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Abstract 

Background:  Single-cell RNA-sequencing is revolutionising the study of cellular 
and tissue-wide heterogeneity in a large number of biological scenarios, from highly 
tissue-specific studies of disease to human-wide cell atlases. A central task in single-cell 
RNA-sequencing analysis design is the calculation of cell type-specific genes in order 
to study the differential impact of different replicates (e.g. tumour vs. non-tumour 
environment) on the regulation of those genes and their associated networks. The 
crucial task is the efficient and reliable calculation of such cell type-specific ‘marker’ 
genes. These optimise the ability of the experiment to isolate highly-specific cell 
phenotypes of interest to the analyser. However, while methods exist that can calculate 
marker genes from single-cell RNA-sequencing, no such method places emphasise on 
specific cell phenotypes for downstream study in e.g. differential gene expression or 
other experimental protocols (spatial transcriptomics protocols for example). Here we 
present SMaSH, a general computational framework for extracting key marker genes 
from single-cell RNA-sequencing data which reliably characterise highly-specific and 
niche populations of cells in numerous different biological data-sets.

Results:  SMaSH extracts robust and biologically well-motivated marker genes, which 
characterise a given single-cell RNA-sequencing data-set better than existing compu-
tational approaches for general marker gene calculation. We demonstrate the utility 
of SMaSH through its substantial performance improvement over several existing 
methods in the field. Furthermore, we evaluate the SMaSH markers on spatial tran-
scriptomics data, demonstrating they identify highly localised compartments of the 
mouse cortex.

Conclusion:  SMaSH is a new methodology for calculating robust markers genes from 
large single-cell RNA-sequencing data-sets, and has implications for e.g. effective gene 
identification for probe design in downstream analyses spatial transcriptomics experi-
ments. SMaSH has been fully-integrated with the ScanPy framework and provides 
a valuable bioinformatics tool for cell type characterisation and validation in every-
growing data-sets spanning over 50 different cell types across hundreds of thousands 
of cells.
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Background
Single-cell RNA-sequencing (scRNA-seq) [1, 2] is advancing our understanding of gene 
expression at the single-cell level in a variety of biological contexts, and is particularly 
relevant for learning the genetic profile of known and new cell types in a variety of dif-
ferent biological contexts at unprecedented resolution. In scRNA-seq of human tis-
sue, it is usual for each cell to be aligned against a reference genome comprising over 
20,000 genes. Various downstream dimensionality reduction and manifold embedding 
techniques are employed to reduce the complexity of this space and identify biologically 
distinct clusters of single cells corresponding to known and new phenotypes. Revers-
ing this problem, if known cell types can be identified, it is relevant to ask which genes 
contribute most significantly to that particular phenotype. This question of identifying 
a small and unique set cell type-specific marker genes for several different clusters of 
cells is relevant for several reasons. In one case, knowing the most important marker 
genes influences the parameter space of genes to compare in that cell type across a vari-
ety of different biological scenarios. An example would be the differential behaviour of 
marker gene for a cell type in the case of cancerious tissue versus healthy tissue. As a 
second, and more topical example, scRNA-seq provides no information on the location 
of different cell populations in tissue. Spatial transcriptomics (STx) addresses this issue 
by resolving the locations of the whole or part of the sequenced transcriptome, thus 
providing better context for studying the vast heterogeneity of different cellular states 
throughout different organs and tissues. Protocols such as seqFISH (sequential Fluo-
rescence In Situ Hybridization) [3], ISS (In Situ Sequencing) [4], and MERFISH (Multi-
plexed Error-Robust FISH) [5] all aim to achieve this single-cell (and even sub-cellular) 
spatial resolution but for a limited number (i.e. a few hundred from a candidate list of 
typically 20,000 expressed genes) of pre-selected genes. The great utility of spatial tech-
nologies therefore entirely relies on the analysers’ abilities in selecting an optimal short-
list of candidate genes for spatial study which address their specific biological questions. 
These two examples illustrate the great importance of calculating marker genes for spe-
cific cell types which can uniquely identify those cells against all others in the data-set, 
in a statistically robust and reliable manner. It is also important that the analyser can 
calculate marker genes relevant for many different biological questions but applied to 
the same formal scRNA-seq data. Does the analyser want to select a sample of genes 
which distinguish different T cell populations from myeloid cell populations in order to 
study the immune response surrounding cancer? Does the analyser instead care about 
the behaviour of cells of different potencies (stem cell vs. progenitor vs. differentiated 
cell) in a small foetal tissue sample? Does the analyser care about genes which are best at 
distinguishing annotated tumour tissue from surrounding background tissue, a healthy 
control sample, and so on? Whilst computational techniques which attempt to select 
highly representative genes from large single-cell RNA-sequencing data-sets do exist, we 
are aware of no such techniques which select representative genes in a general enough 
manner to deal with any question the analyser might pose. The success of future single-
cell studies which attempt to understand the biology of new and niche populations of 
cell types hidden in highly complex scRNA-seq data depends on the ability to highly 
specific genes that can label distinct cell populations in tissue sections according to any 
generic problem the prospective user is interested in. Moreover this must be achieved 
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in a computationally efficient manner which is experimentally reproducible within and 
without the analysis framework. To this end we propose SMaSH (Scalable Marker (gene) 
Signal Hunter, Fig. 1) for the identification of important genes, from already annotated 
scRNA-seq data. This finds application in numerous single-cell downstream analyses, 
such as the classification of new cell types, the differential expression of those marker 
genes, and even the design of gene-specific probes for the emerging technologies in spa-
tial transcriptomics.

The strength of SMaSH is that it has been designed to work with any scRNA-seq bar-
code annotation provided by the user, and is therefore completely generic and scalable 
to a whole variety of gene identification tasks. Existing techniques rely on many different 
metrics for measuring the relevant important of different genes. In the SMaSH proto-
col, we recast marker gene selection as a feature importance calculation from a central 
SMaSH model which uses supervised learning to classify cells in scRNA-seq data accord-
ing to user-defined annotations for each cell. We demonstrate that optimal performance 
of SMaSH is obtained from two different modes: the ensemble learner mode, which uses 
Gini importance to rank gene significance per cell type; and the network mode which 
uses Shapley values to rank the genes.

The utility of SMaSH is evaluated against other approaches for marker genes selection 
from scRNA-seq data(e.g. see   [6, 7]). These approaches identify marker genes based 

Fig. 1  The SMaSH framework. A SMaSH works directly from the counts matrix, producing a dictionary 
relating the user-defined classes of interest (e.g. cell type annotations) to top marker genes for each class 
(default top 5). B SMaSH filters and ranks genes according to an ensemble learning model or a deep neural 
network
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only on their expression profiles throughout the tissue of interest. This can lead to iden-
tification of marker genes with wide expressions across multiple cell types and which 
therefore have a limited power to distinguish individual cell types within the data. The 
motivation for SMaSH was to select relevant, highly specific genes for bespoke down-
stream applications like STx, using universal non-linear functions  [8], as would be 
obtained from algorithms with a high number of degrees of freedom (neural networks 
or ensemble learners). These algorithms can learn a feature space parameterised by cell 
type-specific genes using user-provided cell type annotations for each data point. The 
need for a non-linear approach stems from the inherent non-linearity in scRNA-seq gene 
expression profiles. This should be compared with some other gene selection methods 
which rely on linear algorithms, such as linear correlation functions, to select key genes. 
Such linear approaches risk missing valuable information in the task of selecting relevant 
features (genes) from a higher-dimensional feature space which is inherently non-linear. 
In these studies we also wanted to assess the performance of the non-linear gene selec-
tion approach with state-of-the-art linear approaches. We found that existing marker 
gene tools using the linear paradigm did not generalise well across different scRNA-seq 
data-sets when trying to determine cell type-specific genes, often generating marker 
genes which lead to high misclassification rates in the data to the ground-truth cell 
types. Often the genes were also highly non-specific to cell types even when the training 
set was partitioned into known cell types a priori. SMaSH was observed to determine 
marker genes which consistently well describe, classify, and distinguish the unique cell 
types across many data-sets, giving more support to the need for non-linear functions in 
gene selection in a variety of biological scenarios. This performance improvement is vital 
for reliable marker gene calculations, and will only become more relevant as the task of 
scRNA-seq turns to identifying new sub-populations of cells within known phenotypes 
across developmental biology, cancer, and more besides. We believe this sets the scene 
for establishing SMaSH as an out-of-the-box framework for bridging the gap between 
gene expression bioinformatics software in scRNA-seq. We also noted a lack of direct 
usability in some approaches with respect to popular computational pipelines, such as 
ScanPy  [9]. Once again, SMaSH was designed to work easily with such frameworks. 
SMaSH can be implemented in both computer processing unit (CPU) and graphics pro-
cessing unit (GPU) ‘modes’. The latter mode is relevant for analysing the ever-growing 
data-sets under consideration in single-cell transcriptomics commonly spanning over 
106 cells. Putting this all together, we believe SMaSH offers a valuable contribution to the 
field of bioinformatics software, and goes someway towards standardising the analysis 
workflow for scRNA-seq and other downstream protocols (e.g. STx).

Full details of the SMaSH model and procedure are provided in the “Methods” sec-
tion. In particular, note that SMaSH implements its gene ranking and importance scor-
ing using two different machine learning modes: the ensemble mode and the network 
mode. We originally considered three different models in the benchmarking of the 
ensemble mode: the Random Forest (RF) [10], the Balanced Random Forest (BRF) [11], 
and XGBoost  [12]. The need for different models is a result of variations in perfor-
mance across different biological data-sets and different data-modalities. However we 
observed consistently excellent performance from XGBoost in the majority of sce-
narios (see Results), and this therefore represents the default model for the ensemble 
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mode. The network mode comprises a feedforward deep neural network (DNN) [13, 14]. 
The ensemble mode evaluates the importance score of each gene according to the Gini 
importance [15], whilst the network mode evaluates importance according to the Shap-
ley value [16].

Results
To address the performance of SMaSH, we consider the following questions:

•	 Can SMaSH determine highly-expressed genes which uniquely identify broad cell 
type populations (e.g. 10 cell types) in a variety of different scRNA-seq data-sets?

•	 By extension, can SMaSH identify specific marker genes in more complex data-sets 
comprising many cell types (above 30) in addition to the broad cell sub-types of the 
previous point? Such data-sets are becoming increasingly common in scRNA-seq 
analyses.

•	 Is SMaSH’s approach competitive with existing linear approaches to gene identifica-
tion?

•	 Does SMaSH select biologically meaningful marker genes? This is assessed in two 
approaches: (1) cross-checking SMaSH markers against known cell type markers in 
literature (See Additional file 1: Tables S1, S2); (2) verifying with spatial transcrip-
tomics that SMaSH markers can identify cell types highly-localised to specific tissue 
compartments (Additional file 1: Fig. S4).

To evaluate the performance of SMaSH markers, we benchmarked it against two recent 
standalone computational algorithms, scGeneFit  [6] and RankCorr  [7], which cal-
culate marker genes from scRNA-seq data using linear programming and gene-by-gene 
correlations respectively. Unlike SMaSH these algorithms determine relevant markers by 
considering the entire scRNA-seq counts matrix, but we were still able to run them on 
specific cell type annotations in order to make a fair comparison with SMaSH, and the 
same gene sets are used in all methods. The additional ensemble learners we considered 
(Random Forrest and Balanced Random Forrest) when designing the ensemble mode 
also act as additional models to benchmark our default ensemble model (XGBoost) 
against.

We compared RankCorr, scGeneFit, and the two modes implemented within 
SMaSH across several publicly available data-sets: Zeisel [18], a data-set based on CITE-
seq technology  [19], a mouse brain single nucleus RNA-sequenced data-set  [17], a 
healthy foetal liver data-set [21], Paul15 stem cell data [20], and a large lung cancer data-
set. We also considered an extension of the foetal liver data-set covering skin and kidney 
cells in addition to liver when later studying the performance of SMaSH on the problem 
of identifying organ-specific marker genes. All data-sets are summarised in Table 1. To 
systematically study the effect of cell type granularity when benchmarking SMaSH, the 
mouse brain data-set was split into two different sets of annotations. These are ‘broad’ 
and a higher-granularity set where each broad cell type was further subdivided. For the 
healthy foetal organ data-set, which spans the kidney, liver, femur, and yolk sack, we con-
sidered both the complete scRNA-seq data spanning all of those organs and the 40 dif-
ferent published annotations, and also separately the liver-only cells where we applied 
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our own set of cell annotations for that specific organ, corresponding to 18 different 
cell types. This was done to further study how the different marker gene frameworks 
responded to the same type of data but at different levels of complexity (18 distinct cell 
types vs. 40 in the full data-set). These different data-sets use a variety of scRNA-seq 
technologies and conditions and were selected to so that the methodologies described 
could be tested on a variety of results from different type of tissue (e.g. mouse brain vs. 
human lung) and different numbers of sequenced single cells (e.g. 104 vs. 106 ) and there-
fore data-set complexity. The lung cancer data-set comprised lung cancer tissue, the 
5 cm of tissue surrounding the tumour, and healthy lung tissue from donors. Annota-
tions on this final data-set were performed using a combination of principal component 
analysis of the highly-variable genes for dimensionality reduction and manifold learn-
ing via UMAP [22] for visualisation purposes. Confounding of the data resulting from 
possible batch effects was tested and removed by applying the Harmony algorithm [23] 
on the dimensionally-reduced cell phenotype representation. For the lung data annota-
tions there are also two levels of annotation complexity. First we defined seven ‘broad’ 
cell types corresponding to myeloid cells, B cells, T cells, dendritic cells, natural killer 
cells, mast cells, and epithelial cells. Each of these broad cell types, with the exception 
of epithelial cells, was then split into additional cell sub-types, resulting in 34 distinct 
classes in the final analysis. Cell sub-types are determined before running SMaSH, and 
are motivated by prior knowledge of certain genes in specific clusters and known lit-
erature surrounding relevant genes for specific cell sub-types. Additional details on the 
benchmarking are described in the “Methods” section.

SMaSH determines highly‑expressed genes which uniquely identify broad cell type 

populations in scRNA‑seq

In this first set of studies, we focused on the ‘broad’ cell types covering the previously 
defined data-sets; cell type multiplicities vary between 7 and 18. scGeneFit, Rank-
Corr, and SMaSH separately calculated the most important 30 marker genes (per anno-
tation class, e.g. cell type) to classify cells according to their ground-truth annotations 
in each data-set and evaluated them according to our classifiers outlines in our “Meth-
ods” section. The results are summarised in Fig. 2, where we separately benchmarked the 

Table 1  Single-cell RNA-sequencing data-sets in this study

The different data-sets considered in the benchmarking of SMaSH

Data-set Technology Cells Genes # Cell types References

Human lung cancer (broad) 10X scRNA-seq 54,574 18,612 7 N.A.

Human lung cancer (cell sub-types) 10X scRNA-seq 54,574 18,612 34 N.A.

Mouse brain (broad) Single nucleus RNA-seq 40,532 31,053 9 [17]

Mouse brain (cell sub-types) Single nucleus RNA-seq 40,532 31,053 31 [17]

Zeisel 10X scRNA-seq 3005 4000 7 [18]

CITE-seq CITE-seq 8617 500 13 [19]

Paul15 MARS-seq 2730 3451 10 [20]

Human foetal liver 10X scRNA-seq 65,712 19,572 18 [21]

Human foetal organs 10X scRNA-seq 211,754 23,054 40 [21]
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ensemble and network modes of SMaSH against existing approaches (A and B), and three 
different ensemble models in the ensemble mode of SMaSH against one-another (C).

We observe that the misclassification and general performance with SMaSH out-
performs existing approaches across all data-sets. This is particularly true for larger 
data-sets like the lung and human foetal liver, where SMaSH offers substantially lower 
misclassifications across all cell types. Thus, SMaSH scales very generally to marker 
gene identification problems in both simple data-sets like Zeisel and in larger data-sets, 
which are fast becoming the norm in single-cell biology. Confusion matrices of the true-
positive (classification) rates for RankCorr, scGeneFit and the network and ensem-
ble SMaSH modes evaluated on the ground-truth 7 broad cell types in the lung data 
are shown in Fig. 2A). For both smaller and larger data-sets (e.g. Zeisel vs. broad lung) 
the two SMaSH modes perform similarly. We found that the default ensemble mode 
XGBoost model performs particularly well across all cases, and is in the top two best 
performing models in 5/6 data-sets, and notably in the case of the mouse brain data 
achieves sub-percent misclassification rates where the best recently-developed approach 
of RankCorr achieves an 8.6 % average misclassification (Fig. 2B). The benchmarking 
of this default ensemble model against the others confirms it as the strongest ensemble 
performer across the majority of the data-sets (Fig. 2C).

The SMaSH implementation provides the most important marker genes for each 
class, based on their rank in Gini importance or Shapley value. As a concrete example, 
in the case of the broad mouse brain data this would correspond to unique markers per 

Fig. 2  Classifying broad cell types based on SMaSH-specific marker genes. A Confusion matrices for 
the top 30 marker genes per cell type in the lung broad cell classification data-set for scGeneFit, 
RankCorr, SMaSH using the network mode, and SMaSH using the ensemble mode (using XGBoost). 
B Cell misclassification and F1 scores for the two SMaSH modes against scGeneFit and RankCorr. C 
Benchmarking different SMaSH ensemble learning models across biological scRNA-seq data and related 
modalities
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each of the 9 cell types. These cell types biologically map to astrocytes (Astro), micro-
glia (Micro), endothelial cells (Endo), excitatory neurons (Ext), inhibitory neurons 
(Inh), neuroblasts (Nb), oligodendrocyte (Oligo), oligodendrocyte precursors (OPC), 
and a generic group of low quality cells (LowQ). These top three markers, ordered 
for each cell type based on their Shapley value computed by the network mode, are 
shown in Fig. 3. The companion Shapley score plot illustrates the values of high rank-
ing genes across several different classes. In most cases, SMaSH is able to identify key 
genes which are uniquely (or nearly uniquely) expressed in one particular cell type of 
interest relative to all others. The colour scale, corresponding to the mean logarithm of 
gene expression, is normalised to between 0 and 1.0, where dark brown indicates very 
high levels of gene expression. Three dark brown populations can be uniquely gener-
ated for each cell type, indicating that highly and uniquely expressed genetic markers 
are present. Such markers would be useful for exclusively tagging particular cell types 
in the design of protocols for single-cell spatial resolution of mRNA. This gives SMaSH 
an advantage over existing approach which, although also able to select marker genes, 
the SMaSH markers are more unique to specific cell types.

SMaSH identifies specific marker genes in more complex data‑sets comprising many cell 

types and sub‑types in lung cancer patients and mouse brain cells

One challenge in scRNA-seq gene identification is determining genes with the great-
est statistical power for distinguishing increasingly complex and granular cell-type 

Fig. 3  Marker genes for the broad mouse brain cell types. A The mean |Shapley value| for the top 30 ranked 
marker genes across all broad cell types of the mouse brain, before additional filtering and sorting, using 
SMaSH’s network mode. Different colours indicate the different class contributions which that particular 
gene explains. B the final three markers for each class/broad cell type are shown, with the colour profile 
corresponding to the mean logarithm of the gene expression and a pattern uniquely matching specific 
markers to specific cell types
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identifications. In the lung data-set each of the broad cell types can be further subclas-
sified into several biologically distinct cell types. We repeated the misclassification cal-
culation for 6 of the 7 broad lung cell types which can be further sub-divided, separately 
determining the top 30 markers for each of these 6 classification problems from the broad 
cell into its sub-types. We also evaluated this as a single classification problem, directly 
calculating the top 30 markers for classifying the entire lung data-set cells directly into 
their 34 lung cell sub-types. We evaluated SMaSH against existing approaches for identi-
fying relevant markers, finding substantial reduction in misclassification rate compared 
to current methods. This was observed in both the ‘two-step’ approach of first classifying 
into the broad cell types, and then sub-classifying them, and the ‘one-step’ approach of 
directly classifying cells into the distinct 34 sub-types. We found that the misclassifcation 
rates for the ‘one-step’ problem were generally higher than the ‘two-step’ across all mod-
els. This is not unexpected given the added complexity of performing a 34-class problem 
directly and indicates that better marker gene extraction can be obtained by splitting the 
cell classification problem into two or more sub-problems. Moreover, we found that the 
largest gains in the ‘two-step’ problem are provided by either a more non-linear model, 
the deep neural network of our network mode, or XGBoost as our default model in the 
ensemble mode. These comparisons are summarised in Fig. 4, where we also considered 
the same ‘one-step’ and ‘two-steps’ marker gene identification approach in the mouse 
brain data-set. Substantial performance improvements are observed with SMaSH.

We also observe that SMaSH is still able to identify important marker genes which 
distinguish individual cell sub-types even when they belong to the same broad classi-
fication, as demonstrated for e.g. the sub-types of the mouse brain Inhibitory neuron 
broad types in Fig. 5. For this Figure, the markers are calculated using the network mode 
of SMaSH (C), which identifies more unique markers compared with the benchmarked 
approaches.

SMaSH generalises to non‑cell‑type‑specific marker gene problems

In this section we demonstrate how SMaSH can be readily applied to very gen-
eral marker gene identification problems in scRNA-seq. Thus far SMaSH has been 

Fig. 4  Marker gene misclassification rates and F1 scores in cell types in the lung and mouse brain. 
Performance for each human lung cancer cell sub-type and framework, including the two modes in SMaSH. 
HLC: Human lung cancer; MB: Mouse brain
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implemented in problems for selecting marker genes to distinguish different cell 
types, which has obvious utility in spatial transcriptomics. However, this same pro-
cedure can be repeated in very general annotations and we illustrate this by taking 
a stratified sample of a publicly available foetal organ data-set  [21] and calculating 
marker genes which best distinguish three different organs of origin. These are kid-
ney, liver, and skin, using those organs now as the relevant annotations for each cell. 
Inspite of the naturally imbalanced nature of such data, SMaSH is still able to identify 
statistically significant markers for specific organs. The markers identified uniquely 
(or nearly uniquely) describe the particular organ of interest versus the other two in 
the classification problem (Fig. 5D). The misclassification rates are F1 scores are sum-
marised across all four models considered in SMaSH (three different ensemble learn-
ers in the ensemble mode) in Table 2, and the top two performing models are found 
to be the defaults for the SMaSH network and ensemble modes. The markers extracted 
from the top-scoring models were also confirmed to be highly relevant to the particu-
lar organ of interest following a cross-check of their function in relevant biological 
literature (see Additional file 1: Tables S1, S2). Once again, SMaSH outperformed the 
benchmarked linear methods.

Fig. 5  Marker genes for the mouse brain cell sub-types from the Inhibitory neuron broad types, and human 
foetal organ of origin classification. The mean logarithm of gene expression for mouse brain cell Inhibitory 
neuron cell sub-type markers. A the markers for scGeneFit; B the markers for RankCorr; C markers from 
SMaSH’s network mode. Particularly in the case of SMaSH unique patterns can still be identified in this highly 
granular cell-type identification problem, whereas approaches such as scGeneFit are not able to identify 
many markers which uniquely resolve the sub-types present. D SMaSH is able to select statistically significant 
markers for a highly imbalanced problem of distinguishing organs of origin in foetal scRNA-seq
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Discussion
The SMaSH framework is a new methodology for determining marker genes from 
large scRNA-seq data-sets, for both general and more specific user-defined cell anno-
tations (e.g a few broad cell types vs. many cell sub-types). SMaSH has been designed 
as a specific software package for users involved in complementary scRNA-seq and 
STx biological analyses, using the data from the former to determine optimal genes 
for better performing analyses in the latter. Knowledge of annotations is essential to 
the running of the algorithm.

We find that SMaSH produces unique markers which better classify data-sets of a 
variety of sizes and complexities. SMaSH yields markers which, when used to recon-
struct the original annotations in each data-set, possess consistently lower mis-
classification rates. This uniqueness applies to data-sets of varying granularity, as 
demonstrated by running SMaSH on separate human lung and mouse brain data-set 
in two modes. These are ‘broad’ cell classification of 7 different types for lung and 
9 for mouse brain, and cell sub-types from each broad cluster leading to 34 distinct 
classifications of the lung cells and 31 distinct classifications for the mouse brain cells. 
Markers are ranked based on explainability parameters which capture the informa-
tion gain which each gene adds to the supervised model. In particular, we observe 
that ranking marker genes based on Shapley values is effective for revealing the most 
explainable features in the neural network model, and note that this measure has yet 
to be explored in detail in applications of machine learning to problems in compu-
tational biology and transcriptomics. In addition to benchmarking SMaSH across 
several different single-cell sequencing data-sets, we also explicitly evaluated the per-
formance of the mouse brain markers on corresponding mouse brain 10X Visium (see 
Additional file  1). We find that SMaSH is able to predict marker genes which cap-
ture the tissue behaviour of highly proliferating cells (such as astrocytes, present in 
both grey and white matter), and which also identify cell types which are known to 
be highly-localised to tissue compartments of the brain, such as identifying a highly 
localised compartment rich in endothelial cells close to the lateral ventricle around 
the hippocampus, and the precise reconstruction of a central tissue region rich in oli-
godendrocytes. Put together, we have therefore demonstrated that robust and inter-
esting biological statements can be made using STx data in conjunction with the 
calculated SMaSH markers.

From the user perspective, we encourage broad investgation of the different mod-
els implemented in SMaSH. Based on the studies in this paper, we recommend using 
the feedforward neural network in the first instance, cross-checking the results with 

Table 2  Marker gene misclassification rates in organs of origin in early foetal development

Performance in early foetal organ data, including the four different models implemented in SMaSH. All metrics are 
summarised as (M, F1 ) tuples. The top 2 performing models are indicated in bold for each data-set

HFO Human foetal organs

Data-set scGeneFit RankCorr SMaSH (DNN) SMaSH (RF) SMaSH (BRF) SMaSH 
(XGBoost)

HFO skin versus 
kidney versus 
liver

(13.9, 0.85) (5.2, 0.95) (1.1, 0.99) (1.4, 0.99) (1.8, 0.98) (1.2, 0.99)
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the XGBoost model, which for certain data-sets was observed to offer comparable or 
improved classification and marker gene identification.

Conclusions
We have developed and presented SMaSH, a novel method for calculating marker genes 
in scRNA-seq data. We used non-linear methods as captured by two user-specified 
network and ensemble modes.SMaSH is available as a fully-integrated algorithm with 
ScanPy, making use of the AnnData object structure, common to many ‘big data’ anal-
ysis pipelines in single-cell computational biology. SMaSH has relevance for testing and 
confirming the presence of specific cell types in sequencing data, based on speculative 
annotations derived by the analyser, and also can be rolled out to assist in the design 
of downstream analyses and experiments. A notable application of this latter purpose 
is spatial transcriptomics, e.g. in situ sequencing, where 100–200 marker genes may be 
required for designing padlock probes. We summarise the SMaSH framework in a pub-
licly-accessible webpage (see pypi), including self-contained notebooks where inter-
ested users can see example implementations for several data-sets mentioned in this 
paper (see GitLab repository). We recommend SMaSH as a standard component to a 
downstream analysis pipeline of scRNA-seq data where key genes must be extracted. 
Particularly users should bear applications to spatial transcriptomics or related tech-
niques in mind. We hope that SMaSH serves as a welcome software simplification to 
the community, providing a natural extension to existing scRNA-seq bioinformatics 
pipelines.

Methods
The SMaSH framework (Fig.  1) is divided into four stages, beginning from the user-
defined input AnnData [9] object which contains the raw scRNA-seq counts in a matrix 
of dimensionality determined by the number of barcoded cells and unique genes in the 
data-set. The user must also provide a vector of target outputs to map each barcoded 
cell onto, with values corresponding to classes of the problem in question, e.g. a vector 
of annotations of each barcoded cell into a particular biological type. We stress that the 
choice of annotations is user-specific and highly-dependent on the problem of interest: 
SMaSH will work with any set of biologically-motivated annotations for gene calculation, 
although in this paper we will mainly focus on cell type annotations known a priori by 
the user, as this question is most appropriate for the downstream application of spatial 
analysis. SMaSH then extracts markers by analysing the counts and targets in a super-
vised machine learning classification task, where the most important markers map to 
the most important features for classifying cells according to the user’s required target 
annotations, and selects the most important genes for describing each class based on 
feature ranking with information-theoretic metrics.

SMaSH algorithm

SMaSH filtering step 1: gene filter

The input cell-gene counts are first optionally batch-corrected using Harmony  [23], 
and general genes connected to mitochondrial activity [24], ribosomal biogenesis [25], 
cell-surface protein regulation of the immune system, and biological housekeeping are 



Page 13 of 16Nelson et al. BMC Bioinformatics          (2022) 23:328 	

removed. Genes which are lowly and highly expressed are further filtered out, so that 
only those which are expressed in greater than 30% of the classes of interest and in less 
than 75% of cells with more than 50% of the classes of interest are retained by default. 
This final filter guards against additional batch-specific effects, such as a particular gene 
not being expressed uniformly across most various different independent biological 
samples comprising the data-set of interest. The 30% and 75% thresholds are based on 
empirical checks to ensure that genes which are expressed in the classes of interest are 
retained, and may be modified by the user.

SMaSH filtering step 2: inverse PCA

The filtered matrix of cells and genes is then dimensionally-reduced using principal 
component analysis (PCA) [26] applied to each gene as a unique feature and each cell as 
an observation. The PCA is then inverted and the top 20 genes in each principal compo-
nent explaining up to 80% of the overall variance in the data are retained. This additional 
feature guards against genes which would add very little extra information about the var-
iance of expression profiles in the data and speeds up subsequent training of the model.

Main SMaSH model

The remaining genes are then ranked according to one of our machine learning classifi-
cation modes: ensemble (RF, BRF, and XGBoost [12] as the default) and network. Details 
of the cross-validation on training, validation, and test sets are described in Machine 
Learning Cross-validation. Further details and additional benchmarking are provided in 
the Additional file (see Additional file 1: Fig. S1 and Table S3).

SMaSH post‑modelling: ranking and heterogeneity

The final marker genes are calculated by ranking and sorting the genes according to their 
total Gini importance or mean Shapley value, where the mean Shapley value is used in 
the network mode. A set of relevant markers is produced for each class provided by the 
user from the initial vector of targets, where the top 5 markers per class are produced by 
default. A final heterogeneity check is conducted in the case that multiple samples are 
considered in the analysis, to make sure that the marker genes selected are also distrib-
uted uniformly in at least 70% of the set of samples considered in the data. For this latter 
check the user must ensure that sample information is provided as an observation in the 
original AnnData object.

Benchmarking SMaSH

For each SMaSH model, linear model for benchmarking, and data-set, the top 30 mark-
ers are calculated for each annotation class then used as the only features in a k-near-
est neighbours classifier for mapping each cell back to its original annotation. Support 
vector machine classifiers was used as an independent cross-check of the k-nearest 
neighbours performance, and these results are summarised in the Additional file. The 
misclassification rates, M, and associated confusion matrices for recovering the origi-
nal ground-truth annotations were evaluated on each data-set and model. The average 
F1 score was also calculated as the average harmonic mean of the precision and recall 
for each cell type classification, which is a more indicative performance metric for 
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multi-classification problems than the more widely-known true-positive and false-neg-
ative rates. Note that we separately evaluated all metrics for each separate class, as well 
as computing the average value across all classes. These performance metrics may be 
formally defined as:

and

where Ci and Pi denote the number of correct predictions and total predictions of class i 
from the k-nearest neighbours classifier respectively, Ri and Pi are the respective recall 
and precision of that classification, and the ��i∈C denotes averaging over all classes i 
belonging to the set of annotations C provided by the user. Lower misclassification rates 
(tending to 0) and higher average F1 scores (tending to 1) indicate better performance of 
a given model.

Machine learning cross‑validation

SMaSH makes use of test, train, and validation sets. All machine learning studies 
described in this paper (the training and testing of the SMaSH models, and the k-near-
est neighbours and support vector machine classification of the SMaSH markers) were 
validated in the following way: each data-set was divided in to a 80:20 train:test split. 
Training was only performed on the training data-set. The training data-set was cross-
validated by constructing additional validation sets using the k-fold validation approach, 
where 5 folds were used (i.e. we independently evaluated performance metrics in a 80:20 
training:validation split of the initial training data, permuted across the 5 batches with 
resampling). This k-fold cross-validation was done in a stratified manner, to ensure that 
fair representations of each class were selected in every training and validation set. The 
cross-validated loss functions and accuracies then allowed for overfitting to be checked 
against (see Additional file 1: Fig. S1 for an example of this in the training of the SMaSH 
DNN on mouse brain data). Additional checks for overfitting were performed for dif-
ferent models: applying dropout to the neural network, regularisation with kernel func-
tions to the support vector machine, and early stopping in the neural network training. 
The support vector machine classifier acted as an additional cross-check of the k-nearest 
neighbours classifier when studying the optimal SMaSH genes to the genes calculated by 
other methods, and the results are reported in the Additional file 1: Table S3.
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04860-2.
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