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Abstract

Objectives: Despite significant progress, artifact-free visualization of the bone and soft tissues
around hip arthroplasty implants remains an unmet clinical need. New-generation low-field
magnetic resonance imaging (MRI) systems now include slice encoding for metal artifact
correction (SEMAC), which may result in smaller metallic artifacts and better image quality
than standard-of-care 1.5 T MRI. This study aims to assess the feasibility of SEMAC on a
new-generation 0.55 T system, optimize the pulse protocol parameters, and compare the results
with those of a standard-of-care 1.5 T MRI.

Materials and Methods: Titanium (Ti) and cobalt-chromium total hip arthroplasty implants
embedded in a tissue-mimicking American Society for Testing and Materials gel phantom were
evaluated using turbo spin echo, view angle tilting (VAT), and combined VAT and SEMAC (VAT
+ SEMAC) pulse sequences. To refine an MRI protocol at 0.55 T, the type of metal artifact
reduction techniques and the effect of various pulse sequence parameters on metal artifacts were
assessed through qualitative ranking of the images by 3 expert readers while taking measured
spatial resolution, signal-to-noise ratios, and acquisition times into consideration. Signal-to-noise
ratio efficiency and artifact size of the optimized 0.55 T protocols were compared with the 1.5 T
standard and compressed-sensing SEMAC sequences.

Results: Overall, the VAT + SEMAC sequence with at least 6 SEMAC encoding steps for

Ti and 9 for cobalt-chromium implants was ranked higher than other sequences for metal
reduction (P < 0.05). Additional SEMAC encoding partitions did not result in further metal artifact
reductions. Permitting minimal residual artifacts, low magnetic susceptibility Ti constructs may be
sufficiently imaged with optimized turbo spin echo sequences obviating the need for SEMAC. In
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cross-platform comparison, 0.55 T acquisitions using the optimized protocols are associated with
45% to 64% smaller artifacts than 1.5 T VAT + SEMAC and VAT + compressed-sensing/SEMAC
protocols at the expense of a 17% to 28% reduction in signal-to-noise ratio efficiency. B;-related
artifacts are invariably smaller at 0.55 T than 1.5 T; however, artifacts related to By distortion,
although frequently smaller, may appear as signal pileups at 0.55 T.

Conclusions: Our results suggest that new-generation low-field SEMAC MRI reduces metal
artifacts around hip arthroplasty implants to better advantage than current 1.5 T MRI standard of
care. While the appearance of By-related artifacts changes, reduction in B-related artifacts plays a
major role in the overall benefit of 0.55 T.
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low-field; magnetic resonance imaging; hip arthroplasty; metal artifact; SEMAC

Although the higher field strength, gradient power, and receive channel elements of 1.5 and
3 T magnetic resonance imaging (MRI) systems allow for fast acquisition of high-quality
images, the total cost of ownership can be a value-limiting factor of global availability.2

As such, there has been a recent interest in the MRl community in revisiting lower-field

MRI systems between 0.1 and 1.0 T.3-> New-generation low-field MRI systems utilize many
performance-enhancing advancements developed with high-field systems while benefiting
from substantially lower material and production costs, as well as reduced installation and
maintenance complexity.

Compared with their ancestors, the new generation of low-field MRI systems allows the
implementation of many new imaging techniques such as parallel imaging, simultaneous
multislice excitation, and multispectral metal artifact reduction imaging.8 Although signal-
to-noise ratios (SNRs) are inherently lower at low field strength, resulting in long acquisition
times, diagnostic quality similar to 1.5 T can be obtained, representing a viable alternative
globally.” The US Food and Drug Administration has recently cleared the first 80-cm
wide-bore 0.55 T system for human imaging, which additionally promises improving access
for obese and claustrophobic patient populations.8

Low-field MRI improves visualization of the soft tissues near the metallic hardware, owing
to the physics principle that susceptibility artifacts are proportional to the field strength.
Although this concept has been shown for smaller metallic implants, %11 the current

gap of knowledge on larger metallic components, such as hip arthroplasty, stems from

poor access to whole-body low-field systems, unavailability of advanced metal artifact
reduction techniques on such systems, and often poor image quality of the traditional
low-field scanners. Initial studies suggest that new-generation low-field MRI systems offer
advantages for MRI-guided catheterizations with metal-containing devices and MRI in high-
susceptibility regions.1213 We hypothesized that the application of slice encoding for metal
artifact correction (SEMAC) with a new-generation low-field MRI system results in smaller
metallic artifacts and better image quality than standard-of-care 1.5 T MRI.
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We aimed to investigate the feasibility of SEMAC MRI of hip arthroplasty implants on

a new-generation 0.55 T system, optimize MRI protocols intended for clinical use, and
compare MRI characteristics with a clinical 1.5 T system.

MATERIALS AND METHODS

Phantom Setup

MRI System

Two total hip arthroplasty systems (DePuy Synthes, Warsaw, IN, USA) were tested in this
prospective in vitro study to span a wide range of magnetic susceptibility values. The first
“lower susceptibility” system was a ceramic-on-polyethylene construct with titanium (Ti)-
based acetabular cup and femoral stem, cross-linked polyethylene liner, and a ceramic head.
This combination is widely used in our institutional orthopedic practice. The second “higher
susceptibility” system was a metal-on-metal construct with cobalt-chromium (CoCr)-based
acetabular cup, bearing, and femoral components. The implants were embedded in a tissue-
mimicking gel medium according to the American Society for Testing and Materials F2182—
11A standard.14

To investigate blur effects of sequence parameters on magnetic resonance images, a
resolution phantom made of 8 rows of 6 parallel plastic strips was designed similar to
previous descriptions.1® Strip thicknesses and the distance between the strips from the top to
the bottom rows were 2.0, 1.6, 1.0, 0.8, 0.6, 0.5, 0.4, and 0.25 mm (Supporting Information
Fig. S1, http://links.lww.com/RL1/A686). The resolution phantom was placed in a coconut
oil-filled container and imaged separately with each pulse sequence.

and Pulse Sequence Protocols

MRI was performed with a modified commercial MRI system (1.5 T MAGNETOM Aera;
Siemens Healthcare GmbH, Erlangen, Germany) that operated as a prototype system at 0.55
T field strength with a maximum gradient strength of 25 mT/m and a maximum slew rate

of 40 T/m/s. The vendor-provided 6-channel body and 18-channel spine array coils tuned to
operate at 0.55 T were used for signal reception.

Intermediate-weighted turbo spin echo (TSE), view angle tilting (VAT),16 and combined
VAT and SEMAC (VAT + SEMAC)Y-19 protocols in coronal and axial planes were used

to image the hip arthroplasty constructs and the resolution phantom. Investigated parameters
included the range of SEMAC encoding steps of 6 to 15, receiver bandwidths of 200

to 450 Hz/px, turbo factors of 8 to 23, and parallel imaging acceleration (generalized
autocalibrating partial parallel acquisition; GRAPPA) factors of 1 to 3. Other parameters,
such as matrix and voxel sizes, were matched to the clinical 1.5 T protocols and are
summarized in Table 5.

For comparison with 1.5 T field strength, the same experimental setup was used with a
clinical 1.5 T MRI system (MAGNETOM Sola; Siemens Healthcare GmbH) using the
standard VAT + SEMAC sequence (encoding steps of 11) and a 1.5 T MRI system
(MAGNETOM Area; Siemens Healthcare GmbH) equipped with the compressed-sensing
(CS) VAT SEMAC sequence (encoding steps of 19). Detailed sequence parameters are
provided in Supporting Information Table S1, http://links.lww.com/RLI/A687. The vendor-
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provided 18-channel body and 32-channel spine arrays were used for signal reception at
both 1.5 T systems.

Protocol Optimization

Four outcomes variables, including the metal artifacts, measured spatial resolution, SNR,
and acquisition time, were compared across different protocols. The degree of metal
artifacts, irrespective of the image blurring and SNR, was assessed qualitatively by 3 board-
certified fellowship-trained full-time musculoskeletal radiologists with 10, 10, and 15 years
of experience in MRI interpretations, who ranked the pseudonymized and randomized MRI
datasets of different protocols independently. Tied ranking was permitted. Spatial resolution
measured independently using the resolution phantom was defined as the blade thickness at
which adjacent blades could be clearly distinguished. Signal-to-noise ratio across the entire
imaged volume was calculated using the difference method through repeated measurements
with subtraction image creations.29 The optimal MRI parameter was determined based on
statistically significant differences in ranks (Fig. 1). In the absence of a significant rank
difference, the optimal parameter was determined by the highest measured spatial resolution,
highest SNR, shortest acquisition time, or a tradeoff between these outcome variables per
reader preferences. As illustrated in Figure 1, the optimal parameters obtained at each step
were used to assess the subsequent parameter.

Comparison of 0.55 and 1.5 T Field Strengths

Signal-to-noise ratio efficiency, defined as SNR divided by the square root of the acquisition
time, was calculated and compared for all 0.55 and 1.5 T pulse sequence acquisitions.

To calculate the SNR, matching areas in the background gel devoid of metal artifacts

were selected, and the SNR was calculated using the difference method through repeated
measurements and subtraction.20

To quantify the artifact size across the 0.55 and 1.5 T systems, a reader with 10 years of
experience blind to the field strength manually segmented the artifact-degraded regions of
the axial images in matching planes along the prosthesis using a commercially available
DICOM Viewer (RadiAnt, Mexdixant, Poznan, Poland). All areas of signal void, including
the implant itself, signal pile up (bright regions with intensity higher than that of the gel
medium), and SEMAC-specific ripple artifacts, were considered degradations and included
in measurements.

Statistical Analysis

Inter-reader agreement of rankings was quantified with the use of chance-corrected Gwet
agreement coefficient 2 (x.4c») using linear weights.2! A benchmark scale was used for
agreement coefficients where 0.2 or less indicated poor, 0.21 to 0.40 indicated fair, 0.41

to 0.6 indicated moderate, 0.61 to 0.8 indicated good, and 0.81 to 1.00 indicated very

good agreement.22 Cumulative membership probabilities with a cutoff point of 0.95 were
applied to each agreement coefficient to confirm the applicability of the benchmark scale.?!
The nonparametric Friedman test was applied for multigroup comparisons among different
sequence parameters, followed by post hoc analysis using a Bonferroni-corrected Wilcoxon
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signed-rank test. For brevity, only the Pvalues of the pertinent parameters have been marked
in the tables.

To compare the size of artifacts between 0.55 and 1.5 T, the normality of the data

was assessed with a Shapiro-Wilk test. Because the residuals failed to follow a normal
distribution, the nonparametric Wilcoxon signed-rank test was applied to evaluate artifact
differences between the 2 field strengths. A Pvalue of less than 0.05 was considered
statistically significant.

Protocol Optimization

Table 1 summarizes the artifact reduction ability, measured spatial resolution, SNR, and
acquisition time of different pulse sequences at 0.55 T, including TSE, VAT, and combined
VAT + SEMAC with SEMAC encoding steps of 6, 9, 12, and 15. Corresponding images of
the implants and the resolution phantom are shown in Figure 2. There was good agreement
among the 3 readers in image ranks.

For the Ti implant, the TSE pulse sequence was ranked lower than other pulse sequences in
both coronal (P < 0.05 for TSE vsall other sequences) and axial (P< 0.05 for TSE vs VAT +
SEMAC sequences) planes. The VAT pulse sequence was ranked lower than VAT + SEMAC
sequences on the coronal (not statistically significant) and axial (P < 0.05 for VAT vs VAT

+ SEMAC sequences) images. All SEMAC pulse sequences were ranked equally high for
artifact reduction. Therefore, the shortest VAT + SEMAC 6 pulse sequence was selected as
optimal. Despite the lower ranking of the TSE sequence, the subjective difference in the size
of the artifact between TSE and SEMAC sequences was minimal for this type of implant
(Fig. 2A). Therefore, TSE with matching SNR to SEMAC through higher signal averages
can be considered a viable option for MRI of low magnetic susceptibility implants owing to
its short acquisition time and lower degrees of blurring.

For the CoCr implant, TSE, VAT, and VAT + SEMAC 6 were ranked lower than VAT +
SEMAC 9 to 15 (all pairwise £< 0.05) (Table 1, Fig. 2B). Slice encoding for metal artifact
correction with at least 9 encoding steps was needed to reach adequate image quality,
beyond which the metal artifacts remained unchanged with no statistically significant
differences (VAT + SEMAC 9 vs VAT + SEMAC 12: £> 0.99 for coronal and axial images,
VAT + SEMAC 9 vs VAT + SEMAC 15: P> 0.99 for coronal and axial images), despite
more SEMAC encoding steps and longer acquisition times.

With regard to the effect of receiver bandwidth on image quality, there was good to very
good agreement between readers in image ranks (Table 2). The higher bandwidth of about
450 Hz/px resulted in the lowest degrees of metal artifact and lower blurring in SEMAC +
VAT sequences (Fig. 3).

The turbo factor in the tested range had no perceivable effect on the metal artifact or
acquisition duration. However, to prevent any potential blurring that may occur with T2
weighting, turbo factors of 13 and 7 were selected for coronal and axial acquisitions,
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respectively (Table 3). Similarly, readers chose acceleration factors of 2 and 3 for coronal
and axial images without affecting the metal artifacts, respectively (Table 4). A summary of
the proposed pulse sequence protocol for MRI of the hip arthroplasty implants at 0.55 T is
shown in Table 5.

Comparison of 0.55 and 1.5 T Field Strengths

Signal-to-noise ratio efficiency and artifact size of the 0.55 and 1.5 T field strengths for
different protocols and implant types are presented in Figure 4. Turbo spin echo images of
the CoCr and Ti implants showed 57% (P = 0.001) and 56% (P = 0.008) smaller artifacts,
respectively, at 0.55 than 1.5 T (Fig. 4A). Similar trends were observed for VAT acquisitions,
with 48% (£ =0.003) and 55% (~ = 0.008) smaller artifacts for the CoCr and Ti implants,
respectively (Fig. 4B). Signal-to-noise ratio efficiencies of the 0.55 T acquisitions were 14%
to 28% of the corresponding 1.5 T images for these pulse sequences.

Figures 4C and 5 compare the performance of our proposed 0.55 T protocols with those of
the 1.5 T VAT + SEMAC and VAT + CS/SEMAC pulse sequences. For the Ti prosthesis, the
optimized 0.55 T protocols resulted in overall 64% smaller artifacts (P = 0.007), 47% shorter
acquisition time, and 23% lower SNR efficiency than 1.5 T VAT + SEMAC and 64% smaller
artifacts (P=0.007), 4% longer acquisition time, and 28% lower SNR efficiency than 1.5

T VAT + CS/SEMAC. Similarly, the CoCr implant demonstrated 53% smaller artifacts (#
=0.001), 20% shorter acquisition time, and 17% lower SNR efficiency than 1.5 T VAT +
SEMAC and 45% smaller artifacts (P> 0.05), 57% longer acquisition time, and 25% lower
SNR efficiency when compared with 1.5 T VAT + CS/SEMAC.

The artifact reduction advantage of 0.55 T MRI was more pronounced at the longitudinal
femoral stem than in the regions of the spherical acetabular cup and femoral head (Fig.
6). For both Ti and CoCr stems, the proposed protocols at 0.55 T resulted in significantly
smaller artifacts surrounding the femoral stem (Ti: 120% smaller artifacts than 1.5 T VAT
+ SEMAC, P=0.043, and 117% smaller than 1.5 T VAT + CS/SEMAC, P=0.042; CoCr:
91% smaller artifacts than 1.5 T VAT + SEMAC, P=0.012, and 90% smaller than 1.5 T
VAT + CS/SEMAC, P=0.012) (Fig. 4C).

In most cases, 0.55 T protocols also reduced metal artifacts in the region of the acetabular
cup and femoral head (Ti: 8% smaller artifacts compared with 1.5 T VAT + SEMAC, P
=0.080, and 11% smaller artifacts compared with 1.5 T VAT + CS/SEMAC, P = 0.080;
CoCr: 9% smaller artifacts compared with 1.5 T VAT + SEMAC, P=0.018), owing to

the reduction in the size of susceptibility related signal void near the femoral head (white
arrows in Figs. 5 and 6). The exception to this observation was the high-susceptibility
CoCr head, which had slightly larger, although statistically insignificant, artifacts at 0.55 T
compared with the VAT + CS/SEMAC 1.5 T protocol (7% larger artifacts, 2= 0.310). This
increased artifact was due to a change in the appearance of the susceptibility artifacts and the
introduction of new areas of signal pileup near the prosthesis head at 0.55 T (hollow arrows
in Figs. 5 and 6).
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DISCUSSION

Despite significant progress in the past 2 decades, artifact-free visualization of the bone and
soft tissues contacting metallic orthopedic implants remains an unmet clinical need.23-28
New-generation low-field MRI systems now include SEMAC, promising smaller metallic
artifacts and better image quality than standard-of-care 1.5 T MRI. In this study, we

used ceramic-on-polyethylene Ti and metal-on-metal CoCr total hip arthroplasty implant
constructs to compare the degree of metal artifacts of magnetic resonance images obtained
with modified 0.55 T prototype and clinical 1.5 T MRI systems, using the current spectrum
of basic to advanced metal artifact reduction techniques. Our results indicate that the 0.55
T SEMAC MRI with 6 to 9 encoding steps substantially reduces metal artifacts within
clinically viable sequence acquisition times of 6 minutes or less to 8 minutes. Higher spatial
partitions, beyond 6 to 9 SEMAC encoding steps, failed to reduce metal artifacts further,
which follows computational models.2® For lower-susceptibility hip arthroplasty implants,
such as Ti, SEMAC may not be required if minimal artifacts are tolerated. In addition to
shorter acquisition times, this approach eliminates VAT-associated blurring,30 which may
obscure small abnormalities.

Our optimization derived slightly different pulse sequence protocols for Ti and CoCr
implants. Although CoCr arthroplasty implants are now less commonly used, accurate MRI
surveillance of patients with well-functioning CoCr hip arthroplasty constructs remains
crucial. The CoCr protocol may also be used for MRI of unknown hip arthroplasty implants
to err on the side of higher metal artifact reduction capacity. Applying high receiver
bandwidths was associated with smaller artifacts and sharper images, which mitigates the
blurring of the VAT + SEMAC sequences. Other parameters, such as the turbo factor and
acceleration technique,3! did not affect the size of metal artifacts but can be adjusted to
optimize the tradeoff between the acquisition time and SNR.

Metal-related artifacts were substantially smaller at 0.55 T than 1.5 T, with the added
benefit of shorter scan times of 20% to 47% in the absence of CS acceleration. Our
proposed 0.55 T protocols had 17% to 28% lower SNR efficiency than the clinical 1.5

T protocols. In addition to the inherently lower SNR of the 0.55 T field strength, the lower
number of receiver elements in our experiments potentially contributed to the observed
reduced SNR efficiency. Although this level of SNR may still be adequate for diagnostic
purposes and is subject to future investigation, the lower SNR of the low-field systems could
be improved by developing more efficient receiver coils and future applications of deep
learning reconstruction algorithms based on neural networks or iterative denoising.

Lower Bg and B;-related artifacts play a role in the smaller metal artifacts at 0.55 T and
manifest as smaller artifacts adjacent to the spherical acetabular and longitudinal femoral
components, respectively (Fig. 6). Of interest is the change in the appearance of the Bg-
related artifacts at areas with high Bg distortion, such as the femoral head of the CoCr
implant. A simplified model of metal-induced changes in the precession frequency (Af;)
as a function of distance from the metal surface (2) is shown in Figure 7. For similar
radiofrequency (RF) pulse bandwidths (A RF)), spins precessing at frequencies outside
the RF pulse bandwidth (z< z for 0.55 T and z< 2 for 1.5 T) will not be excited,
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explaining the larger areas of signal loss due to off-resonance at 1.5 T. Through plane signal

Afm
yGss™'

misregistration for each excited point with a frequency offset of Af;, equals Az= with

y and Gggrepresenting the gyromagnetic ratio and slice-selection gradient, respectively.
Whereas the signal displacement of points A; at 0.55 T (4] — A} and By at 1.5 T (B — B))

are equal, the signal from points z; < z< 2z at 0.55 T (not excited at 1.5 T) will be distorted
and displaced into the adjacent slices, resulting in signal pileups. This is of high clinical
significance, as the improved visualization of the periprosthetic tissues may be associated
with signal pileups that can be misinterpreted as a structural or tissue-based pathological
signal abnormality. Because of the nonlinearity of the signal distortion, SEMAC correction
of through-plane signal displacements, even at high encoding steps, cannot resolve the signal
pileups, suggesting that more sophisticated artifact reduction techniques, such as hybrid
multiacquisition with variable resonance image combination-SEMAC,32 may be needed.

The B1-related artifacts manifest as flame-shaped areas of shading and brightness along the
femoral stem33 and are also smaller at 0.55 T (Fig. 6). In our experiments, the RF pulse
profile was similar across the 0.55 and 1.5 T platforms, and the larger B1-related artifacts
at 1.5 T can be attributed to the closer relationship between the implant length and RF
pulse half wavelength at 1.5 T (~25 cm) than 0.55 T (~70 cm), which results in resonance
coupling.34-36

Our study has limitations. Our results may serve as a basis for MRI of hip arthroplasty
implants in humans; however, the optimized protocols may need further refinement for
clinical use. Second, we did not incorporate short tau inversion recovery pulse sequences
in our study because of the water-based nature of our experimental setup. Although

the proposed parameters can be used with short tau inversion recovery sequences, the
image quality may be hampered by the inherently lower SNR. Lastly, we conducted our
experiments in a gel phantom that emulated the electromagnetic properties of the human
muscle. In vivo, the implant is embedded in cement or bone with different electromagnetic
characteristics, which may affect the artifact profiles.

In conclusion, our in vitro study suggests that new-generation low-field MRI using SEMAC
improves metal artifact reduction MRI of hip arthroplasty implants compared with current
1.5 T MRI standard of care. While the appearance of By-related artifact changes, the
reduction in Bq-related artifacts also plays a major role in the overall benefit of 0.55 T.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Workflow used for protocol optimization.
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FIGURE 2.
The effect of pulse sequence without and with VAT and SEMAC on metal artifacts, image

blurring, SNR, and acquisition time. Smaller panels show the resolution phantom in each
case. A, MRI of the Ti implant using different pulse sequences shows minimal distortion of
the acetabular cup with the TSE sequence (white arrows), whereas there is near-complete
artifact reduction on VAT and SEMAC pulse sequences. Note the introduction of image
blurring with VAT and VAT + SEMAC. B, MRI of the CoCr implant demonstrates the need
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for SEMAC with at least 9 encoding steps for adequate artifact reduction of the acetabular
component.
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SNR =23.6 SNR = 20.6

BW = 350 Hz/px | BW =400 Hz/px |
SNR = 17.2 SNR = 16.4

FIGURE 3.
The effect of receiver bandwidth on metal artifacts, image blurring, SNR, and acquisition

time. Smaller panels show the resolution phantom in each case. A and B, MRI of the Ti
implant. At higher receiver bandwidth of 450 Hz/px the artifacts (white arrows) are smaller
with VAT + SEMAC 6 (A) and TSE (B). C, MRI of the CoCr implant. At higher receiver
bandwidth of 450 Hz/px the artifacts (white arrows) are smaller with VAT + SEMAC 9.
VAT-associated blurring decreases at higher receiver bandwidths.
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FIGURE 4.

Aurtifact size of the matching axial planes at 0.55 and 1.5 T for TSE (A), VAT (B), and
proposed VAT + SEMAC (C) pulse sequences. SNR efficiency, defined as SNR divided by
the square root of the acquisition time, is shown for each case.
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Ti arthroplasty

Proposed protocols at 0.55T Clinical protocols at 1.5T

gy oY 03:49 min
VAT+SEMAC 6 VAT+SEMAC 11 VAT+CS/SEMAC 19

CoCr arthroplasty

Proposed protocol at 0.55T Clinical protocols at 1.5T

| B 07:27 min
B VAT+SEMAGC 9 VAT+SEMAC 11

03:49 min
VAT+CS/SEMAC 19

FIGURE 5.
Comparison of 0.55 T optimized pulse protocols with our clinical 1.5 T VAT + SEMAC

and VAT + CS/SEMAC pulse sequences for Ti (A) and CoCr (B) implants. Smaller panels
show the resolution phantom in each case. Metal artifacts are significantly reduced primarily
surrounding the femoral stem for both implant types. Areas of signal loss around the CoCr
acetabular cup at 1.5 T (white arrows) are replaced by smaller areas of signal pileup at 0.55
T (hollow arrows).
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Ti arthroplasty CoCr arthroplasty

VAT+SEMAC6 at 0.55T VAT+SEMACG6 at 1.5T VAT+SEMAC9 at 0.55T VAT+SEMACO9 at 1.5T

A7

4

Acetabular cup
and femoral head

Femoral stem

FIGURE 6.
Comparison of the 0.55 T and 1.5 T images using matched protocols at the implant head

and femoral stem levels to visualize field strength effects on By- and B1-related artifacts.
By-related areas of signal loss at the regions of the acetabular cup and femoral head (white
line with arrows near the CoCr acetabular cup) are smaller at 0.55 T, while there are

new areas of signal pileup at 0.55 T (hollow arrows). For both Ti and CoCr implants, the
B4-related artifacts are substantially smaller surrounding the femoral stem.
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A 1

Af(RF) A

FIGURE 7.
Simplified model of metal-induced changes in the precession frequency (Af;;) as a function

of distance from the metal surface (z) for 1.5 T (red) and 0.55 T (blue) field strengths. For
similar RF pulse bandwidths (A RF)), those spins outside the RF pulse bandwidth (z< z;
for 0.55 T and z< 2 for 1. 5 T) will not be excited, which explains the larger areas of signal
loss due to off-resonance at 1.5 T. Through plane signal displacement for each excited point

. A . . . .
with a frequency offset of A7, equals Az:yGﬂ, with y representing the gyromagnetic ratio
SS

and G, representing the slice-selection gradient. Whereas the signal displacement for points
A1 at0.55 T (4] — Aj) and By at 1.5 T (B; — Bj) are equal, the signal from points z; < z<

2, at 0.55 T (not excited at 1.5 T) will be distorted (eg, compressed) into the adjacent slices
and appear as signal pileups.
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