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Genetic variation in genes encoding cytochrome P450 enzymes influences the metabolism of drugs and endogenous compounds.
The locus containing the cytochrome genes CYP2C8 and CYP2C9 on chromosome 10 exhibits linkage disequilibrium between the
CYP2C8*3 and CYP2C9*2 alleles, forming a haplotype of ~300 kilobases. This haplotype is associated with altered metabolism of
several drugs, most notably reduced metabolism of warfarin and phenytoin, leading to toxicity at otherwise therapeutic doses. Here

we show that this haplotype is inherited from Neandertals.
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INTRODUCTION

The admixture between Neandertals and modern humans that
took place ~60,000 years ago introduced genetic variants into the
gene pool of modern humans, many of which are still found at low
frequencies among present-day people [1]. Prior to what is now
estimated to be several admixture events between Neandertals
and modern humans, these two groups evolved largely indepen-
dently of each other for ~500,000 years [2]. During this time, both
groups accumulated genetic variants that differed from the
ancestral states seen in other primates. Whereas modern humans
evolved on the African continent, Neandertals evolved in Eurasia.
The different habitats of these two groups might have exerted
different evolutionary pressures, leading to the fixation of genetic
variants advantageous in the respective environments. Other
variants, even slightly deleterious variants, reached fixation due to
genetic drift, particularly in periods when population sizes were
small. Genetic evidence suggests that the effective population size
of Neandertals was considerably smaller than that of modern
humans [3].

The CYP2C9 gene, which encodes the cytochrome P450 enzyme
CYP2C9, is highly polymorphic in present-day humans. More than
20 single nucleotide polymorphisms (SNPs) affecting the enzy-
matic activity of CYP2C9 have been reported. Importantly, people
with lower enzymatic activity are at risk of toxic reactions from
standard doses of warfarin and phenytoin, which are substrates of
the enzyme [4]. The most frequent CYP2C9 allele, CYP2C9*1, is
present at a frequency of 88 % in European populations [5]. The
variant CYP2C9*2 with a cysteine replacing an arginine at position
144 in the encoded protein (R144C) at a frequency of 12% in
Europe [5]. Its enzyme activity is reduced by ~70% relative to the
common CYP2C9*1 allele [6]. Thus, carriers of CYP2C9*2, particu-
larly if homozygous, have been denoted “slow metabolizers” [6].

Approximately 50 kilobases upstream of the CYP2(C9, is the gene
CYP2(C8, which encodes the cytochrome CYP2C8. This enzyme is a

crucial part of the metabolism of several pharmacological agents
[7] including antidiabetic drugs (e.g., pioglitazone), statins (e.g.,
cerivastatin), anti-inflammatory drugs (e.g., ibuprofen) and che-
motherapeutic agents (e.g., paclitaxel). The most studied allele in
CYP2C8 is CYP2C8*3, which is characterized by the replacement of
an arginine by a lysine at position 139 and a lysine by an arginine
at position 399 (R139K and K399R) in the encoded protein. The
effect of these variants are substrate dependent, with increased
metabolism of drugs such as pioglitazone but decreased
metabolism of R-ibuprofen [7]. The two variants in CYP2C8, as
well as the R144C variant in CYP2C9, differ not only from the most
common alleles in humans but also from the alleles present in
apes and humans indicating that they are “new”, i.e., “derived”,
changes that occurred recently in evolutionary terms.

The two variant alleles CYP2C9*2 and CYP2C8*3 have previously
been shown to frequently co-segregate in families [8]. However, the
distance between the R144C variant (chr10:96,702,047_C>T, hg19),
defining CYP2C9*2, and the variant K399R (chr10:96,798,749_T>C,
hg19), one of the two variants defining the CYP2C8*3 allele, is 96.7
kilobases. Thus, if these variants co-segregate they are present on
an unusually long haplotype. Some such long haplotypes have
been introduced by gene flow from Neandertals [1]. Here we
verify the co-inheritance of these two alleles in large databases
and test the hypothesis that this long haplotype is inherited from
Neandertals.

METHODS

Linkage disequilibrium (), i.e, the co-segregation of the alleles, was
assessed using the phase 3 release of the 1000 Genomes Project [9],
comprising 2504 individuals of different ancestries. Gene-flow from
Neandertals was inferred using previously described methods and
parameters [10]. In brief, genomic sequences were compared to the
corresponding sequences of all available high-coverage Neandertal
genomes and the alternative explanation of incomplete lineage sorting
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Table 1. Allele frequencies (A) and linkage disequilibrium (B) between CYP2C8*3 and CYP2C9*2.
A Variant EUR SAS EAS AMR AFR
CYP2C8*3 R139K (rs11572080) 0.12 0.03 0 0.1 0.01
CYP2C8*3 K399R (rs10509681) 0.12 0.03 0 0.1 0.01
CYP2C9*2 R144C (rs1799853) 0.12 0.03 0 0.1 0.01
B Variant rs11572080 rs10509681 rs1799853
CYP2C8*3 R139K (rs11572080) 1 1 0.85
CYP2C8*3 K399R (rs10509681) 1 1 0.85
CYP2C9*2 R144C (rs1799853) 0.85 0.85 1
was tested using the recombination rate in the genomic region and the
length of the haplotype. Allele frequencies were estimated using the 1000 Altai Neandertal
Genomes Project. The four high-coverage Neandertal and Denisovan
genomes available were used to assess sequence similarity to present-day Chagyrskaya Neandertal
haplotypes [11-14]. Single nucleotide polymorphisms at 278 sites in the
CYP2C8*3/CYP2C9*2

1000 Genome project for which there were homozygous variant calls in the
Vindija Neandertal in the genomic region chr10:96,537,863-96,851,277
(hg19) were used to estimate a phylogeny using a distance-based approach
(FastME, version 2.0) and the substitution model of Tamura-Nei [15]. The
phylogeny was rooted in the ancestral sequence taken from Ensembl [16].

RESULTS

When examining the allele frequencies of CYP2C9*2 and CYP2C8*3
across the 1000 Genomes Project we find that both alleles are
found in European, Asian and ad-mixed American populations but
not in the sub-Saharan population (Table 1). The highest allele
frequency (12%) is seen in Europeans in agreement with previous
data [5]. We also observe that the frequencies of the two alleles
are identical for each population, suggesting co-segregation.
Indeed, we find that the two amino acid replacements defining
CYP2C8*3 are in perfect linkage disequilibrium (> = 1.0, p < 0.001).
These two variants are in turn highly correlated with the CYP2C9*2
allele (* = 0.85, p < 0.001), defined by the amino acid replacement
variant in CYP2C9.

Next, we measured the length of the haplotype by finding the
set of alleles, which are in linkage disequilibrium (*>0.8) in the
1000 Genomes individuals. We find that the haplotype spans
313,414 base pairs (chr10:96,537,863-96,851,277 hg19). A long
haplotype found only among people with genetic roots outside
sub-Saharan Africa may be a result of gene flow from Neandertals.
We thus examined if the variants of CYP2C9*2 and CYP2C8*3 were
present in Neandertal genomes. We find that all three Neandertal
genomes sequenced to high coverage carry these variants
homozygously at the three positions, except for the 120,000-
year-old Neandertal from Denisova Cave in the Altai mountains
which is heterozygous for CYP2C9*2 [14]. In contrast, the one
genome available from the Denisovans, the Asian sister group of
Neandertals [17], harbors the common alleles in homozygous
form for two of the three positions, but is homozygous for the
derived allele causing R139K in CYP2C8.

Using data from 1257 meiotic events across 146 families [18], we
find that the local recombination rate in this region is 0.27
centimorgan per megabase. Given the length of the haplotype and
the recombination rate, we conclude that such a long haplotype is
unlikely to have survived recombination since the common
ancestor of modern humans and Neandertals (p = 1.5e-3). If this
haplotype has been introduced to modern humans by gene flow
from Neandertals, it should be more closely related to Neandertal
haplotypes than to other present-day haplotypes. To clarify this, we
estimated the phylogeny for sequences spanning the region
chr10:96,537,863-96,851,277 for one European haplotype carrying
CYP2C9*2 and CYP2(C8*3, five Yoruban haplotypes, one Denisovan
haplotype and three Neandertal haplotypes (Fig. 1). The haplotype
carrying CYP2C9*2 and CYP2(8*3 share a common ancestor with the
Neandertals to the exclusion of the other present-day haplotypes
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Fig. 1 Phylogeny of sequences spanning the genomic region
encoding CYP2C8*3 and CYP2C9*2. The tree contains five
haplotypes from five present-day day Yoruban (a Nigerian popula-
tion with minimal Neandertal gene-flow) individuals, one haplotype
from an individual of European ancestry carrying CYP2C8*3 and
CYP2C9*2, and four sequences from Neandertals and their sister
group Denisovans. The sequence with the CYP2C8*3 and CYP2C9*2
alleles is most similar to the corresponding sequence of a
Neandertal from the Chagyrskaya Cave in Siberia [11]. Numbers
indicate bootstrap support (1000 replicates). Scale bar shows
mutations per site. The haplotypes span the genomic region
chr10:96,537,863-96,851,277 (hg19).

(bootstrap support 1000/1000). Thus, the CYP2C9*2 and CYP2C8*3
alleles were frequent in Neandertals and were later introduced into
modern humans when these two groups met.

DISCUSSION

Over the decade since the first Neandertal genome was
sequenced [1], gene flow from Neandertals has been shown to
influence many traits, such as skin pigmentation and neurological
and psychiatric phenotypes (e.g., [19]). However, the clinical
impact of Neandertal genetic variants is less well elucidated,
especially in terms of genetic variants with strong effect sizes that
need to be taken into account in clinical practice. Recently, the
major genetic risk factor for a severe outcome of COVID-19
infection as well as a protective variant have been shown to be of
Neandertal origin ([10, 20]). Here we show that two of the most
important alleles in pharmacogenetics are inherited from Nean-
dertals. Although this knowledge itself does not change clinical
practice, it explains differences observed across ancestries seen in
clinical practice.

DATA AVAILABILITY
The modern human genomes (i.e., the 1000 genomes project) are available at https://
www.internationalgenome.org/ and the archaic genomes are available at http://cdna.
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