
A benchmark study of deep learning‑based 
multi‑omics data fusion methods for cancer
Dongjin Leng1†, Linyi Zheng2†, Yuqi Wen1†, Yunhao Zhang2, Lianlian Wu3, Jing Wang4, Meihong Wang2, 
Zhongnan Zhang2*, Song He1* and Xiaochen Bo1*    

Background
Advances in high-throughput techniques have led to an explosion of multi-omics data 
in biomedical research. Each type of omics data helps researchers to understand the 
complex biological systems from different perspectives, such as genomics, transcriptom-
ics, proteomics, and metabolomics [1]. Researchers have utilized omics data to address 
key biomedical problems, such as personalized complex disease therapy [2, 3], drug 
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discovery [4, 5], and cancer drug target discovery [6, 7]. Multi-omics data allow research-
ers to comprehensively understand biologic systems from different aspects because 
these omics have complementary roles and work together to perform a certain biological 
function. However, multi-omics data are complex, high-dimensional, and heterogeneous 
[8, 9], and it is challenging to extract valuable knowledge from these multi-omics data. 
To address this challenge, various methods have been developed, such as multiple kernel 
learning, Bayesian consensus clustering, machine learning (ML)-based dimensionality 
reduction, similarity network fusion, and deep learning (DL) methods [10, 11].

Some researchers reviewed and tested several traditional ML algorithms from a data 
fusion perspective [10, 12–15]. Rappoport et  al. [10] evaluated the methods including 
multiple kernel learning, Bayesian consensus clustering, ML-based dimension reduc-
tion, and similarity network fusion. Tini et al. [15] and Pierre-Jean et al. [14] evaluated 
the methods including Bayesian consensus clustering, ML-based dimension reduction, 
and similarity network fusion. Cantini et al. tested and discussed nine joint dimensional-
ity reduction methods [12]. Chauvel et  al. focused on the Bayesian consensus cluster-
ing and dimension reduction methods [13]. According to the above evaluations, each 
of these ML methods performs differently on different datasets and tasks. As a rapidly 
developing branch in the field of ML, DL utilizes efficient algorithms to process complex, 
high-dimensional, and heterogeneous data. Compared to traditional ML algorithms, DL 
can better capture nonlinearities and complex relationships in multi-omics data. How-
ever, few benchmark studies comprehensively compare the performance of various DL 
methods.

This paper evaluated the performance of 16 representative and open-source models 
from all DL-based data fusion methods on three different datasets, i.e., simulated multi-
omics datasets, single-cell multi-omics datasets, and cancer multi-omics datasets. These 
16 models were grouped into two categories: supervised models (six) and unsupervised 
models (ten). Accordingly, for each of the datasets, two tasks were designed: classifica-
tion and clustering. For simulated and single-cell datasets, ground-truth samples were 
retrieved through classification and clustering by using six supervised models and ten 
unsupervised models, respectively. For cancer datasets, supervised DL methods were 
evaluated in the classification tasks on five types of cancer datasets with ground-truth 
cancer subtypes. Meanwhile, unsupervised DL methods were evaluated in the cluster-
ing tasks. Furthermore, the associations of the embeddings with survival and clinical 
annotations were evaluated. Based on the benchmarking results, we provided recom-
mendations for biologists to choose appropriate methods in different scenarios and 
give guidelines on methodological improvements for researches focusing on algorithm 
design of multi-omics data fusion.

Results
DL‑based multi‑omics data fusion methods and benchmarking workflow

DL-based multi-omics data fusion methods aim to learn low-dimensional embeddings 
from the fusion of multi-omics data for various downstream tasks. According to our 
investigation, various DL-based data fusion methods can achieve this goal, including 
fully connected neural network (FCNN) [16–20], convolutional neural network (CNN) 
[21–23], autoencoder (AE) [24–34], graph neural network (GNN) [35–39], capsule 
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network (CapsNet) [40, 41], generative adversarial network (GAN) [42], and mixture 
DL-based models for multi-omics data fusion [43, 44]. Most of these models in previous 
publications were used with different strategies (early or late fusion). Early fusion means 
each omics data are fused first and then inputted into DL-based models. Late fusion 
means the multi-omics data are inputted into DL-based models first and then fused 
for downstream tasks. Because of the difference in input omics data and downstream 
tasks, it is difficult to compare these methods directly. To make different methods com-
parable, in this study, we first extracted the data fusion part from the original model and 
then compared the performance on unified datasets and tasks. We selected multi-omics 
data fusion methods according to the following two rules: (1) The original models of the 
selected methods have open-source code, and (2) the original models used multi-omics 
fusion and the data fusion part of the original model can be extracted separately so that 
we can evaluate the data fusion on unified datasets and tasks. To comprehensively evalu-
ate the performance of the models, three types of multi-omics datasets were used in this 
study: simulated data, single-cell data, and cancer data. Notably, the evaluation mod-
els can be grouped into two categories: supervised models and unsupervised models. 
Therefore, for each of the datasets, two tasks were designed: classification for supervised 
models and clustering for unsupervised models. Classification performance was evalu-
ated using three benchmarking metrics, namely accuracy, F1 macro, and F1 weighted. 
Clustering performance was evaluated using four benchmarking metrics, namely Jac-
card index (JI), C-index, silhouette score, and Davies Bouldin score. Furthermore, for the 
cancer multi-omics datasets, this paper further evaluated the methods’ ability to capture 
the association of multi-omics dimensionality reduction results with survival and clini-
cal annotations. The associations could reflect representational ability and interpretabil-
ity of the fused low-dimensional embeddings (Fig. 1, Table 1).

To make the structural differences of different models easy to understand, we renamed 
the model according to the structural characteristics (early or late fusion). The evalua-
tion models are described as follows: a late fusion method based on AutoEncoder (lfAE), 
an early fusion method based on AutoEncoder (efAE), a late fusion method based on 
Denoising AutoEncoder (lfDAE), an early fusion method based on Denoising AutoEn-
coder (efDAE), an early fusion method based on Variational AutoEncoder (efVAE), an 
early fusion method based on Stacked Variational AutoEncoder (efSVAE), an efVAE 
method whose loss function is a maximum mean discrepancy (efmmdVAE), a late fusion 
method based on Neural Network (lfNN), an early fusion method based on Neural Net-
work (efNN), a late fusion method based on Convolutional Neural Network (lfCNN), an 
early fusion method based on Convolutional Neural Network (efCNN), a multi-omics 
Graph Convolutional Network method (moGCN), and a multi-omics Graph Attention 
network method (moGAT). To accommodate different evaluation data, this study modi-
fied the input of these ten original models proposed by Ma et  al. [24], Lee et  al. [26], 
Poirion et al. [28], Guo et al. [29], Zhang et al. [33], Ronen et al. [32], Hira et al. [34], 
Kuru et al. [20], Preuer et al. [19], Islam et al. [22], Fu et al. [21], Wang et al. [38], and 
Xing et al. [39], respectively. Specifically, Ma et al. [24] used the late fusion AEs on gene 
expression, miRNA expression, and DNA methylation data to develop a robust model to 
predict clinical target variables. Lee et al. [26] developed an early fusion AE model and 
fused gene expression, miRNA expression, DNA methylation, and CNV data to predict 
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lung adenocarcinoma survival rate. Poirion et  al. [28] used gene expression, miRNA 
expression, and DNA methylation as input to predict the survival subtypes in bladder 
cancer by utilizing the late fusion DAE algorithm. Guo et al. [29] fed gene expression, 
miRNA expression, and CNV data into a novel framework to robustly identify ovar-
ian cancer subtypes using the early fusion DAEs. Zhang et al. [33] used the early fusion 
VAE to classify samples from DNA methylation and gene expression profiles. Ronen 
et al. [32] developed an early fusion SVAE and used gene expression, miRNA expression, 
and DNA methylation to classify cancer subtypes. Hira et al. [34] used gene expression, 
miRNA expression, and DNA methylation as input and improved the loss function of 
early fusion VAE to analyze ovarian cancer through patient stratification analysis. The 
models proposed by Kuru et al. [20], Preuer et al. [19], Islam et al. [22], Fu et al. [21], 
Wang et al. [38], and Xing et al. [39] are supervised. Kuru et al. [20] and Preuer et al. 
[19] used gene expression and the drug pairs’ chemical structure data as input to predict 
drug synergy. Their models are based on the late and early fusion FCNN, respectively. 

Fig. 1  Schematic of the benchmarking workflow. a Three different multi-omics datasets cover simulated, 
single-cell, and cancer multi-omics datasets. b 16 DL methods were used to fuse the multi-omics data. c The 
DL methods were evaluated in various scenarios
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Islam et al. developed a late fusion CNN and used CNV, gene expression, and clinical 
data to classify molecular subtypes. Fu et  al. used variation counts, gene expression, 
QTANs/QTALs number, and WGCNA module features as the input of an early fusion 
CNN to predict gene regulation mechanisms. Wang et al. [38] introduced a novel multi-
omics data fusion method for biomedical classification and used gene expression, DNA 
methylation, miRNA expression data, and the corresponding similarity network as input 
to train a GCN to generate initial predictions for the category labels. Xing et al. [39] used 
a gene co-expression network as the input of GAT for disease diagnosis and prognosis.

Furthermore, considering evaluation completeness, our own frameworks were 
designed, including a late fusion method based on Variational Autoencoder (lfVAE), a 
late fusion method based on Stacked Variational Autoencoder (lfSVAE), and a lfVAE 
method with a loss function of maximum mean discrepancy (lfmmdVAE).

Evaluation of DL‑based multi‑omics data fusion methods on simulated datasets

This study first evaluated DL-based multi-omics fusion methods on simulated multi-
omics datasets that were generated using the InterSIM CRAN package [45] (Fig. 2). This 
package can generate complex and interrelated multi-omics data, including DNA meth-
ylation, mRNA gene expression, and protein expression data. One hundred simulated 

Table 1  Evaluation of the DL-based multi-omics data fusion methods and metrics

BRCA​ breast cancer, GBM glioblastoma, SARC​ sarcoma, LUAD lung adenocarcinoma, STAD stomach cancer, AML acute 
myeloid leukemia, BRCA​ breast cancer, COAD colon cancer, GBM glioblastoma, KIRC kidney clear cell carcinoma, LIHC kidney 
chromophobe, LUSC lung squamous cell carcinoma, SKCM melanoma, OV ovarian cancer, SARC​ sarcoma

Dataset Evaluation model Task type Evaluation metrics

Simulated multi-omics datasets lfNN, efNN, lfCNN, 
efCNN, moGCN, 
moGAT​

Classification 1. Accuracy
2. F1 macro
3. F1 weighted

lfAE, efAE, lfDAE, 
efDAE, lfVAE, efVAE, 
lfSVAE, efSVAE, lfm-
mdVAE, efmmdVAE

Clustering 1. Jaccard Index
2. C-index
3. Silhouette score
4. Davies Bouldin score

Single-cell multi-omics datasets lfNN, efNN, lfCNN, 
efCNN, moGCN, 
moGAT​

Classification 1. Accuracy
2. F1 macro
3. F1 weighted

lfAE, efAE, lfDAE, 
efDAE, lfVAE, efVAE, 
lfSVAE, efSVAE, lfm-
mdVAE, efmmdVAE

Clustering 1. Jaccard Index
2. C-index
3. Silhouette score
4. Davies Bouldin 
Score

Cancer multi-omics 
datasets

BRCA, GBM, SARC, 
LUAD, STAD

lfNN, efNN, lfCNN, 
efCNN, moGCN, 
moGAT​

Classification 1. Accuracy
2. F1 macro
3. F1 weighted

AML, BRCA, COAD, 
GBM, KIRC, LIHC, 
LUSC, SKCM, OV, 
SARC​

lfAE, efAE, lfDAE, 
efDAE, lfVAE, efVAE, 
lfSVAE, efSVAE, lfm-
mdVAE, efmmdVAE

Clustering 1. C-index
2. Silhouette score
3. Davies Bouldin 
Score

Association of 
embeddings 
with survival

Cox proportional-
hazards regression

Association of 
embeddings 
with clinical 
annotations

Selectivity score
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samples with 1000-dimensional features were generated. In generation process, the clus-
ter number parameter of 100 simulated samples is set to 5, 10, and 15. Furthermore, 
we generated each cluster of samples in two conditions: all clusters have the same size, 
or the clusters have variable random sizes. This simulates a real application scenario in 
which the proportion of samples belonging to each cluster (subtype) could be the same 
or different.

Six supervised DL methods are evaluated in the classification tasks. These six super-
vised methods are intrinsically designed for sample classification, and they classify the 
samples of ground-truth clusters (subtypes). Their performances were then compared 
based on the classification results. For the ten other unsupervised DL methods, they 
were applied to fuse the simulated multi-omics data to obtain 5-dimensional, 10-dimen-
sional, and 15-dimensional embeddings first. The dimension of the embeddings was 
set according to the number of clusters in the simulated multi-omics data. Then, the 
k-means algorithm was adopted to cluster the multi-omics dimensionality reduction 
results. The clustering of the samples was finally obtained to compare the performances 
of the ten unsupervised methods.

To quantitatively evaluate the performances of the six supervised DL methods, we 
partitioned the dataset into training and test sets at the ratio of 3:1 and performed 4-fold 
cross-validation. Meanwhile, three metrics (accuracy, F1 macro, and F1 weighted score) 
were calculated (see “Methods”). It can be seen that the efNN, moGCN, and moGAT 
achieved better classification performance with higher accuracy, F1 macro, and F1 
weighted values (Table 2, Additional file 1: Table S1). The performance of the two GNN-
based methods (moGCN and moGAT) is remarkable. The two CNN-based methods 
(efCNN and lfCNN) are less effective on this benchmark. This indicates that using CNN 
with a one-dimensional convolution layer on the input vector may not be optimal in 
multi-omics data fusion.

Fig. 2  Workflow of the evaluation on simulated multi-omics datasets. a InterSIM CRAN package generated 
three kinds of omics data that were used as input. b Supervised DL methods are evaluated in the 
classification tasks. The performance of these methods was based on 4-fold cross-validation and was 
evaluated by three metrics: accuracy, F1 macro, and F1 weighted score. c Unsupervised DL methods are 
applied to fuse the simulated multi-omics data to obtain 5-dimensional, 10-dimensional, and 15-dimensional 
embeddings first. Then k-means algorithm is used to cluster the multi-omics dimensionality reduction results. 
We employed JI, C-index, silhouette score and Davies Bouldin score as the evaluation indexes of clustering
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Table 2  Performance of six supervised methods in the condition that all clusters have the same size

Methods 5 clusters of the same size 10 clusters of the same size 15 clusters of the same size

Accuracy F1 
macro

F1 
weighted

Accuracy F1 
macro

F1 
weighted

Accuracy F1 
macro

F1 
weighted

lfNN 1.0 1.0 1.0 0.900 0.860 0.875 0.860 0.792 0.818

efNN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
lfCNN 1.0 1.0 1.0 0.760 0.707 0.696 0.880 0.751 0.835

efCNN 1.0 1.0 1.0 1.0 1.0 1.0 0.920 0.911 0.893

moGCN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
moGAT​ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Fig. 3  JI, C-index, silhouette score, and Davies Bouldin score of the ten unsupervised methods for clustering 
on simulated multi-omics datasets. An external index JI (a) and three internal indices C-index, silhouette score 
and Davies Bouldin score (b, c, d) were calculated based on the clustering on the simulated data. The cluster 
number is set to 5, 10, and 15. SS and RS represent two conditions, i.e., all clusters have the same size and 
the clusters have variable random sizes. The k-means clustering was run over 1000 times. The results of a are 
presented as mean values of JIs
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For the clustering tasks, JI was employed to measure the consistency between multi-
omics data fusion-based clusters and the ground-truth clusters. JI is an external com-
parison index used to measure the similarity and diversity of sample sets. The value of 
the JI ranges from 0 to 1, and the higher the value, the better the clustering result. It can 
be seen from the experimental results that most methods showed stable performance 
on different numbers of clusters (Fig. 3a, Additional file 1: Table S2). Compared with the 
condition that clusters have variable random sizes, most methods obtained higher JI val-
ues in the condition that all clusters have the same size. Most of the methods performed 
reasonably well in different simulated scenarios (JIs >0.6), except for the SVAE meth-
ods. According to JI, efAE, efDAE, and efVAE are overall the best-performing methods. 
These methods are among the top three best methods in 6/6, 5/6, and 3/6 simulated 
scenarios, according to JI.

In addition to the external comparison index (JI), this paper also employed three inter-
nal indices (C-index, silhouette score, and Davies Bouldin score) to evaluate the cluster-
ing performance (Fig. 3b,c,d, Additional file 1: Table S3,S4,S5). The internal indices were 
used to measure the goodness of a clustering structure without external information 
[46]. The values of the C-index, silhouette score, and Davies Bouldin score range from 
0 to 1, −1 to 1, and 0 to infinity. The lower the C-index and Davies Bouldin score are, 
the better the clustering results are. While the higher silhouette score indicates better 
clustering result. According to C-index, lfmmdVAE achieves the best performance and 
is among the top three methods in 6/6 scenarios. According to the silhouette score and 
Davies Bouldin score, efVAE is the best-performing method. Meanwhile, the two SVAE 
methods obtain the worst performance according to the three internal indices.

Evaluation of DL‑based multi‑omics data fusion methods on single‑cell datasets

Applying multi-omics data fusion methods to single-cell multi-omics data helps 
to systematically explore the heterogeneity of cells [47]. To further benchmark the 

Fig. 4  Workflow of the evaluation on single-cell multi-omics datasets. a Two kinds of omics data were 
used as input. b Supervised DL methods are evaluated in the classification tasks. The performance of these 
methods was based on 4-fold cross-validation and was evaluated by three metrics: accuracy, F1 macro, and 
F1 weighted score. c Unsupervised DL methods were first applied to fuse the single-cell multi-omics data to 
obtain the fused two-dimensional embeddings. Then k-means algorithm was used to cluster the multi-omics 
dimensionality reduction results into three categories. We employed JI, C-index, silhouette score and Davies 
Bouldin score as the evaluation indexes of clustering
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performances of DL-based multi-omics data fusion methods, it is crucial to evaluate 
these methods on single-cell multi-omics data.

The single-cell datasets consist of two omics data types, i.e., single-cell chromatin 
accessibility data and single-cell gene expression data (Fig. 4). The number of features 
for these two types of omics data is 49,073 and 207,203, respectively. And the two omics 
data were obtained from three different cancer cell lines (HTC, Hela, and K562) for a 
total of 206 cells [48].

Similar to the evaluation on the simulated multi-omics data above, this study first eval-
uated six supervised classification methods on the single-cell dataset. These methods 
classified the samples of three cancer cell lines. The performance of these methods was 
obtained based on 4-fold cross-validation and was evaluated by three metrics: accuracy, 

Table 3  Performance of six supervised methods on single-cell multi-omics datasets

Accuracy F1 macro F1 weighted

lfNN 1.0 1.0 1.0
efNN 1.0 1.0 1.0
lfCNN 0.962 0.952 0.962

efCNN 0.981 0.976 0.981

moGCN 1.0 1.0 1.0
moGAT​ 1.0 1.0 1.0

Fig. 5  JI, C-index, silhouette score, and Davies Bouldin score of the ten unsupervised methods for clustering 
on single-cell multi-omics datasets. An external index JI (a) and three internal indices C-index, silhouette 
score and Davies Bouldin score (b, c, d) were calculated based on the clustering on the single-cell data. The 
cluster number is three. The k-means clustering was run over 1000 times. The results of a are presented as 
mean values of JIs
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F1 macro, and F1 weighted score (Table 3). It can be seen that the results are similar to 
those on the simulated data sets. lfNN, efNN, moGCN, and moGAT all perform very 
well.

For the clustering tasks, ten unsupervised DL methods were first applied to fuse the 
single-cell multi-omics data to obtain the fused two-dimensional embeddings. Then, 
the k-means algorithm was employed to cluster the multi-omics dimensionality reduc-
tion results into three categories. The clustering of the samples was finally obtained to 
compare the performances of the ten unsupervised methods. This study adopted JI, 
C-index, silhouette score, and Davies Bouldin score as the evaluation indexes of cluster-
ing. According to the external index JI, efmmdVAE and efVAE are the best-performing 
methods (Fig.  5, Additional file  1: Table  S6). According to the three internal indices, 
lfAE, lfDAE, and efmmdVAE achieve good performance. Overall, efmmdVAE and lfAE 
are among the top three methods in 3/4 evaluation indices, so they are the most promis-
ing methods on this benchmark.

Evaluation of DL‑based multi‑omics data fusion methods on cancer datasets

In recent years, the rapid development of high-throughput sequencing technologies 
enables researchers to obtain multi-omics molecular profiles of various cancer types. To 
better understand the molecular and clinical characteristics of cancers, it is crucial to 
use multi-omics data fusion methods [49].

This study evaluated DL-based multi-omics fusion methods on The Cancer Genome 
Atlas (TCGA) cancer multi-omics datasets (Fig. 6). The datasets consist of three omics 

Fig. 6  Workflow of the evaluation on cancer multi-omics datasets. a Three kinds of omics data were used 
as input. b Supervised DL methods are evaluated in the classification tasks. The performance of these 
methods was based on 4-fold cross-validation and was evaluated by three metrics: accuracy, F1 macro, and 
F1 weighted score. c Unsupervised DL methods were first applied to fuse the cancer multi-omics data to 
obtain the fused 10-dimensional embeddings. Then k-means algorithm was used to cluster the multi-omics 
dimensionality reduction results into several categories. We employed C-index, silhouette score and Davies 
Bouldin score as the evaluation indexes of clustering. Furthermore, the associations of the embeddings with 
survival and clinical annotations were evaluated
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data types: gene expression, DNA methylation, and miRNA expression. For the clas-
sification tasks, we collected five different cancer datasets with ground-truth cancer 
subtypes from TCGA, including breast cancer (BRCA), glioblastoma (GBM), sarcoma 
(SARC), lung adenocarcinoma (LUAD), and stomach cancer (STAD). For the cluster-
ing task, to ensure the authenticity of the evaluation, the data used in this study were 
obtained from benchmark cancer datasets (http://​acgt.​cs.​tau.​ac.​il/​multi_​omic_​bench​
mark/​downl​oad.​html) [10].

Similar to the evaluation on the simulated multi-omics data and single-cell multi-
omics data above, six supervised classification methods were firstly evaluated on the 
five different cancer datasets with ground-truth cancer subtypes. These methods 
classified the samples of different ground-truth cancer subtypes (Table  4). The per-
formance of these methods was obtained based on 4-fold cross-validation and was 
evaluated by three metrics: accuracy, F1 macro, and F1 weighted score (see “Meth-
ods”). For each cancer data set, the samples with all three omics data types were 
selected, and 59, 272, 206, 144, and 198 samples were obtained for BRCA, GBM, 
SARC, LUAD, and STAD, respectively. The subtypes for each cancer are listed in 
Table  4. Among the five supervised methods (Table  5), moGAT obtain the most 
promising results on BRCA and GBM. moGCN, lfNN, and efNN achieve the best per-
formance on SARC, LUAD, and STAD, respectively. lfCNN obtains the lowest scores 
of all the three metrics on 3/5 datasets. In this benchmark, the GNN-based methods 
show great advantages.

In addition, it can be seen that all methods do not perform well on BRCA. This is 
because BRCA has significantly fewer samples than other cancers. For GBM, although 
it has the largest number of samples among the five cancers, most methods do not 
achieve good performance. According to investigation, it is found that the subtype 
labels of GBM may have some deviations. Recent studies suggest that GBM should be 
classified into three subtypes instead of the four subtypes labeled by TCGA [50–53].

To further explore how the data size influences the benchmarks, we reduced the 
amount of data and observed the effects of data reduction. Specifically, 20%, 40%, 
60%, and 80% of the total samples in the original data were randomly selected. Then, 
all six methods were evaluated under different amounts of data. The results of the 
data reduction experiment are illustrated in Fig. S1. Except for two GNN-based meth-
ods (moGAT and moGCN), the performances of other methods are impaired when 

Table 4  The sizes and features of cancer benchmark datasets used in classification task

# number, Exp gene expression, Meth DNA methylation, miRNA miRNA expression, DDLPS dedifferentiated liposarcoma, LMS 
leiomyosarcoma, UPS undifferentiated pleomorphic sarcoma, MFS myxofibrosarcoma, MPNST malignant peripheral nerve 
sheath tumor, SS synovial sarcoma, TRU​ formerly bronchioid, PI formerly squamoid, PP formerly magnoid, EBV Epstein–Barr 
virus, MSI microsatellite instability, GS genomically stable, CIN chromosomal instability

Cancers Categories (cancer subtypes) # of samples # of features
Exp, Meth, miRNA

BRCA​ Luminal A: 28, Luminal B: 15, Basal-like: 12, HER2-enriched: 4 59 6000, 5000, 892

GBM Proneural: 71, Classical: 70, Mesenchymal: 84, Neural: 47 272 6000, 5000, 534

SARC​ DDLPS: 50, LMS: 80, UPS: 44, MFS: 17, MPNST: 5, SS: 10 206 6000, 5000, 1046

LUAD TRU: 51, PI: 52, PP: 41 144 6000, 5000, 554

STAD EBV: 20, MSI: 38, GS: 43, CIN: 97 198 6000, 5000, 519

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
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the amount of data decreases. The performance of the two GNN-based methods fluc-
tuates greatly. This may be because the network structure changes greatly with the 
change of data for the GNN-based methods.

For the clustering tasks, ten unsupervised DL methods were first applied to fuse the 
cancer multi-omics data to obtain the fused 10-dimensional embeddings. The embed-
ding dimension was set as that in the work of Bismeijer et al. [54] and Cantini et al. 
[12]. Then, the k-means algorithm was employed to cluster the multi-omics dimen-
sionality reduction results into several categories. Because the optimal cluster num-
ber (the ground-truth cancer subtypes) was uncertain, the number of clusters was set 
from two to six in this study. Finally, the clustering of the samples was obtained to 
compare the performances of the ten unsupervised methods. This study adopted the 
C-index, silhouette score, and Davies Bouldin score as the evaluation indexes of clus-
tering (Fig. 7a, b, c, Additional file 1: Table S7, S8, S9). Note that JI was not used as the 
evaluation index because of the lack of information on ground-truth cancer subtypes 
in the benchmark cancer datasets. Among these ten DL methods, efmmdVAE, efVAE, 
and lfmmdVAE are the best-performing methods. They are among the top three best 
methods in 42/50, 41/50, and 21/50 datasets according to C-index, in 47/50, 42/50, 
and 43/50 according to silhouette score, and in 46/50, 39/50, and 48/50 according to 
Davies Bouldin score, respectively. In particular, efmmdVAE outperforms the other 
methods in terms of C-index, silhouette score, and Davies Bouldin score on KIRC.

To further evaluate the effect of data fusion by using these DL-based methods, we 
not only used the fused ten-dimensional embeddings for clustering analysis but also 
evaluated the associations of the embeddings with survival and clinical annotations 
(Fig. 8). On the one hand, the associations could reflect representational ability of the 
fused ten-dimensional embeddings, and on the other hand, the associations partly 
reflect the interpretability of the embeddings.

To evaluate the association of the embeddings with survival, we employed the Cox 
proportional-hazards regression model and calculated Bonferroni-corrected p-val-
ues. The Bonferroni-corrected p-values indicate to what extent an embedding can 
distinguish the difference between the population survival conditions. The statisti-
cal significance threshold was set to 0.05. The embeddings with strong association 
with survival (the Bonferroni-corrected p-values smaller than 0.05) are illustrated in 
Fig. 7d. The more this type of embeddings, the better the performance of the method. 
In fact, survival is a comprehensive clinical characteristic affected by many factors. 
For example, the survival markers of poor prognosis for adrenocortical cancer can be 
various types of genes, miRNA, and DNA methylation signatures [55–58]. Similar to 

(See figure on next page.)
Fig. 7  C-index, silhouette score, Davies Bouldin score, and the association of the embeddings with survival 
and clinical annotations for the ten unsupervised methods on cancer multi-omics datasets. C-index (a), 
silhouette score (b) and Davies Bouldin score (c) were calculated based on the clustering on the cancer 
data. The number of clusters is set from two to six. The k-means clustering was run over 1000 times. d The 
embeddings which had strong association with survival (the Bonferroni-corrected p-values smaller than 
0.05). The X-axis represents the number of survival-associated embeddings. The Y-axis represents cancers, and 
every cancer is assigned a color. e Selectivity score of the ten unsupervised methods for ten different cancer 
types. The score is displayed if it is higher than the average score (0.49), and the higher the selectivity score, 
the brighter the orange block
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Fig. 7  (See legend on previous page.)
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the markers, the embeddings with strong association with survival can reflect their 
impact on survival from various aspects.

Based on the results, we observed that the number of embeddings associated with 
survival depended on not only the DL method but also the cancer type. In three 
cancer types (GBM, KIRC, and SARC), half of the DL methods identify at least one 
survival-associated embedding. In general, lfVAE and efDAE achieve the best perfor-
mance, and they can find embeddings significantly associated with survival in 7/10 
and 6/10 cancer types, respectively.

Subsequently, using the same ten-dimensional embeddings described above, we eval-
uated the association of the embeddings with clinical annotations (Fig.  7e, Additional 
file 1: Table S10). Four clinical annotations were selected, i.e., “age at initial pathologic 
diagnosis,” “days to new tumor event after initial treatment,” “gender,” and “history of 
neoadjuvant treatment.” The Kruskal-Wallis test and Wilcoxon rank-sum were adopted 
to test the significance of the associations of the embeddings with these clinical anno-
tations. Specifically, the Kruskal-Wallis test was used for “age at initial pathologic 
diagnosis” and “days to new tumor event after initial treatment,” and the Wilcoxon rank-
sum was used for “gender” and “history of neoadjuvant treatment.” Different from the 
association of the embeddings with survival mentioned above, the association of the 
embeddings with clinical annotations is expected to be a one-to-one mapping, i.e., an 
embedding is associated with a clinical annotation. In this way, each embedding is inter-
pretable. Therefore, after obtaining the strong associations through Kruskal-Wallis test 
and Wilcoxon rank-sum, we employed the selectivity score as the evaluation metric [12]. 
The selectivity score falls within [0, 1]. When each embedding is associated with one and 
only one clinical annotation, the selectivity score is 1. When all embeddings are associ-
ated with all clinical annotations, the selectivity score is 0. The top methods are those 
with selectivity scores above the average. The results indicate that the average selectivity 

Fig. 8  Graphic summary of the cancer sub-benchmark. a The details of testing the association of 
embeddings with survival. b The details of testing the association of embeddings with clinical annotations
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score of all methods across all cancer types is 0.49. The selectivity scores of all DL meth-
ods for kidney cancer are 0. In particular, the selectivity score of lfSVAE is 1 for AML 
LIHC, LUSC, and OV; the selectivity score of efSVAE is 1 for AML and OV. Overall, lfS-
VAE, efSVAE, lfAE, lfDAE, efAE, and lfmmdVAE are among the top methods for 8/10, 
6/10, 6/10, 6/10, 6/10, and 6/10 cancer types, respectively. The six methods are the best-
performing methods on these ten cancer datasets. Although the two SVAE methods do 
not perform well in clustering performance, they have an advantage in finding the mean-
ingful embeddings that are associated with clinical annotations.

Discussion and conclusions
Increasing evidence has shown that multi-omics data analysis plays an important role 
in a wide spectrum of biomedical research, which has promoted the development of 
multi-omics data fusion methods. Here, this study systematically evaluated 16 DL-based 
methods that are representative multi-omics fusion methods in three different contexts, 
i.e., simulated multi-omics datasets, single-cell multi-omics datasets, and cancer multi-
omics datasets. For each of the datasets, two tasks were designed: classification and clus-
tering. Meanwhile, various evaluation metrics were employed to evaluate the models’ 
performance from different aspects.

When evaluated on simulated multi-omics datasets, most supervised methods show 
good performances in classification tasks, especially efNN, moGCN, and moGAT. The 
two CNN-based methods (efCNN and lfCNN) are less effective on this benchmark, 
indicating that using CNN with a one-dimensional convolution layer on the input vector 
may not be suitable for multi-omics data fusion. For the clustering task, efAE, lfmmd-
VAE, and efVAE show the best performance. Similar to the result on simulated datasets, 
moGCN and moGAT perform very well on the classification task of single-cell datasets. 
As for the evaluation of the clustering performance on the single-cell dataset, efmmd-
VAE and lfAE are the most efficient methods. Finally, on the cancer data benchmark, 
moGAT still outperforms the other supervised methods on the classification task. When 
evaluating the clustering performance, efmmdVAE, efVAE, and lfmmdVAE achieve 
the most promising results in most scenarios. When evaluating the associations of the 
embeddings with survival or clinical annotations, lfVAE and lfSVAE are the most effi-
cient. Therefore, for the study of embedding-level information, lfVAE and lfSVAE are 
worthy of being prioritized.

Based on the above results, to make our evaluation more objective, we defined a uni-
fied score (see “Methods”) and ranked these DL methods according to the unified score. 
If one method was evaluated in more than one scenario, its average unified scores were 
used. For the classification tasks, moGAT ranks first on the three different multi-omics 
datasets (Fig. 9). For the clustering tasks, efVAE, lfmmdVAE, and lfAE are the top three 
methods on the simulated datasets. lfAE, lfDAE, and efmmdVAE are the top three 
methods on single-cell datasets. efmmdVAE, lfmmdVAE, and efVAE are the top three 
methods on cancer datasets. Overall, GNN-based methods should be prioritized by 
researchers focusing on classification tasks. GNN-based methods structure the multi-
omics data into similarity networks. The correlations among samples can be captured by 
the similarity networks. Therefore, the omics features and the geometrical structures of 
the data can be effectively utilized and the classification performance can benefit from 
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it. When focusing on the clustering tasks, efmmdVAE, efVAE, and lfmmdVAE should 
be prioritized. They have the most effective and consistent behaviors across all the dif-
ferent benchmarks. These methods learn the probability distribution of the data. They 
have a layer of data means and standard deviations, which are used to generate new data. 
This allows for better generalization and flexibility of the learned embeddings. They can 
thereby be valuable tools for researchers who are interested in applying DL-based multi-
omics data fusion methods to various biomedical problems.

Although the state-of-the-art DL-based multi-omics data fusion methods are evalu-
ated comprehensively on three different datasets by employing various evaluation indi-
ces and scenarios, there is still limitation in this benchmark study. Combining all omics 
types may introduce noise because there may be information redundancy in different 
omics data. The compatibility of omics data should be checked to avoid the case that 
different omics data is completely discordant. In the future, different combinations of 
omics data and the selection of a less-redundant set of omics data will be considered in 
this benchmark study.

Despite the great progress in multi-omics data fusion brought by the above DL meth-
ods, there is still room for future improvement from a computational perspective. (1) 
Dealing with class imbalance. As demonstrated in the evaluation on the simulated 
datasets, most methods perform better in the condition that all clusters have the same 
size than in the condition that clusters have variable random sizes. Imbalanced classes 
could impair model performance. Further extensions of DL-based multi-omics data 

Fig. 9  DL-based multi-omics data fusion methods benchmarked by average unified score in this study. a 
The unified performances of supervised models in three different datasets. b The unified performances of 
unsupervised models in three different datasets. We used the highest unified score of every scenario as 
reference (marked 100%) to calculate the percentage
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fusion methods could handle class imbalance problems by applying cost-sensitive learn-
ing [59, 60], ensemble learning (e.g., bagging and boosting), etc. (2) Combining AE and 
GNN. The evaluation results indicate that GNN-based methods achieve good perfor-
mance. Graph autoencoder (GAE), which combines AE and GNN, has achieved success 
on many tasks [61–63]. Applying GAE-based methods to cancer and single-cell multi-
omics data fusion could be promising and is worthy of further exploration. (3) Designing 
algorithms that accommodate the missing observations. Multi-omics data fusion is often 
accompanied by the absence of samples in one or several omics. Taking more omics 
types into consideration and using the sample sets consisting of all omics data types 
can lead to a limited sample size. One solution to this problem is to infer the missing 
features. Based on the observation that different omics are not completely independent 
and can be correlated, the missing features can be inferred by using the complementary 
information of different omics. For example, in the field of chemoinformatics, Martino 
et  al. designed a model by employing a siamese neural network to massively infer the 
missing features for ~800,000 molecules [64]. In addition to missing feature inference, 
using generative adversarial networks (GAN) to generate data similar to a real dataset 
is also a promising method. Since GAN-based algorithms can learn and imitate any 
distribution of data, Ahmed et al. [42] employed GAN to fuse two omics data, but this 
GAN-based model can only be applied to specific types of data with explicit interactions 
(e.g., miRNA-mRNA interaction). Although GAN-based multi-omics data fusion algo-
rithms have some limitations currently, they deserve to be further explored in the appli-
cation of missing value imputation [65]. (4) Developing explainable DL methods. Most 
of the state-of-the-art DL methods lack interpretation, which is increasingly demanded 
in the biomedical field. For the “black-box” of DL models, it is difficult to elucidate the 
underlying biological mechanisms. One emerging approach is to embed prior biological 
knowledge into the DL models. Several studies used knowledge-embedded algorithms 
to provide explanations [66–68]. For example, Mao et al. [66] performed dimensional-
ity reduction on high-dimensional single-cell transcriptome data and provided explana-
tions by embedding prior knowledge into matrix factorization. Gut et al. [67] proposed a 
knowledge-embedded VAE by restricting the structure of VAE to mirror gene-pathway 
memberships and applied the model to reduce the dimensionality of single-cell RNA-
seq data. Similarly, developing knowledge-embedded DL methods for multi-omics data 
fusion is promising and can provide new insight into the underlying mechanisms. Based 
on this comprehensive benchmark study and several potential improvement strategies, 
more progress can be achieved on multi-omics data fusion.

Methods
Presentation of the ten evaluation models

This study considered p omics matrices Xi  (i = 1, …, p) with a dimension of m × ni (m 
samples and ni features). Each sample can be represented by p vectors xi  (i = 1, …, p). 
Note that the original models of all methods in this part can be found in the publications 
[19–22, 24, 26, 28, 29, 32–34, 38, 39].
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FCNN

FCNN is a simulated neural network and usually consists of an input layer, multiple 
hidden layers, and an output layer. The neurons in the hidden layers receive the multi-
dimensional input vector X and output y, which can be expressed in Eq. (1).

where y1 is the first output vector, W1 and b1 are parameters that can be learned 
according to the input X, σ is the activation function. The multilayer neural network can 
be expressed in Eq. (2).

This study used two types of FCNN with different structures, i.e., efNN and lfNN.
efNN: The p-omics vectors are concatenated into one feature vector X. The dimension 

of X is 
∑P

i=1ni.

The vector X is used as the input of a multilayer neural network for classification; relu 
is used for the activation function in the middle layers, and softmax is used in the last 
layer. relu and softmax are expressed in Eq. (4) and Eq. (5), respectively.

where n is the number of features.
Therefore, the middle and last layers can be expressed in Eq. (6) and Eq. (7), 

respectively.

The overall loss function is the cross-entropy loss Lce, which can be expressed in Eq. 
(8).

where m is the number of samples, and l is the number of categories.
lfNN: Each omics vector xi is used as the input to a subnetwork. The outputs oi of the 

subnetwork are the intermediate features of each type of omics data. Then, the outputs 
of multiple neural networks are concatenated into a vector O.

(1)y1 = σ W 1X + b1

(2)yl = σ

(

Wlyl−1 + bl
)

(3)X = concat
(

x1, x2, . . . xp
)

(4)relu(z) = Max(0, z)

(5)softmax =
eai

∑n
j=1 e

aj

(6)yl = relu
(

Wlyl−1 + bl
)

(7)yout = softmax
(

Woutyout−1 + bout
)

(8)Lce = −
1

m

∑m

i=1

∑l

j=1
y
(i)
j log ŷ

(i)
j
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Then, the vector O is used as the input of a multilayer neural network for classification. 
The evaluation is consistent with that of efNN, except that the last layer uses the soft-
max activation function, and the other layers use relu. The loss function is also a cross-
entropy loss Lce.

CNN

CNN stimulates the biomimetic biological natural cognition mechanism, and it is a neu-
ral network learning framework using image visual computing. A typical CNN mainly 
consists of convolutional layers, activation layers, pooling layers, and fully connected 
layers. The convolution layer is mainly composed of multiple convolution kernels. The 
convolution kernel is to operate the kernel function on the local image, and its essence is 
the discrete convolution between two two-dimensional matrices. The operation princi-
ple is as follows:

where s and t are the widths of the convolution kernel in the x and y directions, F is the 
parameter matrix of the convolution kernel, G is the local image matrix that is operated 
with the convolution kernel, and k is the size of the convolution kernel.

The pooling layer is to reduce data dimensionality, thereby decreasing the number of 
parameters and calculation amount inside the CNN. Meanwhile, it can prevent the net-
work from overfitting to a certain extent. Usually, the maximum pooling layer is used in 
CNN, that is, the maximum value in the local receptive field is taken. Its mathematical 
description is as follows:

where P is the feature matrix obtained by max pooling, l is the width of the feature 
map, A is the feature matrix after activation of the convolutional layer, and w is the width 
of the pooling region.

The One-dimensional Convolutional Neural Network (1DCNN) is essentially the same 
as convolutional neural networks. Although 1DCNN has only one dimension, it also has 
the advantages of translation invariance of CNN for feature recognition. Structurally, 
1DCNN is almost the same as CNN. It also includes a series of convolutional layers and 
pooling layers and outputs the results through the fully connected layer. The difference is 
that in the calculation of convolutional layers and pooling layers, 1DCNN only extracts 
the feature sequence of the one-dimensional sequence. The operations of the convolu-
tional layer and the pooling layer in the 1DCNN are as follows:

(9)O = concat
(

o1, o2, . . . , op
)

(10)Cov
(

x, y
)

=
∑k

t=0

∑k
s=0F(s, t)× G

(

x − s, y− t
)

.

(11)P =

{

max
w×w

Al×l

}

(12)Cov
(

x, y
)

=
∑w

a=0F(a)× G(x − a)

(13)P =
{

max
w

Al
}
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This study used two types of CNN with different structures, namely efCNN and 
lfCNN.

efCNN: It is similar to efNN, and this study added convolutional layers and pooling 
layers to the network structure. The p-omics vectors are concatenated into one feature 
vector X. After the convolution layer and the pooling layer, the output features are flat-
tened into and out of the fully connected network to make the final prediction.

lfCNN: It is similar to lfNN. Each omics vector xi is used as the input to a subnetwork. 
Each subnetwork consists of convolutional layers and pooling layers. The outputs of each 
subnetwork are flattened, concatenated, and fed into a fully connected neural network to 
make the final prediction.

moGCN

GCNs are used for omics-specific learning in moGCN, and a GCN is trained for each 
type of omics data to perform classification tasks. A GCN model takes two inputs. One 
input is a feature matrix X ∈ ℝn × d, where n is the number of nodes, and d is the number 
of input features. The other input is a description of the graph structure, which can be 
represented as an adjacency matrix A ∈ ℝn × n. A GCN can be constructed by stacking 
multiple convolutional layers. Specifically, each layer is defined as:

where H(l) is the input of the lth layer, W(l) is the weight matrix of the lth layer, and σ(·) 
denotes a non-linear activation function. To train GCNs effectively, the adjacency matrix 
A is further modified as:

where D̂ is the diagonal node degree matrix of Â , and I is the identity matrix.
The original adjacency matrix A is obtained by calculating the cosine similarity 

between pairs of nodes, and edges with cosine similarity larger than a threshold ϵ are 
retained. Specifically, the adjacency between node i and node j in the graph is calcu-
lated as:

where xi and xj are the feature vectors of nodes i and j, respectively. 
s
(

xi, xj
)

=
xixj

�xi�2�xj�2
 is the cosine similarity between nodes i and j.

To perform omics-specific classification, a multilayer GCN is constructed for each 
omics data type. Specifically, for the ith omics data type, an omics-specific GCN, i.e., 
GCNi(·), is trained with training data X (i)

tr ∈ R
ntr×di and the corresponding adjacency 

matrix 
∼
A
(i)

tr ∈ R
ntr×ntr . The predictions on the training data can be expressed as:

(14)H (l+1) = f
(

H (l),A
)

= σ

(

AH (l)W (l)
)

(15)
∼
A = D̂− 1

2 ÂD̂− 1
2 = D̂− 1

2 (A+ I)D̂− 1
2

(16)Aij =

{

s
(

xi, xj
)

, if i �= j and s
(

xi, xj
)

≥ ǫ

0, otherwise

(17)Ŷ
(i)
tr = GCNi

(

X
(i)
tr ,

∼
A
(i)

tr

)
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where Ŷ (i)
tr ∈ R

ntr×c . ŷ(i)j ∈ R
c is denotes the jth row in Ŷ (i)

tr  , which is the predicted 
label distribution of the jth training sample from the ith omics data type. Therefore, 
the loss function for GCNi(·) can be expressed as:

where LCE(·) represents the cross-entropy loss function.
In moGCN, VCDN is also utilized to fuse different types of omics data for clas-

sification. For simplicity, this paper first demonstrates how to extend VCDN to 
accommodate three views. For the predicted label distribution of the jth sample from 
different omics data types ŷ(i)j , i = 1, 2, 3 , a cross-omics discovery tensor Cj ∈ ℝc × c × c is 
constructed, where each entry of Cj can be calculated as:

where ŷ(i)j,a denotes the ath entry of ŷ(i)j .
Then, the obtained tensor Cj is reshaped to a c3-dimensional vector cj and is for-

warded to VCDN(·) for the final prediction. VCDN(·) is a fully connected network 
with the output dimension of c. The loss function of VCDN(·) can be represented as:

In summary, the total loss function of moGCN can be expressed as:

where γ is a trade-off parameter between the omics-specific classification loss and 
the final classification loss from VCDN(·).

moGAT​

This study replaced the GCN model in moGCN with the GAT model to obtain a new 
model, and except for GCN, other parts of the whole framework remained unchanged. 
A GAT model also takes two inputs: feature matrix X ∈ Rn × dand adjacency matrix 
A ∈ Rn × n. Like all attention mechanisms, the GAT calculation also consists of two 
steps. First, the attention coefficient is calculated. For vertex i, the similarity coefficient 
between its neighbors ( j ∈ Ni ) and itself is calculated one by one.

Linear mapping of a shared parameter W adds dimension to the features of the vertex, 
and this is a common feature augment method. [Whi ∥ Whj] stitches the transformed fea-
tures of the vertex i, j; finally, a(·) maps the concatenated high-dimensional features to a 
real number. The attention coefficients are then normalized through softmax.

(18)L
(i)
GCN =

∑ntr

j=1
LCE

(

ŷ
(i)
j , yj

)

(19)Cj,a1a2a3 = ŷ
(1)
j,a1

ŷ
(2)
j,a2

ŷ
(3)
j,a3

(20)LVCDN =
∑ntr

j=1
LCE

(

VCDN
(

cj
)

, yj
)

(21)L =
∑m

i=1
L
(i)
GCN + γLVCDN

(22)eij = a
([

Whi � Whj
])

, j ∈ Ni

(23)αij =
exp

(

LeakyReLU
(

eij
))

∑

k∈N exp
(

LeakyReLU(eik)
)
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In the second step, the features are weighted and aggregated according to the calcu-
lated attention coefficient.

where h′i is the new feature output by GAT for each vertex i (fused with neighborhood 
information).

Autoencoder

Autoencoder is a deep neural network that copies its input to its output. An autoen-
coder consists of two parts, i.e., an encoder and a decoder, and both are implemented 
by neural networks. The encoder and decoder can be expressed in Eq. (25) and Eq. (26), 
respectively.

where fencoder and fdecoder are multilayer neural networks.
efAE: It is similar to efNN, and the p-omics vectors are concatenated into one feature 

vector X. Therefore, the encoder and the decoder can be represented as z = fencoder(X) and 
X′ = fdecoder(z), respectively. For the evaluation, relu is used for the activation function in 
all layers of the encoder and the middle layers of the decoder. tanh is used in the last 
layer of the decoder. tanh can be expressed in Eq. (27).

The loss function is the MSE loss LMSE, which can be expressed as:

where n is the number of features.
Eventually, the vector z is taken as a multi-omics fusion feature.
lfAE: p AEs are used to perform feature extraction on the p-omics vectors. The 

encoder and decoder can be expressed in Eq. (29) and Eq. (30), respectively.

For each AE, this study set the activation and loss functions the same as those in 
efAE in our evaluation. zi was adopted to represent the latent features of each omics. 
Finally, the latent features zi of each omics were concatenated as multi-omics fusion 
features zfusion.

(24)h′i = σ

(

∑

j∈N
αijWhj

)

(25)z = fencoder(x)

(26)x′ = fdecoder(z)

(27)tanh(z) =
ez − e−z

ez + e−z

(28)LMSE =
1

n

∑n

i=1

(

X2 − X ′2
)

(29)zi = fencoder(i)(xi), i = 1, 2, . . . , p

(30)x′i = fdecoder(i)(zi), i = 1, 2, . . . , p
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Denoising autoencoder

Unlike the standard AE, DAE constructs partially damaged data by adding noise to 
the input data and restores it to the original input data through encoding and decod-
ing. The new generated 

∼
x can be expressed in Eq. (32).

where qD represents the stochastic mapping.
Then, 

∼
x is used as the input of the encoder, and x is used as the reconstructed tar-

get of the decoder. The loss function is consistent with that of the standard AE.
efDAE: First, the p-omics vectors are concatenated into one feature vector X. Then, 

noise is added to X by 
∼
X = qD(X) to obtain ∼X  . Next, the encoder and the decoder can 

be represented as z = fencoder

(

∼
X

)

 and X′ = fdecoder(z), respectively. The following 

steps are the same as those in efAE. Finally, the vector z is taken as a multi-omics 
fusion feature.

lfDAE: First, noise is added to p-omics vectors xi by x̃i = qD(xi) to obtain x̃i . Then, 
p AEs are used to perform feature extraction on the p new vectors with noise. The 
encoder and decoder can be expressed in Eq. (33) and Eq. (34), respectively.

The following steps are the same as those in efAE. Finally, the latent features zi of 
each omics are also concatenated as multi-omics fusion features zfusion.

Variational autoencoder

Compared with AE, VAE has one more constraint. Thus, the latent vectors of VAE fol-
low closely a unit Gaussian distribution. The final hidden layer of the encoder is fully 
connected to two output layers, which represent the mean μ and the standard deviation 
σ in the Gaussian distribution N (µ, σ) of the latent variable z, given an input sample x. 
To make the sampling step differentiable and suitable for backpropagation, the reparam-
eterization trick in Eq. (35) is applied.

where ϵ is a random variable sampled from the unit normal distribution N (0, I).
The loss function in VAE consists of two parts, i.e., the reconstruction loss and the 

latent loss. The same as AE, the reconstruction loss is the MSE loss. The latent loss 
measures how well the latent vectors follow the assumed distribution using the Kull-
back-Liebler divergence (KL).

(31)zfusion = concat
(

z1, z2, . . . , zp
)

(32)
∼
x = qD

(

∼
x|x

)

(33)zi = fencoder(i)
(

x̃i
)

, i = 1, 2, . . . , p

(34)x′i = fdecoder(i)(zi), i = 1, 2, . . . , p

(35)z = µ+ σǫ
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where LKL is the KL divergence between the learned distribution and a unit Gaussian 
distribution.

Therefore, the total loss function can be defined in Eq. (38).

efVAE: It is similar to efAE, and the p-omics vectors are also concatenated into one fea-
ture vector X. X is used as the input of VAE. The mean vector μ and the standard devia-
tion vector σ can be obtained from the encoder. Then, the vector z can be obtained by 
sampling using Eq. (37). Eventually, the vector z is taken as a multi-omics fusion feature. 
In our evaluation, the activation and loss functions were set the same as those in efAE.

lfVAE: Similar to lfAE, p VAEs are used to perform feature extraction on the p-omics 
vectors. We can obtain the mean vectors μi(i = 1, 2, …, p) and the standard deviation vec-
tors σi(i = 1, 2, …, p) from the encoders. Then, the vectors zi(i = 1, 2, …, p) can be obtained 
by sampling using Eq. (37). Eventually, latent features zi of each omics are concatenated 
as multi-omics fusion features zfusion.

efSVAE: SVAE is a stacked VAE model. In SVAE, all hidden layers obey a unit Gaussian 
distribution. Each hidden layer of the encoder fully connects to two output layers, which 
represent the mean μ and the standard deviation σ in the Gaussian distribution N (0, I) . 
The sampling step is the same as that in VAE. In the evaluation, a multiplier was added 
to the loss function similar to β-VA E [69]. The total loss can be expressed in Eq. (39):

where β is initially 0 and is gradually increased by β = β + k until its value reaches 1.
The following steps are the same as those in efVAE. Eventually, the vector z is taken as 

a multi-omics fusion feature.
lfSVAE: Compared with lfVAE, this model just replaces VAE with SVAE. The vec-

tors zi (i = 1, 2, …, p) can be obtained by sampling. Finally, the latent features zi of each omics 
are concatenated as multi-omics fusion features zfusion.

efmmdVAE: Unlike standard VAE, mmdVAE uses Maximum Mean Discrepancy (MMD) 
in the loss function instead of the Kullback-Liebler divergence (KL). MMD-based regulari-
zation term estimates divergence by how “different” the moments of two distributions p(z) 
and q(z) are. This study used the kernel embedding trick to estimate the MMD for two dis-
tributions, as shown in Eq. (40):

where k(z, z′) can be any universal kernel.

The corresponding loss function can be expressed in Eq. (42).

(36)DKL(p(x) � q(x)) = −
∑

x
p(x) log

q(x)

p(x)

(37)LKL = DKL

(

N (µ, σ) � N (0, I)
)

(38)Ltotal = LMSE − LKL

(39)Ltotal = LMSE + βLKL

(40)MMD(p(z) � q(z)) = Ep(z),p(z′)

[

k
(

z, z′
)]

+ E
[

k
(

z, z′
)]

− 2Ep(z),q(z′)

[

k
(

z, z′
)]

(41)LMMD = MMD(N (µ, σ) � N (0, I))
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In efmmdVAE, one VAE is also used to train the omics data. Except for the different loss 
function from efVAE, other parts are the same. Finally, the vector z is taken as a multi-
omics fusion feature.

lfmmdVAE: It is similar to lfVAE, and p VAEs are used to train the omics data. Finally, the 
vectors zi  (i = 1, 2, …, p) can be obtained by sampling and they are concatenated as multi-
omics fusion features zfusion.

Evaluation metrics

First, a few relevant definitions are introduced:

TP (True-Positive) represents the number of samples that are actually positive cases and 
are determined as positive cases by the classifier.
FP (False-Positive) represents the number of samples that are actually negative cases but 
are determined as positive cases by the classifier.
FN (False-Negative) represents the number of samples that are actually positive cases 
but are determined as negative cases by the classifier.
TN (True-Negative) represents the number of samples that are actually negative cases 
and are determined as negative cases by the classifier.

Accuracy

Accuracy represents the ratio between the correctly predicted samples and the total 
samples:

F1 macro

The macro algorithm calculates Precision and Recall by first calculating Precision and 
Recall for each category and then taking the average.

(42)Ltotal = LMSE + LMMD

(43)accuracy =
TP + TN

TP + FP + TN + FN

(44)Precisioni =
TPi

TPi + FPi

(45)Precisionmacro =
∑L

i=1

Precisoni

|L|

(46)Recalli =
TPi

TPi + FNi

(47)Recallmacro =
∑L

i=1

Recalli

|L|
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F1 weighted

The weighted algorithm is a modified version of the macro algorithm to address the issue 
that the macro algorithm does not consider the imbalance in the sample. When calculating 
Precision and Recall, the Precision and Recall of each category are multiplied by the per-
centage wi of that category in the total samples.

Jaccard index

JI is a statistic used to compare the similarity and diversity between two finite sets A and B. 
It is defined by the size of the intersection of the sets and divided by the size of their union. 
The value of JI is within [0, 1]. The larger value of JI, the higher the similarity.

C‑index

In the cluster Ck, there are nk (nk−1)
2  pairs of distinct points. NW represents the total num-

ber of such pairs:

The total number of pairs of distinct points in the dataset is

The C-index is defined as:

where SW  is the sum of the NW distances between all the pairs of points inside each 
cluster; Smin is the sum of the NW smallest distances between all the pairs of points in the 

(48)F1macro = 2 ·
Precisionmacro · Recallmacro

Precisionmacro + Recallmacro

(49)Precisionweighted =
∑L

i=1

Precisoni × wi

|L|

(50)Recallweighted =
∑L

i=1

Recalli × wi

|L|

(51)F1weighted = 2 ·
Precisionweighted · Recallweighted

Precisionweighted + Recallweighted

(52)JI(A,B) =
A ∩ B

A ∪ B

(53)NW =
1

2

(

∑K

k=1
n2k − N

)

(54)NT =
N (N − 1)

2

(55)C − index =
SW − Smin

Smax − Smin
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whole dataset, and there are NT such pairs: one takes the sum of the NW smallest values; 
Smax is the sum of the NW largest distances between all the pairs of points in the whole 
dataset, and there are NT such pairs: one takes the sum of the NW largest values.

Silhouette score

The silhouette score of this sample can be written as:

For a sample, a is the average distance from other samples in the same category, and b 
is the average distance from samples in the nearest different category.

For a sample set, its silhouette score is the average of the silhouette score of all 
samples. The range of the silhouette score is [−1, 1]. The closer the samples of 
the same category and the farther the samples of different categories, the higher 
the value is. A negative value of the silhouette score indicates a poor clustering 
performance.

Davies Bouldin score

The Davies Bouldin score calculates the sum of the average distance of any two catego-
ries divided by the center distance of two clusters to obtain the maximum value. A lower 
Davies Bouldin score means a smaller intra-class distance and a larger inter-class dis-
tance. The calculation expression is as follows:

where si represents the average distance between each point of a cluster and the cen-
troid of the cluster, and dij represents the distance between the centroids of clusters i and 
j.

Selectivity score

The selectivity score can be defined as:

where Nc is the total number of clinical annotations associated with at least one 
feature, Nf is the total number of features associated with at least one clinical annota-
tion, and L is the total number of associations between clinical annotations and fea-
tures. When each feature is associated with one and only one clinical annotation, the 
maximum value of S is 1, and vice versa; the minimum value of S is 0.

(56)Silhouette score =
b− a

max (a, b)

(57)Rij =

(

si + sj
)

dij

(58)Davies Bouldin score =
1

k

∑k

i=1
max
i �=j

Rij

(59)S =
Nc + Nf

2L
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Unified score

Based on the benchmarking results, to make our evaluation more objective, we defined 
“unified score” to unify the results of each indicator as the final comprehensive evalu-
ation indicator. The unified score is referring to the rank aggregation scheme for the 
Synapse Challenge (https://​doi.​org/​10.​7303/​syn61​31484). This score is equal to the sum 
over all normalized ranking measures, it is defined as

where r is the rank of a method for a specific metric (e.g., accuracy, silhouette score, 
etc.) and N is the total number of methods. Thus, higher scores indicate better perfor-
mance. If one method was evaluated in more than one scenario (e.g., in simulated multi-
omics dataset, all methods are evaluated on six scenarios: three cluster number × same 
size/random size), we used its average unified scores.
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