Skip to main content
. 2022 Jul 26;10:876949. doi: 10.3389/fpubh.2022.876949

Table 3.

Results for the ML models.

Model Validation year Training Test
Accuracy Sensitivity Specificity AUC * Accuracy Sensitivity Specificity AUC *
DT 2017 0.75 0.82 0.50 0.65 0.70 0.82 0.22 0.53
2018 0.94 1.00 0.73 0.86 0.68 0.81 0.36 0.59
2019 0.97 1.00 0.91 0.96 0.72 0.75 0.60 0.68
RF 2017 0.81 0.83 0.72 0.73 0.70 0.79 0.33 0.60
2018 0.94 0.94 0.89 0.87 0.70 0.87 0.32 0.63
2019 0.89 0.90 0.87 0.85 0.82 0.85 0.60 0.77
LR 2017 0.63 0.59 0.78 0.63 0.63 0.59 0.78 0.61
2018 0.71 0.71 0.68 0.63 0.65 0.73 0.45 0.62
2019 0.62 0.58 0.74 0.63 0.65 0.60 0.90 0.84
SVM 2017 0.99 0.98 1.00 0.97 0.65 0.74 0.33 0.45
2018 0.94 0.92 1.00 0.86 0.61 0.75 0.27 0.56
2019 0.89 0.86 0.97 0.85 0.68 0.69 0.60 0.68
MLP 2017 0.82 0.95 0.38 0.77 0.74 0.88 0.22 0.65
2018 0.87 1.00 0.26 0.93 0.74 1.00 0.14 0.65
2019 0.79 0.99 0.23 0.83 0.85 0.93 0.40 0.82
*

AUC, Area Under Receiver Operative Curve.