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Abstract

Microbial communities contain a broad phylogenetic diversity of organisms, however the majority 

of methods center on describing bacteria and archaea. Fungi are important symbionts in many 

ecosystems, and are potentially important members of the human microbiome, beyond those that 

can cause disease. To expand our analysis of microbial communities to include fungal ITS data, 

we compared five candidate DNA extraction kits against our standardized protocol for describing 

bacteria and archaea using 16S rRNA gene amplicon- and shotgun metagenomics sequencing. 

We present results considering a diverse panel of host-associated and environmental sample 

types, and comparing the cost, processing time, well-to-well contamination, DNA yield, limit of 

detection, and microbial community composition among protocols. Across all criteria, we found 

the MagMAX Microbiome kit to perform best. The PowerSoil Pro kit performed comparably, but 

with increased cost per sample and overall processing time. The Zymo MagBead, NucleoMag 

Food, and Norgen Stool kits were included.
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Multidisciplinary abstract.

Microbial communities contain a broad diversity of organisms, however most methods only 

describe certain groups such as bacteria, ignoring things like fungi. Fungi are important players in 

many ecosystems, and probably have a role in the human microbiome, beyond those that can cause 

disease. To expand our framework for looking at microbial communities to include data for fungi, 

we compared five commercial kits for extracting DNA from microbes against our old protocol (the 

one that only describes certain groups) sequencing capable of capturing all organisms. We present 

results considering a broad selection of samples from human stool to computer keyboards, and 

compared the cost, processing time, level of contamination, DNA yield, ability to detect cells, and 

microbial community composition among kits.

Methods summary.

To allow for downstream applications involving fungi in addition to bacteria and archaea, we 

compared five DNA extraction kits with our previously established, standardized protocol for 

extracting DNA for microbial community analysis. Across ten diverse sample types, we found 

one extraction kit to perform comparably or better than our standardized protocol. Our conclusion 

is based on per-sample comparisons of DNA yield, the number of quality-filtered sequences 

generated, the limit of detection of microbial cells, microbial community alpha-diversity, beta-

diversity, and taxonomic composition, and extent of well-to-well contamination.

Keywords

Earth Microbiome Project (EMP); high-throughput sequencing; internal transcribed spacer; 
Katharoseq; Macherey-Nagel; MagAttract PowerSoil; mock community; rRNA; well-to-well 
contamination; whole genome sequencing

Introduction.

Research into microbial communities continues to reveal links that help to support both 

human and environmental sustainability [1–4]. In order to properly identify important 

connections between microbiota and human health and well-being [5–7], parallel work 

must foster the innovation of methods that refine our view of microbial communities [4, 

8–10]. However, widespread adoption of standardized methods for performing microbiome 

studies continues to be hindered by a lack of approaches that capture information from all 

organisms, or from across diverse sample types [11–13].

Whereas methods for capturing information from bacteria and archaea have been well-

developed and widely adopted, those that additionally consider microbial eukaryotes such 

as fungi have received less attention [14–16]. Similar to bacteria and viruses for mammals, 

fungi are the most important plant pathogens worldwide [17,18] and represent an increasing 

threat to certain groups of animals, including amphibians [19–21]. Fungi are also invaluable 

components of soils and forests [22–24], and are currently emerging as important members 

of the human microbiome (i.e., mycobiome) [25–27]. Currently, our protocol for DNA 

extraction for high-throughput microbiome sequencing focuses on describing bacterial/

archaeal taxa, and has not yet been tested to additionally describe Fungi.
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Here, we aimed to identify an extraction kit that extracts DNA from fungal communities 

while also producing DNA output and community composition for bacteria/archaea similar 

to our previously established, standardized protocol [28]. We compared DNA yield, the 

number of quality sequences, microbial community alpha- and beta-diversity and taxonomic 

composition, and also technical differences in the limits of detection of bacterial and fungal 

cells [29], and the extent of sample-to-sample (i.e., well-to-well) contamination [30–32] 

among extraction protocols.

Materials & Methods.

Sample collection.

To compare each candidate extraction kit against our standardized protocol, we collected 

a wide selection of samples from human body sites and the environment and centered on 

types common studies of microbial communities, following Marotz et al. (2017) and Shaffer 

et al. (2021) [28,33].This set of sample types and protocols for collecting each, the “Earth 

Microbiome Project (EMP) in a box”, was drafted for widespread use in benchmarking 

and similar studies [33]. For this study and following Shaffer et al. (2021), we included 

a total of 6 human skin samples, 6 human oral samples, 4 built environment samples, 10 

fecal samples, 6 human urine samples, 2 human breastmilk samples, 6 soil samples, 4 water 

samples, 4 fermented food samples, and 2 tissue samples. Except where described otherwise 

below, we collected samples using Puritan wood-handled, cotton swabs, following the EMP 

standard protocol [14,33].

We collected samples in a way that allowed technical replication across extraction protocols 

(i.e., three technical replicates per protocol), and aliquoted each unique sample across all 

extraction kits for comparison of extraction efficiency, following Marotz et al. (2017) and 

Shaffer et al. (2021) [28,33]. Human skin samples included those from the foot and armpit, 

which were collected from three individuals by rubbing five cotton swabs simultaneously on 

the sole of each foot or armpit, respectively, for 30 s. Human oral samples included saliva, 

which was collected from 12 individuals by active spitting into a 50 mL centrifuge tube. 

Built environment samples included floor tiles (0.3 m2) from each of two separate laboratory 

bays, which were sampled separately with nine cotton swabs rubbed simultaneously across 

one tile surface for 30 s, and computer keyboards from each of two individuals also sampled 

with nine cotton swabs for 30 s. Fecal samples included those from cats, mice, and humans. 

Cat feces were collected from two individuals and stored in plastic zip-top bags. Mouse 

feces were collected from two individuals by hand using sterile technique and stored in 

1.5-mL microcentrifuge tubes. Human feces were collected from five individuals using 

the Commode Specimen Collection System (Cat#: 02–544-208; Thermo, Carlsbad, CA). 

Human urine was collected from three male individuals separately into 50-mL centrifuge 

tubes, and three female individuals separately first into the Commode Specimen Collection 

System and then transferred to 50-mL centrifuge tubes using sterile technique. Soil samples 

included soil from the rhizosphere of trees and bare soil. For each type, soil from two sites 

at the Scripps Coastal Reserve was collected down to a depth of 20 cm using a sterile trowel, 

and stored in plastic zip-top bags. Water samples included freshwater from two sites at the 

San Diego River, and seawater from two sites at the Scripps Institution of Oceanography. All 
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water samples were collected and stored in 50-mL centrifuge tubes. Fermented food samples 

included yogurt and kimchi. For each, two varieties of a single brand were purchased at 

a local grocery store and transferred to 50-mL centrifuge tubes under sterile conditions. 

Tissue samples included jejunum tissue from six male mice and six female mice. For each 

individual, 3.8 cm of the middle small intestine was removed and any particles squeezed out; 

each tissue section was added to a 2-mL microcentrifuge tube containing 1 mL sterile 1X 

PBS and 40 mg sterile 1-mm silicone beads, and homogenized at 6,000 rpm for 1 min with a 

MagNA Lyser (Roche Diagnostics, Santa Clara, CA); the liquid homogenate from intestinal 

sections from six mice of one gender was pooled to create a single sample. We stored all 

samples at −80°C within 3 h of collection. To compare limits of detection of microbial cells 

across kits [29], we included serial dilutions of a mock community containing both bacterial 

and fungal taxa (i.e., Zymo Research ZymoBIOMICS Mock Community Standard I, Cat#: 

D6300). Input cell densities ranged from 140.00–1.40E+09 cells for bacteria, and 2.66–

2.66E+07 cells for fungi. Finally, to compare well-to-well contamination [32], we included 

plasmid-borne, synthetic 16S rRNA gene spike-ins [34] (i.e., 4 ng of unique spike-in to one 

well of columns 1–11 in each plate), and at least five extraction blanks per plate.

DNA extraction.

We compared our standardized extraction protocol that uses a 96-sample, magnetic bead 

cleanup format, the Qiagen MagAttract PowerSoil DNA Isolation Kit (Cat#: 27000–4-

KF; Qiagen, Carlsbad, CA), against five other extraction kits: the Qiagen MagAttract 

PowerSoil Pro DNA Isolation Kit (Cat#: 47109; Qiagen, Carlsbad, CA), the Norgen 

Stool DNA Isolation Kit (Cat# 65600; Norgen Biotek, Ontario, Canada), the Applied 

Biosystems MagMAX Microbiome Ultra Nucleic Acid Isolation Kit (Cat#: A42357; 

Applied Biosystems, Foster City, CA), the Macherey-Nagel NucleoMag Food kit (Cat# 

744945.1, Macherey-Nagel, Düren, Germany), and the ZymoBIOMICS 96 MagBead DNA 

Kit (Cat# D4302, Zymo Research, Irvine, CA). We previously showed that the MagMAX 

Microbiome kit performs comparably-or-better than our standardized protocol, considering 

a majority of the criteria included in this benchmark [33]. However, that experiment 

was focused on establishing the MagMAX kit as an alternative that also allows for 

downstream RNA-based applications, and did not examine Fungi [33]. Importantly, whereas 

the PowerSoil, PowerSoil Pro, Norgen, and MagMAX extraction kits employ a 96-deepwell 

plate format for sample lysis, the NucleoMag Food and Zymo MagBead extraction kits 

employ a lysis rack, which instead has 12 eight-tube strips arranged in a 96-well rack. This 

latter format can potentially reduce well-to-well contamination, which is known to occur 

primarily during the lysis step [32].

For logistical purposes, extractions were performed in two iterations (hereafter referred to 

as ‘Round 1’ and ‘Round 2’), with a fresh set of samples collected in each instance. Both 

Round 1 and Round 2 included our standardized protocol as a baseline for comparison. 

Round 1 centered on the Powersoil Pro and the Norgen kits, and Round 2 the MagMAX, 

NucleoMag Food, and Zymo MagBead kits. For extraction and following Marotz et al. 
(2017) and Shaffer et al. (2021) [28,33], aliquots of each sample were transferred to 

unique wells of a 96-deepwell extraction plate (or lysis rack). For samples collected with 

swabs, the entire swab head was broken off into the well (or tube). For liquid samples, 

Shaffer et al. Page 4

Biotechniques. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we transferred 200 μL. For bulk samples, we used cotton swabs to collect roughly 100 mg 

of homogenized material and broke the entire swab head off into the well (or tube). For 

each extraction protocol, all samples, including mock community dilutions, were plated in 

triplicate. Extractions were performed following the manufacturer’s instructions, with lysis 

performed using a TissueLyser II (Qiagen, Carlsbad, CA), and bead clean-ups performed 

using the KingFisher Flex Purification System (ThermoFisher Scientific, Waltham, MA). We 

stored extracted nucleic acids at −80°C prior to quantification of DNA yield and subsequent 

sequencing.

16S rRNA gene, fungal ITS, and shotgun metagenomics sequencing and data analysis.

We prepared DNA for 16S rRNA gene amplicon (16S), fungal ITS gene amplicon (ITS), and 

shallow shotgun metagenomics sequencing as described previously [10,33,35–38]. Extracts 

from Round 1 and Round 2 were sequenced separately on distinct runs. For bacterial/

archaeal 16S data, raw sequence files were demultiplexed using Qiita [39], sub-operational 

taxonomic units (sOTUs) generated using Deblur with the default positive filter for 16S data 

[40], taxonomy assigned using QIIME2’s feature-classifier plugin’s classify-sklearn method 

with the pre-fitted classifier trained on GreenGenes V4 (13_8) data [41–44], and phylogeny 

inferred using QIIME2’s fragment-insertion plugin’s sepp method with the GreenGenes 

(13_8) SEPP reference [45–47]. For fungal ITS data, raw sequence files were demultiplexed 

using Qiita [39], sub-operational taxonomic units (sOTUs) generated using Deblur with 

a positive filter representing the UNITE8 reference database (dynamic OTUs, including 

global 97% singletons) [48], and taxonomy assigned using QIIME2’s feature-classifier 
plugin’s classify-sklearn method with a classifier trained on the UNITE8 reference database 

(described above) [41,48]. For shallow shotgun metagenomics data, raw sequence files were 

demultiplexed using BaseSpace (Illumina, La Jolla, CA), and uploaded to Qiita [39] for 

additional pre-processing. Demultiplexed sequence data were quality-filtered using fastp 

[49] and human read depleted by alignment to human reference genome GRCh38 using 

minimap2 [50]. Filtered reads were aligned to the Web of Life database [51] using bowtie2 

[52], and alignment profiles translated to feature-tables using Woltka [53]. Raw sequence 

data were deposited at the European Nucleotide Archive (accession#: ERP124610) and 

raw and processed data are available via Qiita (Study ID: 12201). For all three datasets, 

subsequent normalization of sampling effort and estimation of alpha- and beta-diversity 

were performed using QIIME2 [9]. Analyses of taxonomic composition and beta-diversity 

were performed using custom Python scripts. Correlation tests and Kruskal-Wallis tests were 

performed in R [54]. All processing and analysis code is available on GitHub (github.com/

justinshaffer/Extraction_kit_testing).

Results & Discussion.

For each of the five candidate extraction kits tested, we observed similar DNA extraction 

efficiency to our standardized protocol (hereafter referred to as ‘PowerSoil’), with the 

exception of the Norgen kit, which had lower yields across all sample types except human 

milk (Figure 1, Figure S1A). Across the majority of sample types, the PowerSoil Pro, 

NucleoMag Food, MagMAX Microbiome, and Zymo MagBead kits performed comparably-

or-better than PowerSoil (Figure 1, Figure S1A). We also observed similar trends in the 
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number of quality-filtered reads generated from sequencing for each of the five candidate 

extraction kits as compared to PowerSoil, for 16S, fungal ITS, and shotgun metagenomics 

data (Figure 2, Figure S1B, Figure S2). Exceptions include the Zymo MagBead kit, which 

generated fewer high-quality 16S reads across samples from the built environment, water, 

human urine, and human skin (Figure 2E, Figure S1B), as well as the Norgen kit, which 

generated fewer high-quality fungal ITS reads across samples from the built environment, 

food, water, and soil (Figure 2G, Figure S2A). Interestingly, the reduced performance of 

the Norgen kit in extracting DNA (Figure 1B) did not influence its ability to generate 

high-quality shotgun metagenomics reads, in-line with PowerSoil (Figure 2L, Figure S2B).

Considering the limit of detection (LOD) of microbial cells, we observed differences in 

the ability to detect bacteria vs. fungi across the five candidate extraction kits as compared 

to PowerSoil (Table 1). Compared to PowerSoil, the LOD for bacteria was one order of 

magnitude lower for the PowerSoil Pro kit, the same for the Zymo MagBead kit, and 

one order of magnitude higher for MagMAX Microbiome kit (Table 1). However, when 

considering sample retention following filtering based on LOD thresholds – an important 

consideration due to the costs of obtaining/processing samples, and for maintaining 

reasonable sample sizes for analysis – only the PowerSoil Pro and MagMAX Microbiome 

kits retain ≥80% of samples, similar to PowerSoil (Table 1). The LOD for bacteria for 

the Norgen and NucleoMag Food kits were much higher, implying that they may not be 

optimal for profiling of rare taxa (Table 1). The LOD and frequency of sample retention 

following filtering, for fungi, was similar for all kits as compared to PowerSoil, except for 

the PowerSoil Pro kit, which had an LOD that was one order of magnitude higher, and 

also retained only 80% of samples as compared to 100% across all other protocols (Table 

1). Surprisingly, the frequency of well-to-well contamination was similar among protocols 

(Figure 3). This is especially informative considering the unique lysis rack provided by 

both the NucleoMag Food and Zymo MagBead kits (see Materials & Methods), which 

we expected to greatly reduce the frequency of well-to-well contamination as compared 

to lysis in a traditional 96-deepwell plate. We suspect that well-to-well contamination can 

still occur when using a lysis rack in part due to movement of aerosols during uncapping 

tubes. We emphasize that without a reduction in well-to-well contamination provided by the 

lysis rack vs. a traditional plate, the roughly 20-fold increase in processing time to open 

96 tubes vs. to unseal a plate (i.e., ~100 s vs. 5 s, respectively) argues against adoption 

of the lysis rack (Figure 3). Future experiments should consider single-tube lysis, which is 

available for the MagMAX kit (Cat#: A42351), and has been shown to reduce well-to-well 

contamination [32] although at the cost of increased processing time. Similarly, automated 

opening/closing of individual, racked tubes, such as that offered by the Matrix Barcoded 

Storage Tube system (Thermo Scientific, Waltham, MA), should reduce processing time and 

potential aerosol transfer.

Considering the taxonomic composition of microbial communities across samples, we 

observed a greater degree of taxon bias among extraction kits as compared to PowerSoil 

for fungal taxa (i.e., ITS data) as compared to bacterial/archaeal taxa (i.e., 16S and shotgun 

metagenomics data) (Figure 4C, Figure 4D). This is likely due in part to the relatively 

diverse morphologies among fungal spores and propagules compared to those of bacteria/

archaea, which may be variably compromised among distinct lysis approaches. Both the 
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PowerSoil Pro and MagMAX Microbiome kits recovered the greatest number of exclusive 

fungal genera (i.e., those not recovered by other protocols), with each taxon set representing 

roughly 19% of all fungal genera recovered in a given round of extractions (Figure 4C, 

Figure 4D). Similarly, both the PowerSoil Pro and MagMAX Microbiome kits shared 

a greater number of exclusive fungal genera with PowerSoil, as compared to the other 

candidate extraction kits (Figure 4C, Figure 4D). We observed a similar trend in our 16S 

data, except that for both rounds of extraction PowerSoil recovered the greatest number of 

exclusive bacterial/archaeal genera as compared to any candidate kit (Figure 4A, Figure 4B). 

For our shotgun metagenomics data, all candidate extraction kits except for the Norgen kit 

recovered a greater number of exclusive bacterial/archaeal species than PowerSoil (Figure 

4E, Figure 4F). The PowerSoil Pro and NucleoMag Food kits recovered the greatest 

percentage of exclusive species, with the MagMAX Microbiome and Zymo MagBead kits 

recovering only slightly less (Figure 4E, Figure 4F). The PowerSoil Pro kit shared the 

greatest percentage of exclusive species with PowerSoil (16%), whereas the NucleoMag 

Food and MagMAX Microbiome kits shared much less (~1%) (Figure 4F).

For non-exclusive taxa, we observed strong correlations in the relative abundance estimates 

from each candidate extraction kit as compared to PowerSoil (Figure 5). For 16S data, 

the strongest correlation was observed between PowerSoil and the MagMAX Microbiome 

kit (Kendall’s tau = 0.67) (Figure 5C), followed by the Zymo MagBead kit (tau = 0.66) 

(Figure 5E), and the Norgen kit (tau = 0.64) (Figure 5B). For fungal ITS data, the strongest 

correlation was observed with the Zymo MagBead kit (tau = 0.58) (Figure 5J), followed by 

the MagMAX Microbiome kit (tau = 0.47) (Figure 4H), and the PowerSoil Pro kit (tau = 

0.46) (Figure 5F). For shotgun metagenomics data, the strongest correlation was observed 

with the Zymo MagBead kit (tau = 0.68) (Figure 5O), followed by the NucleoMag Food kit 

(Kendall’s tau = 0.67) (Figure 5N), and the MagMAX Microbiome kit (tau = 0.59) (Figure 

5M).

We also observed strong correlations in estimates of microbial community alpha-diversity 

from each candidate extraction kit as compared to PowerSoil (Figure 6A–E), and note in 

general correlations were stronger for 16S and shotgun metagenomics data as compared to 

for ITS data (Figure 6F–J). Specifically, correlations between candidate kits and PowerSoil 

for 16S alpha-diversity (i.e., Faith’s Phylogenetic Diversity [PD]) were all strong (tau 

>0.75), except for the Norgen kit, which had the weakest correlation and also the greatest 

sample dropout from normalization (Figure 6B). Similarly, correlations between candidate 

kits and PowerSoil for fungal ITS alpha-diversity (i.e., Fisher’s alpha) were also strong (tau 

>0.60), except for the PowerSoil Pro kit, which had a relatively weak relationship (Figure 

6F), and the Norgen kit, which had no relationship and also significant sample dropout 

(Figure 6G). Correlations between candidate kits and PowerSoil for shotgun metagenomics 

alpha-diversity (i.e., Faith’s PD) were all strong (tau >0.65), and sample dropout was 

minimal for all protocols (Figure 6K–O).

With respect to microbial community composition, we found variation explained by bias 

among extraction protocols to be negligible compared with that explained by host subject 

identity (i.e., 1–2 orders of magnitude weaker in explaining beta-diversity) (Table 2). For 

16S and shotgun metagenomics data, the variation explained by extraction protocol is one 
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order of magnitude weaker for presence/absence metrics vs. abundance-based metrics (Table 

2). This supports our analysis of variation among technical replicates from the same sample, 

which we observed to be small for all extraction protocols across 16S (Figure S3), fungal 

ITS (Figure S4), and shotgun metagenomics data (Figure S5). We also observed strong 

correlations in microbial community beta-diversity (i.e., sample-sample distances) from each 

candidate extraction kit as compared to PowerSoil, and note that as for alpha-diversity, in 

general correlations were stronger for 16S and shotgun metagenomics data as compared 

to ITS data (Table S1, Table S2, Table S3). Specifically, correlations in sample-sample 

distances between each of the five candidate kits and PowerSoil for 16S data were strong 

(rho >0.75), except for in low-biomass samples processed with the Norgen kit, which 

exhibited no relationship with PowerSoil for two-of-four distance metrics examined (Table 

S1). For ITS data, correlations in sample-sample distances were consistently weaker for low 

biomass samples vs. high biomass samples, for all candidate extraction kits and distance 

metrics examined. The PowerSoil Pro kit alone had correlation coefficients >0.50 for low 

biomass samples and >0.75 for high biomass samples (Table S2). For shotgun metagenomics 

data, whereas correlations in sample-sample distances were also consistently weaker for low 

biomass samples vs. high biomass samples, the magnitude of the difference was smaller as 

compared to ITS data, and correlations for high biomass samples were strong (rho >0.85) for 

all candidate extraction kits and distance metrics examined (Table S3).

Importantly, whereas agreement with PowerSoil regarding the results of analyzing 16S or 

shotgun metagenomics data is desirable, deviation from PowerSoil among the five candidate 

extraction kits based on fungal ITS data was expected. In that regard, the MagMAX 

Microbiome kit alone consistently maintains a high degree of correlation with PowerSoil 

for both 16S and shotgun metagenomics data (Figure 2C, Figure 2M, Figure 5C, Figure 

5M, Figure 6C, Figure 6M), while also maintaining a relatively high number of samples 

from both high- and low biomass subsets following normalization, across all three data 

layers (Table S1, Table S2, Table S3). The NucleoMag Food and Zymo MagBead kits 

have slightly stronger correlations with PowerSoil as compared to MagMAX for shotgun 

metagenomics data for certain analyses of microbial community diversity (Figure 6M–O, 

Table S1, Table S3). However, the MagMAX Microbiome kit recovered the greatest number 

of exclusive fungal genera while also sharing the greatest number of exclusive fungal 

genera with PowerSoil (Figure 4D). Although the PowerSoil Pro kit also recovered a 

similar frequency of exclusive fungal genera (Figure 4C), the increased sample dropout 

following normalization for that kit vs. the MagMAX Microbiome kit (i.e., particularly 

for low biomass samples) (Table S1, Table S2, Table S3), increased processing time (i.e., 
approximately 3.5 h for PowerSoil and PowerSoil Pro vs. 1.0 h for MagMAX Microbiome), 

as well as the increased cost of consumables (i.e., 3.5X reagent reservoirs and 7X tips for 

PowerSoil and PowerSoil Pro vs. MagMAX Microbiome) combined with previous work 

showing that the MagMAX kit can also extract high-quality RNA from similar samples [33], 

argue strongly for the use of the MagMAX Microbiome kit. However, the PowerSoil Pro kit 

is a good alternative if there are no downstream RNA applications, and if time and cost are 

not important factors.
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Conclusions.

We conclude that the MagMAX Microbiome extraction kit is comparable to our 

standardized PowerSoil protocol with respect to characterizing microbial community 

composition using both 16S and shotgun metagenomic data, and is optimal compared to 

other candidate kits and our standardized protocol for doing so using fungal ITS data, as 

it recovers the greatest number of unique fungal genera. The PowerSoil Pro kit is a good 

alternative, as it excels in the same regards, but it does not extract RNA and is a more time- 

and cost-intensive protocol, as compared to the MagMAX Microbiome kit. Regardless, data 

from the PowerSoil, PowerSoil Pro, and MagMAX Microbiome extraction kits should allow 

for comparisons such as meta-analysis across 16S, ITS, and shotgun metagenomics data 

produced using those protocols and downstream processing and analytical methods similar 

to those used here. In addition to recovering a greater number of fungal taxa, the more 

rapid processing time, and use of fewer consumables highlight the MagMAX Microbiome 

kit as a comparable and efficient alternative to the PowerSoil protocol that also optimizes 

downstream applications, including fungi.

Future perspective.

Future efforts should continue to focus on optimizing microbiological and molecular 

methods that capture all organisms in a sample regardless of their evolutionary history, 

and from a diversity of sample types such as those examined here. Such methods provide 

invaluable resources and should serve as gold standards to be adopted widely by the 

community [56]. In parallel, further advances in computational methods should focus on 

reducing technical effects in meta-analyses across studies using distinct methods [6,39]. 

In concert, such advances will allow us to maximize our understanding of microbial 

communities and to harness that knowledge in part to foster human and environmental 

sustainability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Executive summary.

1. We compared our previously established, standardized protocol for DNA 

extraction against five alternative DNA extraction kits.

2. We included a diverse panel of sample types ranging from host-associated to 

environmental.

3. We also included controls for detecting well-to-well contamination and the 

limit of detection of microbial cells.

4. We observed sample type-specific differences in DNA extraction efficiency 

among all extraction protocols.

5. Sample type and host identity were stronger drivers of microbial community 

beta-diversity as compared to the extraction protocol used.

6. We identify one protocol that generates high-quality fungal ITS data, and 

produces 16S- and shotgun metagenomics data with high similarity to our 

established protocol with respect to microbial community alpha-diversity, 

beta-diversity, and taxonomic composition.

7. The similarity between the optimal protocol and our existing one will allow 

for meta-analyses across both with negligible technical bias.
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Figure 1. 
DNA yield (ng/μL) per sample for each candidate extraction kit (y-axis) as compared to 

our standardized protocol (x-axis). (A) PowerSoil Pro. (B) Norgen Stool. (C) MagMAX 

Microbiome. (D) NucleoMag Food. (E) Zymo MagBead. For all panels, colors indicate 

sample type and shapes sample biomass, and dotted gray lines indicate 1:1 relationships 

between methods. Results from tests for correlation between per-sample DNA yield for 

each respective candidate kit vs. from our standardized protocol, are shown (t = Kendall’s 

tau). For significant correlations, results from a linear model including a 95% confidence 

interval for predictions are shown. Both axes are presented in a log10 scale. A miniaturized, 

high-throughput Quant-iT PicoGreen dsDNA assay was used for quantification, with a lower 

limit of 0.1 ng/μL. Yields below this value were estimated by extrapolating from a standard 

curve.
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Figure 2. 
Sequences per sample for each candidate extraction kit (y-axis) as compared to our 

standardized protocol (x-axis). (A-E) 16S data. (F-J) Fungal ITS data. (K-P) Shotgun 

metagenomic data. For each panel, colors indicate sample type and shapes sample biomass, 

and dotted gray lines indicate a 1:1 relationship between methods. For each dataset, results 

from tests for correlation between read counts from each respective candidate kit vs. from 

our standardized protocol, are shown (t = Kendall’s tau). For significant correlations, results 

from a linear model including a 95% confidence interval for predictions are shown. Both 

axes are presented in a log10 scale.
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Figure 3. 
Well-to-well contamination across candidate extraction kits as compared to our standardized 

protocol. Plasmids harboring synthetic 16S sequences were spiked into a single well per 

plate column (i.e., 1–11) of each high-biomass sample plate prior to extraction. (A) The 

number of reads matching synthetic 16S sequences was quantified for all wells that did not 

receive a spike-in (i.e., sink wells). Round 1 and Round 2 indicate different sequencing runs, 

and because sampling effort was not normalized here such to compare absolute read counts, 

comparisons should not be made across sequencing runs. For each sequencing run, results 

from a Kruskal-Wallis test are shown. (B) The percentage of spike-in reads among all reads 

per well shown as a heatmap. Wells into which plasmids were spiked (i.e., source wells) are 

outlined in orange.
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Figure 4. 
Taxonomic bias among extraction protocols. Upset plots showing (A, B) genera for 

bacterial/archaeal 16S data, (C, D) genera for fungal ITS data, and (E, F) species for 

bacterial/archaeal metagenomics data, highlighting taxa shared among extraction protocols. 

Values indicate counts and percentages are respective to all taxa across all protocols. 

Associations representing <5 taxa were excluded for clarity. Round 1 and Round 2 indicate 

different sequencing runs, and because sampling effort was not normalized here such to 

compare absolute taxon counts, comparisons of counts (i.e., vs. percentages) should not be 

made across sequencing runs.
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Figure 5. 
Taxon relative abundances across all samples for each candidate extraction kit (y-axis) as 

compared to our standardized protocol (x-axis). Colors indicate candidate kits. (A-E) 16S 

data, where each point represents a bacterial/archaeal genus. (F-J) Fungal ITS data, where 

each point represents a fungal genus. (K-O) Shotgun metagenomic data, where each point 

represents a bacterial/archaeal genus. For each dataset, results from tests for correlation 

between taxon abundances from each respective candidate kit vs. our standardized protocol, 

are shown (t = Kendall’s tau). For significant correlations, results from a linear model 

including a 95% confidence interval for predictions are shown. Both axes are presented in a 

log10 scale.
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Figure 6. 
Alpha-diversity per sample across sample types for each candidate extraction kit (y-axis) 

as compared to our standardized protocol (x-axis). (A-E) 16S data. (F-J) Fungal ITS data. 

(K-P) Shotgun metagenomic data. For each panel, colors indicate sample type and shapes 

sample biomass, and dotted gray lines indicate a 1:1 relationship between methods. Results 

from tests for correlation between alpha-diversity values from each respective candidate 

kit vs. from our standardized protocol, are shown (t = Kendall’s tau). For significant 

correlations, results from a linear model including a 95% confidence interval for predictions 

are shown. Sample types absent from any panel lacked representation by the respective 

candidate extraction kit and our standardized protocol.
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Table 1.

Limits of detection of microbial cells across extraction kits.

Round Extraction 
kit

Threshold 
(%)

16S ITS

LOD Read 
depth

Samples 
retained

Samples 
retained 
(%)

LOD Read depth Samples 
retained

Samples 
retained 
(%)

1 PowerSoil 50 1.40E+03 73 81 86 2.66E+00 3 94 100

80 1.40E+05 449 55 59 2.66E+02 223 45 48

90 1.40E+05 1812 43 46 >2.66E+07 199,755 0 0

95 1.40E+08 8676 39 41 >2.66E+07 165,759,100,584 0 0

PowerSoil 
Pro

50 1.40E+02 46 79 84 2.66E+01 49 70 80

80 1.40E+02 692 61 65 2.66E+04 1094 39 45

90 1.40E+06 7520 33 35 2.66E+05 18,669 14 16

95 >1.40E+09 145,206 0 0 >2.66E+07 698,158 0 0

Norgen 
Stool

50 1.40E+07 1960 18 19 2.66E+00 2 88 100

80 1.40E+07 4705 12 13 2.66E+05 850 7 8

90 1.40E+08 8224 10 10 >2.66E+07 314,049,798 0 0

95 1.40E+08 14,215 9 10 >2.66E+07 >1.00E+12 0 0

2 PowerSoil 50 1.40E+02 88 93 97 2.66E+00 3 91 100

80 1.40E+02 3224 80 83 2.66E+00 6 91 100

90 >1.40E+09 88,894 0 0 2.66E+00 12 86 95

95 >1.40E+09 6,228,705 0 0 2.66E+00 24 75 82

MagMAX 
Microbiome

50 1.40E+03 1286 79 82 2.66E+00 5 92 100

80 1.40E+04 4147 66 69 2.66E+00 479 64 70

90 1.40E+04 8970 63 66 >2.66E+07 451,442 0 0

95 1.40E+04 19,454 39 41 >2.66E+07 176,467,642,943 0 0

NucleoMag 
Food

50 1.40E+05 8379 61 64 2.66E+00 1 88 100

80 1.40E+05 14,121 45 47 2.66E+00 2 88 100

90 1.40E+06 19,430 27 28 2.66E+02 74 69 78

95 1.40E+07 26,321 18 19 >2.66E+07 26,901,301 0 0

Zymo 
MagBead

50 1.40E+02 489 42 44 2.66E+00 1 90 100

80 1.40E+02 1838 32 33 2.66E+00 4 90 100

90 1.40E+06 4531 22 23 2.66E+01 466 38 42

95 1.40E+06 11,445 10 10 >2.66E+07 5,179,906,841 0 0

Titrations of a mock community containing known numbers of cells of bacterial and fungal species (see Materials & Methods) were used to 
identify the number of per-sample reads needed to meet certain LOD thresholds (i.e., the percentage of reads mapped to expected taxa vs 
contaminants). For each dataset, the read depth corresponding to a threshold of 50% was used for filtering samples before community analyses, as 
recommended [29,33]. The number and percentage of samples retained after filtering based on the read depth for each threshold and LOD estimates 
for bacterial and fungal cells are shown for 16S- and fungal ITS data, respectively. Rounds 1 and 2 indicate different sequencing runs; because 
sampling effort was not normalized such to compare absolute read counts, comparisons should not be made across sequencing runs.

ITS: Internal transcribed spacer; LOD: Limits of detection.
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Table 2.

Assessment of factors influencing microbial community beta-diversity in this study.

Data type Distance metric Factor Adjusted R2 df AIC F p-value

16S Unweighted UniFrac Host identity 0.93 60 −979.83 152.03 0.0002

Unweighted UniFrac Extraction kit 0.001 6 −988.95 3.2 0.0004

Weighted UniFrac Host identity 0.84 60 −428.1 58.62 0.0002

Weighted UniFrac Extraction kit 0.02 6 −533.75 19.27 0.0002

Jaccard Host identity 0.96 60 −1234.51 231.05 0.0002

Jaccard Extraction kit 0.002 6 −1254.66 4.92 0.0002

RPCA Host identity 0.89 60 −644.89 86.15 0.0002

RPCA Extraction kit 0.004 6 −663.81 4.73 0.0002

ITS Jaccard Host identity 0.8 59 −191.58 33.9 0.0002

Jaccard Extraction kit 0.02 6 −235.28 8.51 0.0002

RPCA Host identity 0.72 59 −30.05 22.32 0.0002

RPCA Extraction kit 0.02 6 −62.07 6.64 0.0002

Metagenomic Unweighted UniFrac Host identity 0.92 65 −1063.58 141.03 0.0002

Unweighted UniFrac Extraction kit 0.005 6 −1107.59 8.79 0.0002

Weighted UniFrac Host identity 0.87 65 −672.15 81.26 0.0002

Weighted UniFrac Extraction kit 0.02 6 −807.08 24.46 0.0002

Jaccard Host identity 0.93 65 −1195 168.79 0.0002

Jaccard Extraction kit 0.003 6 −1225.27 6.57 0.0002

RPCA Host identity 0.85 65 −579.25 70.95 0.0002

RPCA Extraction kit 0.01 6 −633.1 10.4 0.0002

Results are from forward, stepwise model selection, following Shaffer et al. (2021) [33]. Values are based on permutation tests of variation 
explained by redundancy analysis (n = 5000 runs), done separately for unique distance metrics for 16S, the fungal ITS, and shotgun metagenomic 
data. The full model included extraction round (i.e., Round 1 vs 2), sample biomass (i.e., high vs low biomass), sample type, host subject identity 
and extraction kit as model variables. 16S data were rarefied to 10,000 quality-filtered reads per sample or had samples with fewer than 10,000 
reads excluded when using RPCA distances (n = 640 samples). Fungal ITS data were rarefied to 630 quality-filtered reads per sample or had 
samples with fewer than 630 reads excluded when using RPCA distances (n = 978 samples). Shotgun metagenomic data were rarefied to 2100 
host- and quality-filtered reads per sample or had samples with fewer than 2100 reads excluded when using RPCA distances (n = 1044 samples). 
Rarefaction depths were selected to maintain at least 75% samples (50% for fungal ITS data) from both high- and low-biomass datasets.

AIC: Akaike information criterion; df: degrees of freedom; ITS: Internal transcribed spacer; RPCA: Robust principal components analysis (i.e., 
Robust Aitchison distance).
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