H26B 0.729815 0.852738 0.456919 0.102*
H26C 0.769906 0.777834 0.403759 0.102*
C27 0.6645 (4) 0.5565 (3) 0.37394 (18) 0.0592 (11)
H27 0.586820 0.544259 0.392017 0.071*
C28 0.7898 (5) 0.5401 (3) 0.4102 (2) 0.0684 (12)
H28 0.796418 0.518366 0.452334 0.082*
C29 0.9047 (5) 0.5560 (3) 0.3841 (2) 0.0702 (12)
H29 0.990504 0.545042 0.407988 0.084*
C30 0.8916 (4) 0.5886 (3) 0.32143 (19) 0.0594 (11)
H30 0.968095 0.599935 0.302321 0.071*
C31 0.7626 (4) 0.6039 (2) 0.28800 (16) 0.0436 (8)
C32 0.7366 (4) 0.6382 (2) 0.22115 (16) 0.0429 (8)
C33 0.6205 (4) 0.6820 (3) 0.13259 (17) 0.0515 (10)
C34 0.5110 (4) 0.7077 (3) 0.07895 (18) 0.0773 (14)
H34A 0.486349 0.768028 0.093915 0.116*
H34B 0.431515 0.661919 0.070729 0.116*
H34C 0.544165 0.709851 0.037429 0.116*
S1 0.19815 (11) 0.15158 (8) −0.01003 (5) 0.0625 (3)
O5 0.1921 (3) 0.25052 (19) −0.00942 (11) 0.0669 (8)
O6 0.2457 (4) 0.1123 (2) −0.06992 (14) 0.1116 (13)
O7 0.0732 (4) 0.1004 (3) −0.0048 (2) 0.1409 (18)
C35 0.3234 (4) 0.1378 (3) 0.06207 (17) 0.0470 (9)
C36 0.3414 (4) 0.1958 (3) 0.12319 (18) 0.0534 (10)
H36 0.287580 0.244558 0.126915 0.064*
C37 0.4393 (4) 0.1816 (3) 0.17913 (18) 0.0566 (10)
H37 0.450062 0.221047 0.220260 0.068*
C38 0.5207 (4) 0.1109 (3) 0.1753 (2) 0.0596 (11)
C39 0.5008 (5) 0.0528 (3) 0.1146 (2) 0.0840 (15)
H39 0.554298 0.003751 0.111059 0.101*
C40 0.4026 (5) 0.0656 (3) 0.0582 (2) 0.0755 (13)
H40 0.390360 0.024997 0.017557 0.091*
C41 0.6316 (5) 0.0972 (3) 0.2360 (2) 0.0912 (16)
H41A 0.718786 0.127442 0.231879 0.137*
H41B 0.637337 0.031548 0.236750 0.137*
H41C 0.608687 0.123984 0.277673 0.137*
S2 0.30295 (10) 0.86078 (7) 0.49751 (4) 0.0531 (3)
O8 0.4317 (3) 0.8827 (3) 0.47784 (15) 0.0979 (12)
O9 0.2802 (3) 0.9233 (2) 0.55456 (13) 0.0826 (9)
O10 0.2837 (3) 0.76442 (18) 0.51006 (11) 0.0620 (7)
C42 0.1701 (4) 0.8707 (2) 0.42682 (17) 0.0451 (9)
C43 0.0828 (4) 0.9383 (3) 0.4305 (2) 0.0641 (11)
H43 0.092198 0.979305 0.470797 0.077*
C44 −0.0196 (4) 0.9454 (3) 0.3740 (2) 0.0705 (12)
H44 −0.078646 0.991101 0.376928 0.085*
C45 −0.0353 (4) 0.8857 (3) 0.3134 (2) 0.0570 (10)
C46 0.0549 (4) 0.8200 (3) 0.31052 (18) 0.0561 (10)
H46 0.047203 0.779862 0.269950 0.067*
C47 0.1565 (4) 0.8119 (3) 0.36615 (17) 0.0529 (10)
H47 0.216238 0.766700 0.362861 0.063*
C48 −0.1485 (5) 0.8935 (3) 0.2527 (2) 0.0843 (15)
H48A −0.121972 0.869788 0.211156 0.126*
H48B −0.163294 0.957970 0.251877 0.126*
H48C −0.232041 0.857815 0.256327 0.126*
O1W −0.018 (2) 0.4596 (12) −0.0131 (10) 0.159 (7)* 0.25
H1WA −0.026571 0.516586 −0.000700 0.239* 0.25
H1WB 0.065089 0.453836 0.003990 0.239* 0.25
O2W 0.2693 (5) 0.4417 (2) 0.04606 (14) 0.1319 (16)
H2WA 0.302346 0.458579 0.088428 0.198*
H2WB 0.249386 0.382599 0.033148 0.198*
O4W 0.2661 (6) 0.5760 (3) 0.45735 (18) 0.1135 (19) 0.75
H4WA 0.264626 0.557925 0.414491 0.170* 0.75
H4WB 0.272806 0.635525 0.470971 0.170* 0.75
O5W 0.4606 (9) 0.4449 (5) 0.4825 (4) 0.136 (3)* 0.5
H5WA 0.536786 0.439800 0.510473 0.205* 0.5
H5WB 0.458166 0.499590 0.469693 0.205* 0.5
O3W 0.3943 (15) 0.6210 (10) 0.4573 (6) 0.094 (4)* 0.25
H3WA 0.376336 0.611397 0.413001 0.141* 0.25
H3WB 0.362126 0.671997 0.469671 0.141* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0381 (3) 0.0391 (3) 0.0426 (3) −0.0045 (2) 0.0063 (2) 0.0040 (2)
Fe2 0.0400 (3) 0.0413 (3) 0.0438 (3) −0.0073 (2) 0.0079 (2) 0.0018 (2)
O1 0.0493 (16) 0.0481 (15) 0.0453 (13) −0.0074 (12) 0.0213 (12) −0.0037 (11)
O2 0.0551 (17) 0.0440 (15) 0.0427 (13) −0.0099 (13) 0.0163 (12) −0.0072 (11)
O3 0.0580 (17) 0.0450 (15) 0.0430 (13) −0.0135 (13) 0.0169 (12) −0.0121 (12)
O4 0.0513 (16) 0.0495 (15) 0.0445 (13) −0.0114 (13) 0.0222 (12) −0.0044 (12)
N1 0.052 (2) 0.0367 (17) 0.0414 (16) 0.0027 (15) 0.0042 (14) 0.0044 (13)
N2 0.0431 (19) 0.0498 (19) 0.0416 (15) −0.0004 (15) 0.0066 (13) 0.0113 (14)
N3 0.052 (2) 0.070 (2) 0.0449 (17) −0.0014 (18) 0.0152 (15) 0.0103 (16)
N4 0.050 (2) 0.060 (2) 0.0526 (18) 0.0041 (17) 0.0121 (16) 0.0090 (16)
N5 0.0345 (18) 0.053 (2) 0.0460 (16) −0.0007 (15) 0.0018 (13) 0.0039 (15)
N6 0.0462 (19) 0.0392 (17) 0.0406 (15) −0.0001 (14) −0.0013 (13) 0.0033 (14)
N7 0.129 (4) 0.044 (2) 0.071 (2) 0.015 (2) −0.045 (2) −0.0138 (18)
N8 0.115 (3) 0.047 (2) 0.070 (2) 0.020 (2) −0.031 (2) −0.0039 (18)
N9 0.0393 (19) 0.058 (2) 0.0488 (17) −0.0012 (16) 0.0014 (14) 0.0024 (16)
N10 0.0425 (18) 0.0401 (17) 0.0431 (16) −0.0029 (14) 0.0056 (14) 0.0018 (14)
N11 0.073 (3) 0.046 (2) 0.0486 (18) −0.0023 (18) −0.0015 (17) −0.0093 (15)
N12 0.073 (3) 0.049 (2) 0.0565 (19) 0.0093 (19) 0.0003 (18) −0.0017 (17)
N13 0.055 (2) 0.0399 (17) 0.0403 (16) −0.0028 (15) 0.0102 (14) 0.0066 (14)
N14 0.0420 (19) 0.0462 (18) 0.0436 (16) −0.0027 (15) 0.0077 (14) 0.0076 (14)
N15 0.053 (2) 0.068 (2) 0.0427 (17) −0.0013 (18) 0.0145 (15) 0.0130 (16)
N16 0.050 (2) 0.057 (2) 0.0520 (18) 0.0007 (16) 0.0143 (16) 0.0084 (16)
C1 0.038 (2) 0.038 (2) 0.0391 (18) 0.0007 (17) 0.0105 (16) 0.0000 (16)
C2 0.037 (2) 0.036 (2) 0.0373 (18) 0.0023 (17) 0.0074 (15) −0.0002 (16)
C3 0.074 (3) 0.053 (3) 0.049 (2) 0.000 (2) 0.010 (2) 0.013 (2)
C4 0.092 (4) 0.048 (3) 0.053 (2) 0.008 (3) −0.006 (2) 0.014 (2)
C5 0.072 (3) 0.059 (3) 0.069 (3) 0.014 (3) −0.012 (2) 0.012 (2)
C6 0.048 (3) 0.053 (3) 0.066 (2) 0.009 (2) −0.001 (2) 0.004 (2)
C7 0.046 (2) 0.034 (2) 0.0463 (19) 0.0050 (17) 0.0077 (17) 0.0026 (16)
C8 0.043 (2) 0.036 (2) 0.0445 (19) 0.0007 (17) 0.0064 (17) 0.0014 (16)
C9 0.048 (3) 0.057 (2) 0.043 (2) −0.003 (2) 0.0067 (18) 0.0087 (18)
C10 0.067 (3) 0.119 (4) 0.062 (3) 0.008 (3) 0.012 (2) 0.038 (3)
C11 0.044 (2) 0.062 (3) 0.057 (2) 0.001 (2) −0.0035 (19) 0.000 (2)
C12 0.046 (3) 0.086 (3) 0.056 (2) 0.008 (2) −0.0080 (19) 0.001 (2)
C13 0.066 (3) 0.088 (4) 0.057 (2) 0.029 (3) 0.000 (2) 0.014 (3)
C14 0.070 (3) 0.057 (3) 0.055 (2) 0.021 (2) 0.000 (2) 0.001 (2)
C15 0.043 (2) 0.049 (2) 0.0449 (19) 0.0076 (19) 0.0052 (17) 0.0060 (18)
C16 0.052 (2) 0.040 (2) 0.050 (2) 0.0036 (19) 0.0015 (18) 0.0043 (18)
C17 0.075 (3) 0.044 (2) 0.053 (2) 0.001 (2) −0.012 (2) 0.0018 (19)
C18 0.099 (4) 0.061 (3) 0.066 (3) 0.010 (3) −0.032 (2) −0.005 (2)
C19 0.045 (3) 0.074 (3) 0.062 (2) −0.003 (2) −0.002 (2) −0.004 (2)
C20 0.049 (3) 0.106 (4) 0.060 (3) 0.015 (3) −0.011 (2) −0.001 (3)
C21 0.080 (4) 0.098 (4) 0.061 (3) 0.041 (3) −0.002 (2) 0.009 (3)
C22 0.076 (3) 0.072 (3) 0.059 (2) 0.029 (3) 0.000 (2) 0.004 (2)
C23 0.047 (2) 0.056 (3) 0.046 (2) 0.007 (2) 0.0083 (17) 0.0035 (19)
C24 0.051 (2) 0.047 (2) 0.044 (2) 0.004 (2) 0.0057 (17) 0.0004 (18)
C25 0.051 (2) 0.044 (2) 0.047 (2) −0.0008 (19) 0.0079 (18) 0.0006 (18)
C26 0.075 (3) 0.062 (3) 0.052 (2) 0.002 (2) −0.011 (2) −0.002 (2)
C27 0.075 (3) 0.053 (3) 0.052 (2) 0.004 (2) 0.017 (2) 0.014 (2)
C28 0.095 (4) 0.059 (3) 0.047 (2) 0.010 (3) 0.000 (2) 0.016 (2)
C29 0.068 (3) 0.068 (3) 0.067 (3) 0.012 (3) −0.007 (2) 0.015 (2)
C30 0.051 (3) 0.062 (3) 0.062 (2) 0.005 (2) 0.006 (2) 0.009 (2)
C31 0.048 (2) 0.034 (2) 0.0438 (19) −0.0022 (17) 0.0052 (17) 0.0004 (16)
C32 0.043 (2) 0.038 (2) 0.0451 (19) −0.0010 (17) 0.0081 (17) 0.0019 (16)
C33 0.052 (3) 0.057 (2) 0.044 (2) −0.002 (2) 0.0097 (18) 0.0089 (19)
C34 0.058 (3) 0.120 (4) 0.053 (2) 0.000 (3) 0.005 (2) 0.029 (3)
S1 0.0572 (7) 0.0586 (7) 0.0618 (6) −0.0095 (5) −0.0082 (5) 0.0159 (6)
O5 0.089 (2) 0.0629 (19) 0.0442 (14) 0.0177 (16) 0.0011 (14) 0.0063 (13)
O6 0.165 (4) 0.101 (3) 0.0500 (17) 0.034 (3) −0.011 (2) −0.0208 (17)
O7 0.061 (2) 0.183 (4) 0.164 (3) −0.046 (2) −0.036 (2) 0.115 (3)
C35 0.044 (2) 0.043 (2) 0.053 (2) 0.0010 (18) 0.0101 (17) 0.0041 (18)
C36 0.049 (2) 0.047 (2) 0.059 (2) 0.0110 (19) 0.0022 (19) −0.0021 (19)
C37 0.058 (3) 0.056 (3) 0.049 (2) 0.000 (2) 0.0037 (19) −0.0006 (19)
C38 0.057 (3) 0.048 (2) 0.068 (3) 0.000 (2) −0.004 (2) 0.016 (2)
C39 0.081 (4) 0.065 (3) 0.102 (4) 0.038 (3) 0.001 (3) 0.004 (3)
C40 0.081 (4) 0.069 (3) 0.068 (3) 0.023 (3) 0.006 (2) −0.017 (2)
C41 0.087 (4) 0.066 (3) 0.106 (4) 0.008 (3) −0.022 (3) 0.029 (3)
S2 0.0474 (6) 0.0611 (7) 0.0441 (5) −0.0079 (5) 0.0009 (4) 0.0066 (5)
O8 0.0445 (19) 0.161 (3) 0.086 (2) −0.019 (2) 0.0025 (16) 0.053 (2)
O9 0.098 (3) 0.074 (2) 0.0562 (16) 0.0014 (18) −0.0095 (16) −0.0212 (15)
O10 0.081 (2) 0.0599 (18) 0.0435 (14) 0.0076 (15) 0.0072 (13) 0.0104 (13)
C42 0.043 (2) 0.042 (2) 0.049 (2) −0.0022 (18) 0.0102 (17) 0.0060 (17)
C43 0.063 (3) 0.064 (3) 0.061 (2) 0.007 (2) 0.011 (2) −0.009 (2)
C44 0.061 (3) 0.057 (3) 0.091 (3) 0.020 (2) 0.007 (3) 0.005 (3)
C45 0.053 (3) 0.051 (2) 0.062 (2) −0.001 (2) 0.002 (2) 0.013 (2)
C46 0.058 (3) 0.059 (3) 0.045 (2) 0.005 (2) 0.0049 (19) −0.0040 (19)
C47 0.052 (3) 0.052 (2) 0.051 (2) 0.012 (2) 0.0035 (18) −0.0016 (19)
C48 0.074 (3) 0.082 (4) 0.088 (3) 0.012 (3) −0.012 (3) 0.023 (3)
O2W 0.252 (5) 0.086 (3) 0.0506 (18) 0.024 (3) 0.012 (2) 0.0135 (18)
O4W 0.201 (6) 0.096 (4) 0.051 (2) 0.046 (4) 0.034 (3) 0.004 (2)

Geometric parameters (Å, º)

Fe1—O1 2.171 (2) C18—H18C 0.9600
Fe1—O2 2.123 (2) C19—H19 0.9300
Fe1—N1 2.203 (3) C19—C20 1.372 (5)
Fe1—N2 2.150 (3) C20—H20 0.9300
Fe1—N5 2.197 (3) C20—C21 1.359 (6)
Fe1—N6 2.162 (3) C21—H21 0.9300
Fe2—O3 2.123 (2) C21—C22 1.381 (6)
Fe2—O4 2.157 (2) C22—H22 0.9300
Fe2—N9 2.209 (3) C22—C23 1.381 (5)
Fe2—N10 2.165 (3) C23—C24 1.460 (5)
Fe2—N13 2.206 (3) C25—C26 1.478 (5)
Fe2—N14 2.159 (3) C26—H26A 0.9600
O1—C1 1.241 (4) C26—H26B 0.9600
O2—C2 1.243 (4) C26—H26C 0.9600
O3—C1 1.245 (4) C27—H27 0.9300
O4—C2 1.249 (4) C27—C28 1.371 (5)
N1—C3 1.349 (4) C28—H28 0.9300
N1—C7 1.343 (4) C28—C29 1.364 (6)
N2—C8 1.363 (4) C29—H29 0.9300
N2—C9 1.333 (4) C29—C30 1.384 (5)
N3—H3 0.8600 C30—H30 0.9300
N3—N4 1.350 (4) C30—C31 1.377 (5)
N3—C9 1.332 (4) C31—C32 1.471 (4)
N4—C8 1.320 (4) C33—C34 1.481 (5)
N5—C11 1.344 (4) C34—H34A 0.9600
N5—C15 1.344 (4) C34—H34B 0.9600
N6—C16 1.364 (4) C34—H34C 0.9600
N6—C17 1.323 (4) S1—O5 1.439 (3)
N7—H7 0.8600 S1—O6 1.454 (3)
N7—N8 1.356 (4) S1—O7 1.419 (3)
N7—C17 1.318 (5) S1—C35 1.758 (4)
N8—C16 1.305 (4) C35—C36 1.375 (5)
N9—C19 1.338 (4) C35—C40 1.371 (5)
N9—C23 1.344 (4) C36—H36 0.9300
N10—C24 1.365 (4) C36—C37 1.383 (5)
N10—C25 1.334 (4) C37—H37 0.9300
N11—H11 0.8600 C37—C38 1.368 (5)
N11—N12 1.355 (4) C38—C39 1.368 (6)
N11—C25 1.329 (4) C38—C41 1.520 (5)
N12—C24 1.309 (4) C39—H39 0.9300
N13—C27 1.339 (4) C39—C40 1.384 (5)
N13—C31 1.345 (4) C40—H40 0.9300
N14—C32 1.361 (4) C41—H41A 0.9600
N14—C33 1.334 (4) C41—H41B 0.9600
N15—H15 0.8600 C41—H41C 0.9600
N15—N16 1.354 (4) S2—O8 1.435 (3)
N15—C33 1.331 (4) S2—O9 1.444 (3)
N16—C32 1.312 (4) S2—O10 1.450 (3)
C1—C2 1.546 (4) S2—C42 1.768 (4)
C3—H3A 0.9300 C42—C43 1.373 (5)
C3—C4 1.379 (5) C42—C47 1.379 (5)
C4—H4 0.9300 C43—H43 0.9300
C4—C5 1.357 (6) C43—C44 1.388 (5)
C5—H5 0.9300 C44—H44 0.9300
C5—C6 1.385 (5) C44—C45 1.381 (5)
C6—H6 0.9300 C45—C46 1.372 (5)
C6—C7 1.377 (5) C45—C48 1.512 (5)
C7—C8 1.472 (4) C46—H46 0.9300
C9—C10 1.484 (5) C46—C47 1.375 (5)
C10—H10A 0.9600 C47—H47 0.9300
C10—H10B 0.9600 C48—H48A 0.9600
C10—H10C 0.9600 C48—H48B 0.9600
C11—H11A 0.9300 C48—H48C 0.9600
C11—C12 1.370 (5) O1W—H1WA 0.8500
C12—H12 0.9300 O1W—H1WB 0.8499
C12—C13 1.366 (6) O2W—H2WA 0.8482
C13—H13 0.9300 O2W—H2WB 0.8577
C13—C14 1.384 (5) O4W—H4WA 0.8679
C14—H14 0.9300 O4W—H4WB 0.8665
C14—C15 1.378 (5) O5W—H5WA 0.8651
C15—C16 1.465 (5) O5W—H5WB 0.8618
C17—C18 1.483 (5) O3W—H3WA 0.8642
C18—H18A 0.9600 O3W—H3WB 0.8617
C18—H18B 0.9600
O1—Fe1—N1 98.95 (10) N7—C17—C18 123.1 (4)
O1—Fe1—N5 91.45 (10) C17—C18—H18A 109.5
O2—Fe1—O1 76.88 (8) C17—C18—H18B 109.5
O2—Fe1—N1 94.10 (10) C17—C18—H18C 109.5
O2—Fe1—N2 163.77 (10) H18A—C18—H18B 109.5
O2—Fe1—N5 96.26 (10) H18A—C18—H18C 109.5
O2—Fe1—N6 97.91 (10) H18B—C18—H18C 109.5
N2—Fe1—O1 91.45 (10) N9—C19—H19 118.3
N2—Fe1—N1 76.39 (10) N9—C19—C20 123.4 (4)
N2—Fe1—N5 95.26 (10) C20—C19—H19 118.3
N2—Fe1—N6 95.76 (11) C19—C20—H20 120.7
N5—Fe1—N1 166.75 (11) C21—C20—C19 118.6 (4)
N6—Fe1—O1 167.01 (10) C21—C20—H20 120.7
N6—Fe1—N1 93.25 (10) C20—C21—H21 120.0
N6—Fe1—N5 77.17 (10) C20—C21—C22 119.9 (4)
O3—Fe2—O4 77.01 (8) C22—C21—H21 120.0
O3—Fe2—N9 95.46 (10) C21—C22—H22 121.0
O3—Fe2—N10 99.08 (9) C21—C22—C23 118.0 (4)
O3—Fe2—N13 96.09 (10) C23—C22—H22 121.0
O3—Fe2—N14 164.19 (10) N9—C23—C22 122.9 (4)
O4—Fe2—N9 90.81 (10) N9—C23—C24 114.7 (3)
O4—Fe2—N10 166.87 (10) C22—C23—C24 122.4 (4)
O4—Fe2—N13 100.13 (10) N10—C24—C23 120.9 (3)
O4—Fe2—N14 90.65 (9) N12—C24—N10 114.2 (3)
N10—Fe2—N9 76.99 (11) N12—C24—C23 124.9 (3)
N10—Fe2—N13 92.72 (10) N10—C25—C26 128.6 (3)
N13—Fe2—N9 165.61 (11) N11—C25—N10 108.2 (3)
N14—Fe2—N9 94.55 (10) N11—C25—C26 123.2 (3)
N14—Fe2—N10 95.07 (10) C25—C26—H26A 109.5
N14—Fe2—N13 76.15 (10) C25—C26—H26B 109.5
C1—O1—Fe1 113.9 (2) C25—C26—H26C 109.5
C2—O2—Fe1 115.3 (2) H26A—C26—H26B 109.5
C1—O3—Fe2 115.4 (2) H26A—C26—H26C 109.5
C2—O4—Fe2 114.1 (2) H26B—C26—H26C 109.5
C3—N1—Fe1 126.0 (3) N13—C27—H27 118.5
C7—N1—Fe1 115.9 (2) N13—C27—C28 123.0 (4)
C7—N1—C3 117.7 (3) C28—C27—H27 118.5
C8—N2—Fe1 113.6 (2) C27—C28—H28 120.3
C9—N2—Fe1 142.8 (2) C29—C28—C27 119.5 (4)
C9—N2—C8 103.6 (3) C29—C28—H28 120.3
N4—N3—H3 124.0 C28—C29—H29 120.6
C9—N3—H3 124.0 C28—C29—C30 118.9 (4)
C9—N3—N4 112.1 (3) C30—C29—H29 120.6
C8—N4—N3 101.7 (3) C29—C30—H30 120.8
C11—N5—Fe1 127.1 (3) C31—C30—C29 118.5 (4)
C15—N5—Fe1 115.0 (2) C31—C30—H30 120.8
C15—N5—C11 117.3 (3) N13—C31—C30 123.1 (3)
C16—N6—Fe1 111.9 (2) N13—C31—C32 113.9 (3)
C17—N6—Fe1 144.8 (2) C30—C31—C32 123.1 (3)
C17—N6—C16 103.3 (3) N14—C32—C31 119.8 (3)
N8—N7—H7 124.2 N16—C32—N14 114.6 (3)
C17—N7—H7 124.2 N16—C32—C31 125.6 (3)
C17—N7—N8 111.6 (3) N14—C33—C34 127.4 (4)
C16—N8—N7 101.8 (3) N15—C33—N14 108.0 (3)
C19—N9—Fe2 128.0 (3) N15—C33—C34 124.6 (3)
C19—N9—C23 117.1 (3) C33—C34—H34A 109.5
C23—N9—Fe2 114.2 (2) C33—C34—H34B 109.5
C24—N10—Fe2 111.8 (2) C33—C34—H34C 109.5
C25—N10—Fe2 144.1 (2) H34A—C34—H34B 109.5
C25—N10—C24 103.8 (3) H34A—C34—H34C 109.5
N12—N11—H11 124.2 H34B—C34—H34C 109.5
C25—N11—H11 124.2 O5—S1—O6 110.60 (19)
C25—N11—N12 111.6 (3) O5—S1—C35 106.93 (17)
C24—N12—N11 102.2 (3) O6—S1—C35 106.78 (19)
C27—N13—Fe2 126.7 (3) O7—S1—O5 114.3 (2)
C27—N13—C31 117.1 (3) O7—S1—O6 110.8 (3)
C31—N13—Fe2 115.8 (2) O7—S1—C35 106.96 (18)
C32—N14—Fe2 113.6 (2) C36—C35—S1 121.8 (3)
C33—N14—Fe2 142.5 (3) C40—C35—S1 119.4 (3)
C33—N14—C32 103.7 (3) C40—C35—C36 118.8 (3)
N16—N15—H15 124.0 C35—C36—H36 120.0
C33—N15—H15 124.0 C35—C36—C37 120.1 (3)
C33—N15—N16 112.0 (3) C37—C36—H36 120.0
C32—N16—N15 101.7 (3) C36—C37—H37 119.3
O1—C1—O3 126.5 (3) C38—C37—C36 121.4 (4)
O1—C1—C2 116.8 (3) C38—C37—H37 119.3
O3—C1—C2 116.6 (3) C37—C38—C39 118.1 (4)
O2—C2—O4 126.3 (3) C37—C38—C41 121.5 (4)
O2—C2—C1 117.0 (3) C39—C38—C41 120.4 (4)
O4—C2—C1 116.7 (3) C38—C39—H39 119.4
N1—C3—H3A 119.0 C38—C39—C40 121.2 (4)
N1—C3—C4 122.1 (4) C40—C39—H39 119.4
C4—C3—H3A 119.0 C35—C40—C39 120.4 (4)
C3—C4—H4 120.3 C35—C40—H40 119.8
C5—C4—C3 119.4 (4) C39—C40—H40 119.8
C5—C4—H4 120.3 C38—C41—H41A 109.5
C4—C5—H5 120.1 C38—C41—H41B 109.5
C4—C5—C6 119.8 (4) C38—C41—H41C 109.5
C6—C5—H5 120.1 H41A—C41—H41B 109.5
C5—C6—H6 121.0 H41A—C41—H41C 109.5
C7—C6—C5 118.0 (4) H41B—C41—H41C 109.5
C7—C6—H6 121.0 O8—S2—O9 114.8 (2)
N1—C7—C6 123.1 (3) O8—S2—O10 111.9 (2)
N1—C7—C8 113.6 (3) O8—S2—C42 107.17 (16)
C6—C7—C8 123.4 (3) O9—S2—O10 110.33 (16)
N2—C8—C7 120.0 (3) O9—S2—C42 106.35 (17)
N4—C8—N2 114.5 (3) O10—S2—C42 105.76 (17)
N4—C8—C7 125.5 (3) C43—C42—S2 121.0 (3)
N2—C9—C10 127.2 (3) C43—C42—C47 119.2 (3)
N3—C9—N2 108.2 (3) C47—C42—S2 119.7 (3)
N3—C9—C10 124.5 (3) C42—C43—H43 120.1
C9—C10—H10A 109.5 C42—C43—C44 119.9 (4)
C9—C10—H10B 109.5 C44—C43—H43 120.1
C9—C10—H10C 109.5 C43—C44—H44 119.4
H10A—C10—H10B 109.5 C45—C44—C43 121.2 (4)
H10A—C10—H10C 109.5 C45—C44—H44 119.4
H10B—C10—H10C 109.5 C44—C45—C48 120.5 (4)
N5—C11—H11A 118.7 C46—C45—C44 117.9 (4)
N5—C11—C12 122.7 (4) C46—C45—C48 121.6 (4)
C12—C11—H11A 118.7 C45—C46—H46 119.2
C11—C12—H12 120.3 C45—C46—C47 121.6 (4)
C13—C12—C11 119.4 (4) C47—C46—H46 119.2
C13—C12—H12 120.3 C42—C47—H47 119.9
C12—C13—H13 120.4 C46—C47—C42 120.3 (3)
C12—C13—C14 119.2 (4) C46—C47—H47 119.9
C14—C13—H13 120.4 C45—C48—H48A 109.5
C13—C14—H14 120.9 C45—C48—H48B 109.5
C15—C14—C13 118.1 (4) C45—C48—H48C 109.5
C15—C14—H14 120.9 H48A—C48—H48B 109.5
N5—C15—C14 123.2 (3) H48A—C48—H48C 109.5
N5—C15—C16 114.0 (3) H48B—C48—H48C 109.5
C14—C15—C16 122.8 (3) H1WA—O1W—H1WB 104.5
N6—C16—C15 121.1 (3) H2WA—O2W—H2WB 116.3
N8—C16—N6 114.5 (3) H4WA—O4W—H4WB 117.9
N8—C16—C15 124.4 (3) H5WA—O5W—H5WB 112.9
N6—C17—C18 128.1 (4) H3WA—O3W—H3WB 107.7
N7—C17—N6 108.8 (3)
Fe1—O1—C1—O3 −178.1 (3) C8—N2—C9—C10 −180.0 (4)
Fe1—O1—C1—C2 1.9 (4) C9—N2—C8—N4 −0.7 (4)
Fe1—O2—C2—O4 178.1 (3) C9—N2—C8—C7 179.9 (3)
Fe1—O2—C2—C1 −2.0 (4) C9—N3—N4—C8 −0.3 (4)
Fe1—N1—C3—C4 171.0 (3) C11—N5—C15—C14 3.3 (5)
Fe1—N1—C7—C6 −172.4 (3) C11—N5—C15—C16 −177.8 (3)
Fe1—N1—C7—C8 7.7 (4) C11—C12—C13—C14 2.2 (6)
Fe1—N2—C8—N4 177.6 (2) C12—C13—C14—C15 −0.9 (6)
Fe1—N2—C8—C7 −1.8 (4) C13—C14—C15—N5 −2.0 (6)
Fe1—N2—C9—N3 −176.9 (3) C13—C14—C15—C16 179.2 (4)
Fe1—N2—C9—C10 2.6 (7) C14—C15—C16—N6 172.9 (3)
Fe1—N5—C11—C12 169.2 (3) C14—C15—C16—N8 −8.9 (6)
Fe1—N5—C15—C14 −168.8 (3) C15—N5—C11—C12 −1.9 (5)
Fe1—N5—C15—C16 10.1 (4) C16—N6—C17—N7 0.1 (5)
Fe1—N6—C16—N8 −179.6 (3) C16—N6—C17—C18 −180.0 (4)
Fe1—N6—C16—C15 −1.2 (4) C17—N6—C16—N8 −0.1 (5)
Fe1—N6—C17—N7 179.3 (3) C17—N6—C16—C15 178.3 (4)
Fe1—N6—C17—C18 −0.8 (8) C17—N7—N8—C16 −0.1 (5)
Fe2—O3—C1—O1 −177.3 (3) C19—N9—C23—C22 −1.8 (5)
Fe2—O3—C1—C2 2.7 (4) C19—N9—C23—C24 177.7 (3)
Fe2—O4—C2—O2 177.4 (3) C19—C20—C21—C22 −1.6 (7)
Fe2—O4—C2—C1 −2.5 (3) C20—C21—C22—C23 0.6 (7)
Fe2—N9—C19—C20 −168.9 (3) C21—C22—C23—N9 1.1 (6)
Fe2—N9—C23—C22 169.3 (3) C21—C22—C23—C24 −178.3 (4)
Fe2—N9—C23—C24 −11.2 (4) C22—C23—C24—N10 −177.0 (3)
Fe2—N10—C24—N12 −175.3 (3) C22—C23—C24—N12 4.6 (6)
Fe2—N10—C24—C23 6.1 (4) C23—N9—C19—C20 0.7 (6)
Fe2—N10—C25—N11 172.5 (3) C24—N10—C25—N11 0.0 (4)
Fe2—N10—C25—C26 −8.4 (7) C24—N10—C25—C26 179.1 (4)
Fe2—N13—C27—C28 −170.8 (3) C25—N10—C24—N12 −0.1 (4)
Fe2—N13—C31—C30 172.0 (3) C25—N10—C24—C23 −178.6 (3)
Fe2—N13—C31—C32 −7.7 (4) C25—N11—N12—C24 −0.1 (4)
Fe2—N14—C32—N16 −176.2 (2) C27—N13—C31—C30 −1.4 (5)
Fe2—N14—C32—C31 5.1 (4) C27—N13—C31—C32 179.0 (3)
Fe2—N14—C33—N15 174.8 (3) C27—C28—C29—C30 0.2 (7)
Fe2—N14—C33—C34 −6.4 (7) C28—C29—C30—C31 0.1 (6)
O1—C1—C2—O2 0.0 (4) C29—C30—C31—N13 0.5 (6)
O1—C1—C2—O4 179.9 (3) C29—C30—C31—C32 −179.9 (3)
O3—C1—C2—O2 180.0 (3) C30—C31—C32—N14 −177.9 (3)
O3—C1—C2—O4 −0.1 (4) C30—C31—C32—N16 3.5 (6)
N1—C3—C4—C5 0.7 (6) C31—N13—C27—C28 1.7 (5)
N1—C7—C8—N2 −4.0 (5) C32—N14—C33—N15 0.1 (4)
N1—C7—C8—N4 176.7 (3) C32—N14—C33—C34 178.9 (4)
N3—N4—C8—N2 0.6 (4) C33—N14—C32—N16 0.3 (4)
N3—N4—C8—C7 179.9 (3) C33—N14—C32—C31 −178.4 (3)
N4—N3—C9—N2 −0.1 (4) C33—N15—N16—C32 0.6 (4)
N4—N3—C9—C10 −179.7 (4) S1—C35—C36—C37 178.8 (3)
N5—C11—C12—C13 −0.9 (6) S1—C35—C40—C39 −179.3 (4)
N5—C15—C16—N6 −6.1 (5) O5—S1—C35—C36 36.1 (4)
N5—C15—C16—N8 172.2 (4) O5—S1—C35—C40 −146.0 (3)
N7—N8—C16—N6 0.1 (5) O6—S1—C35—C36 154.5 (3)
N7—N8—C16—C15 −178.2 (4) O6—S1—C35—C40 −27.6 (4)
N8—N7—C17—N6 0.0 (6) O7—S1—C35—C36 −86.8 (4)
N8—N7—C17—C18 −179.9 (4) O7—S1—C35—C40 91.1 (4)
N9—C19—C20—C21 1.0 (7) C35—C36—C37—C38 0.4 (6)
N9—C23—C24—N10 3.5 (5) C36—C35—C40—C39 −1.3 (7)
N9—C23—C24—N12 −174.8 (4) C36—C37—C38—C39 −1.3 (6)
N11—N12—C24—N10 0.1 (4) C36—C37—C38—C41 177.9 (4)
N11—N12—C24—C23 178.6 (3) C37—C38—C39—C40 0.8 (7)
N12—N11—C25—N10 0.1 (4) C38—C39—C40—C35 0.5 (8)
N12—N11—C25—C26 −179.1 (3) C40—C35—C36—C37 0.9 (6)
N13—C27—C28—C29 −1.1 (6) C41—C38—C39—C40 −178.4 (4)
N13—C31—C32—N14 1.8 (5) S2—C42—C43—C44 179.2 (3)
N13—C31—C32—N16 −176.8 (3) S2—C42—C47—C46 −179.0 (3)
N15—N16—C32—N14 −0.5 (4) O8—S2—C42—C43 −114.5 (4)
N15—N16—C32—C31 178.1 (3) O8—S2—C42—C47 63.3 (4)
N16—N15—C33—N14 −0.5 (4) O9—S2—C42—C43 8.7 (4)
N16—N15—C33—C34 −179.3 (4) O9—S2—C42—C47 −173.5 (3)
C3—N1—C7—C6 0.3 (5) O10—S2—C42—C43 126.1 (3)
C3—N1—C7—C8 −179.6 (3) O10—S2—C42—C47 −56.2 (3)
C3—C4—C5—C6 0.0 (6) C42—C43—C44—C45 −0.3 (7)
C4—C5—C6—C7 −0.6 (6) C43—C42—C47—C46 −1.2 (6)
C5—C6—C7—N1 0.4 (6) C43—C44—C45—C46 −1.0 (7)
C5—C6—C7—C8 −179.7 (3) C43—C44—C45—C48 179.2 (4)
C6—C7—C8—N2 176.1 (3) C44—C45—C46—C47 1.2 (6)
C6—C7—C8—N4 −3.2 (6) C45—C46—C47—C42 −0.1 (6)
C7—N1—C3—C4 −0.9 (5) C47—C42—C43—C44 1.4 (6)
C8—N2—C9—N3 0.4 (4) C48—C45—C46—C47 −179.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O10i 0.86 1.95 2.766 (4) 159
N7—H7···O6ii 0.86 2.34 3.064 (5) 142
N7—H7···O7ii 0.86 2.34 3.141 (6) 154
N11—H11···O9iii 0.86 1.92 2.769 (4) 170
N15—H15···O5iv 0.86 1.99 2.825 (4) 163
C4—H4···O2Wv 0.93 2.48 3.383 (5) 165
C11—H11A···O5W 0.93 2.49 3.206 (8) 134
C28—H28···O4Wvi 0.93 2.54 3.421 (6) 159
O2W—H2WA···O4 0.85 2.10 2.949 (4) 174
O2W—H2WB···O5 0.86 1.99 2.838 (4) 172
O4W—H4WA···O1 0.87 2.34 3.123 (5) 150
O4W—H4WA···O3 0.87 2.25 3.037 (4) 151
O4W—H4WB···O10 0.87 1.92 2.788 (5) 174
O5W—H5WA···O4Wvi 0.86 1.98 2.810 (11) 159
O5W—H5WB···O4W 0.86 2.28 2.850 (10) 123
C13—H13···O8vi 0.93 2.57 3.256 (5) 131
C21—H21···O7v 0.93 2.44 3.280 (6) 150

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) −x+1, −y+1, −z+1.

Funding Statement

This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

  1. Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.
  2. Buchanan, B. E., Vos, J. G., Kaneko, M., van der Putten, W. J. M., Kelly, J. M., Hage, R., de Graaff, R. A. G., Prins, R., Haasnoot, J. G. & Reedijk, J. (1990). J. Chem. Soc. Dalton Trans. pp. 2425–2431.
  3. Cao, H., Sun, H., Yin, Y., Wen, X., Shan, G., Su, Z., Zhong, R., Xie, W., Li, P. & Zhu, D. (2014). J. Mater. Chem. C. 2, 2150.
  4. Chen, D. M., Ma, X. Z., Zhang, X. J., Xu, N. & Cheng, P. (2015). Inorg. Chem. 54, 2976–2982. [DOI] [PubMed]
  5. Cheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007). Inorg. Chem. 46, 1135–1143. [DOI] [PubMed]
  6. Craig, G. A., Barrios, L. A., Costa, J. S., Roubeau, O., Ruiz, E., Teat, S. J., Wilson, C. C., Thomas, L. & Aromí, G. (2010). Dalton Trans. 39, 4874. [DOI] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Guetlich, P. & Schollmeyer, D. (2015). Private Communication (CCDC 1434401). CCDC, Cambridge, England.
  10. Gusev, A., Nemec, I., Herchel, R., Riush, I., Titiš, J., Boča, R., Lyssenko, K., Kiskin, M., Eremenko, I. & Linert, W. (2019). Dalton Trans. 48, 10526–10536. [DOI] [PubMed]
  11. Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 1, 1–47.
  12. Han, Y., Zheng, H., Li, H., Wang, H., Wang, S. M., Geng, Y. & Wang, L. (2017). RSC Adv. 7, 5578–5582.
  13. Huang, F.-P., Yao, P.-F., Li, H.-Y., Yu, Q., Bian, H.-D. & Liang, H. (2015). Chem. Commun. 51, 7598–7601. [DOI] [PubMed]
  14. Karimpour, T., Safaei, E., Wojtczak, A. & Cotič, P. (2013). J. Mol. Struct. 1038, 230–234.
  15. Kucheriv, O. I., Fritsky, I. O. & Gural’skiy, I. A. (2021). Inorg. Chim. Acta, 521, 120303.
  16. Li, H., Wang, Y., Cai, H., Xu, Z., Jia, L. & Hou, H. (2015). RSC Adv. 5, 89833–89838.
  17. Muller, K., Sun, Y., Heimermann, A., Menges, F., Niedner-Schatteburg, G., van Wüllen, C. & Thiel, W. R. (2013). Chem. Eur. J. 19, 7825–7834. [DOI] [PubMed]
  18. Oliveira, W. X. C., Pereira, C. L. M., Pinheiro, C. B., Lloret, F. & Julve, M. (2018). Inorg. Chem. Front. 5, 1294–1306.
  19. Paine, T. K., England, J. & Que, L. (2007). Chem. Eur. J. 13, 6073–6081. [DOI] [PubMed]
  20. Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.
  21. Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449. [DOI] [PMC free article] [PubMed]
  22. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  23. Ruiter, G. de, Costa, J. S., Lappalainen, K., Roubeau, O., Gamez, P. & Reedijk, J. (2008). Inorg. Chem. Commun. 11, 787–790.
  24. Selmi, W., Hosni, N., Marchivie, M., Maghraoui-Meherzi, H. & Zid, M. F. (2021). J. Mol. Struct. 1228, 129719.
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Spek, A. L., van Koningsbruggen, P. J. & Haasnoot, J. G. (2004). Private Communication (CCDC 232594). CCDC, Cambridge, England.
  28. Yao, P. F., Tao, Y., Li, H. Y., Qin, X. H., Shi, D. W., Huang, F. P., Yu, Q., Qin, X. X. & Bian, H. D. (2015). Cryst. Growth Des. 15, 4394–4405.
  29. Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. & Lampeka, R. D. (2021). Theor. Exp. Chem. 57, 358–365.
  30. Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021). Chem. Pap. 75, 4899–4906.
  31. Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984.
  32. Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. & Lampeka, R. D. (2017). Chem. Pap. 71, 2003–2009.
  33. Zhang, X., Wu, X. X., Guo, J. H., Huo, J. Z. & Ding, B. (2017). J. Mol. Struct. 1127, 183–190.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007460/vm2269sup1.cif

e-78-00829-sup1.cif (832.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007460/vm2269Isup2.hkl

e-78-00829-Isup2.hkl (784.4KB, hkl)

CCDC reference: 2191587

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES