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Integrated methylome and phenome study
of the circulating proteome reveals markers
pertinent to brain health
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Characterising associations between the methylome, proteome and phenome
may provide insight into biological pathways governing brain health. Here, we
report an integrated DNAmethylation and phenotypic study of the circulating
proteome in relation to brain health. Methylome-wide association studies of
4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein
associations after adjustment for multiple testing. These are independent of
known genetic protein quantitative trait loci (pQTLs) and common lifestyle
effects. Phenome-wide association studies of each protein are then performed
in relation to 15 neurological traits (N = 1,065), identifying 405 associations
between the levels of 191 proteins and cognitive scores, brain imaging mea-
sures or APOE e4 status. We uncover 35 previously unreported DNA methy-
lation signatures for 17 protein markers of brain health. The epigenetic and
proteomic markers we identify are pertinent to understanding and stratifying
brain health.
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The health of the ageing brain is associated with risk of neurodegen-
erative disease1,2. Relative brain age—a measure of brain health calcu-
lated using multiple volumetric brain imaging measures—has recently
been shown to predict the development of dementia3. Structural brain
imaging and performance in cognitive tests are well-characterised
markers of brain health4, which clearly associate with potentially
modifiable traits such as body mass index (BMI), smoking and
diabetes5–7. Understanding the interplay between environment, biol-
ogy and brain health may therefore inform preventative strategies.

Multiple layers of omics data indicate the biological pathways that
underlie phenotypes. Proteomic blood sampling can track peripheral
pathways that may impact brain health, or record proteins secreted
from the brain into the circulatory system. Although proteome-wide
characterisation of cognitive decline and dementia risk8–10 have been
facilitated at large scale by SOMAscan® proteinmeasurements, there is
a need to further integrate omics to characterise brain health pheno-
types. Epigenetic modifications to the genome record an individual’s
response to environmental exposures, stochastic biological effects,
and genetic influences. Epigenetic changes include histone modifica-
tions, non-coding RNA, chromatin remodelling, and DNA methylation
(DNAm) at cytosine bases, such as 5-hydroxymethylcytosine. These are
implicated in changes to chromatin structure and the regulation of
pathways associated with neurological diseases11,12. However, DNAm at
cytosine-guanine (CpG) dinucleotides is the most widely profiled
blood-based epigenetic modification at large scale.

Modifications to DNAm at CpG sites play differential roles in
influencing gene expression at the transcriptional level13. Additionally,
DNAm accounts for inter-individual variability in circulating protein
levels14–16. Recently, through integration of DNAmand protein data, we
have shown that epigenetic scores for plasma protein levels—known as
EpiScores—associate with brain morphology and cognitive ageing
markers17 and predict the onset of neurological diseases18. These stu-
dies highlight that while datasets that allow for integration of pro-
teomic, epigenetic and phenotypic information are rarely-available,
they hold potential to advance risk stratification. Integration may also
uncover candidate biological pathways that may underlie brain health.

Associations between protein levels and DNAm at CpGs are
known as protein quantitative trait methylation loci (pQTMs) and can
be quantified by methylome-wide association studies (MWAS) of
protein levels. The largestMWASofprotein levels to date assessed 1123
SOMAmer protein measurements in the German KORA cohort
(n = 944)14. In that study, Zaghlool et al. reported 98 pQTMs that
replicated in theQMDiab cohort (n = 344), with significant associations

between DNAm at the immune-associated locus NLRC5 and seven
immune-related proteins (P < 2.5 × 10−7). This suggested that DNAm
not only reflects variability in the proteome but is closely related to
chronic systemic inflammation. Hillary et al. have also assessed epi-
genetic signatures for 281 SOMAmer protein measurements that were
previously associated with Alzheimer’s disease, in the Generation
Scotland cohort that we utilised in this study19. However, proteome-
wide assessment of pQTMs has not been tested against a compre-
hensive spectrum of brain health traits.

Here, we conduct an integrated methylome- and phenome-wide
assessment of the circulating proteome in relation to brain health
(Fig. 1), using 4058 protein level measurements (Annotation informa-
tion provided in Supplementary Data 1). We characterise CpG–protein
associations (pQTMs) for these proteins in 774 individuals from the
Generation Scotland cohort using EPIC array DNAm at 772,619 CpG
sites. We then identify which of the 4058 protein levels associate with
one or more of 15 neurological traits (seven structural brain imaging
measures, seven cognitive scores and APOE e4 status) in 1065 indivi-
duals from the same cohort where the pQTM data are a nested subset.
By overlapping these datasets, we probe the epigenetic signatures of
proteins that are related to brain health. For these signatures, we map
potential underlying genetic components and chromatin interactions
that may play a role in protein level regulation.

Results
Methylome-wide studies of 4058 plasma proteins
We conducted MWAS to test for pQTM associations between 772,619
CpG sites and 4058 circulating protein levels (corresponding to 4235
SOMAmer measurements; Supplementary Data 1). The MWAS popu-
lation included 774 individuals from Generation Scotland (mean age
60 years [SD 8.8], 56% Female; Supplementary Data 2). 143 principal
components explained 80% of the cumulative variance in the 4235
measurements (Supplementary Fig. 1 and Supplementary Data 3). A
threshold formultiple testing based on these components was applied
across all MWAS (P <0.05/(143 × 772,619) = 4.5 × 10−10).

In our basic model adjusting for age, sex and available genetic
pQTL effects from Sun et al.20 238,245 pQTMs (2107 cis and 236,138
trans, representing 0.005% of tested associations) had P < 4.5 × 10−10

(Supplementary Data 4). In our secondmodel that further adjusted for
Houseman-estimated white blood cell proportions21, there were 3,213
associations (453 cis and 2760 trans) that had P < 4.5 × 10−10 (Supple-
mentary Data 5). Smoking status and BMI are known to have well-
characterised DNAm signatures22,23; fully-adjusted models were

Fig. 1 | Methylome and phenome study of the plasma proteome in relation to
brainhealth studydesign.A total of 4058plasmaproteins (corresponding to 4235
SOMAmers) were measured in 1065 individuals in Generation Scotland. A
methylome-wide association study (MWAS) of each plasma protein level was con-
ducted in 774 individuals that represented a nested subset of the full sample that
had DNAm measurements available. A phenome-wide protein association study

(Protein PheWAS) identified protein levels that were associated with a minimum of
one brain health trait (N > = 909). Overlapping the protein MWAS and PheWAS
results identified pQTMs that involved protein markers of brain health. The func-
tional roles of proteins andCpGs involved in this subsetwere explored further, with
approaches tailored to interpretation of cis and trans pQTMs. Created with
BioRender.com.
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therefore further adjusted for these factors. There were 2,928 asso-
ciations (451 cis and 2477 trans) in the fully-adjusted models (Supple-
mentary Data 6). 2847 pQTM associations were significant in all
models. There were 191 unique proteins with associations in the fully-
adjustedmodels, corresponding to 195 SOMAmermeasurements (two
SOMAmers were present for CLEC11A, GOLM1, ICAM5 and LRP11).
Figure 2 summarises these findings. Genomic inflation statistics for
these 195 SOMAmer measurements (fully-adjusted MWAS) are pre-
sented in Supplementary Data 7. In a sensitivity analysis, restriction of
the threshold for cispQTMs from 10Mb to 1Mb from the transcription
start site of the gene encoding the protein yielded 409 cis pQTMs (a
reduction of 42 pQTMs) in the fully-adjusted MWAS. A summary of
known pQTLs20 and a record of whether these were available for
adjustment is provided in Supplementary Data 8. Characterising the
genomic location of the findings, 46% of cis and 29% of trans pQTMs in
the fully-adjusted MWAS involved CpGs positioned in either a CpG
Island, Shore or Shelf (Supplementary Data 6).

Pleiotropic pQTM associations in the fully-adjusted MWAS
Pleiotropy was observed for both CpG sites and protein levels (Fig. 3).
Nineteen proteins had 10 or more pQTMs in the fully-adjusted MWAS

(Supplementary Data 9). Of the 2928 pQTMs in the fully-adjusted
MWAS, 987 involved Pappalysin-1 (PAPPA) and there were a further
1116 pQTMs that involved the Proteoglycan 3 Precursor protein. The
remaining 825 pQTMs involved 189 unique protein levels, with 434 cis
and 391 trans associations (Fig. 2). Principal components analyses
indicated high correlations between CpGs associated with the pleio-
tropic proteins PAPPA and PRG3, whereas the CpGs involved in the
remaining 825 pQTMs were largely uncorrelated (Supplementary
Fig. 2). pQTM frequencies for the 1837 unique CpGs selected in the
fully-adjusted models, with their respective genes and EWAS catalog24

lookup of epigenome-wide significant (P < 3.6 × 10−8) phenotypic
associations is presented in Supplementary Data 10. Of these CpGs,
sites within the NLRC5, SLC7A11 and PARP9 gene regions exhibited the
highest levels of pleiotropy (Fig. 3).

The pleiotropic findings for PAPPA and cg07839457 (NLRC5 gene)
replicated previous MWAS results from Zaghlool et al.14 (944 indivi-
duals, with 1123 protein SOMAmers). Of the 98 pQTMs identified by
Zaghlool et al., 81 were comparable (both the protein and CpG sites
from the 98 pQTMs were available across both MWAS). Of these 81
pQTMs, 26 replicated at our significance threshold (P < 4.5 × 10−10) with
the same direction of effect, a further 16 replicated at the epigenome-

Fig. 2 | Methylome-wide association studies (MWAS) of 4058 plasma proteins.
a Summary of MWAS results for 4058 protein levels in Generation Scotland
(N = 774). The number of protein quantitative trait methylation loci (pQTMs) that
had P < 4.5 × 10−10 (Bonferroni threshold for multiple testing adjustment) in the
basic, white blood cell proportion (WBC)-adjusted and fully-adjusted models. Cis
associations (purple) and trans associations (green) are summarised for each
model. Covariates used to adjust DNAm are described for each model. Normalised
protein levels were adjusted for age, sex, 20 genetic principal components (PCs),
protein quantitative trait loci (pQTLs) and technical variables and scaled to have a
mean of 0 and standard deviation of 1. Results were generated through linear
regression models. Full summary statistics with full P values can be accessed in
Supplementary Data 6. Created with BioRender.com. b Flow diagram showing the

distinctionbetween the highly pleiotropic PAPPA and PRG3 protein pQTMs and the
825 pQTMs that involved the levels of a further 189 proteins. TSS: transcriptional
start site of the protein gene. The 434 cis pQTMs (purple) lay on the same chro-
mosome and ≤ 10Mb from the transcriptional start site (TSS) of the protein gene,
whereas the 391 trans pQTMs (green) lay >10Mb from the TSS of the protein gene
or on a different chromosome. Created with BioRender.com. c Genomic locations
for 825 of the 2928 fully-adjusted pQTMs, excluding highly pleotropic associations
for PAPPA and PRG3 protein levels, with cis pQTMs in purple and trans pQTMs in
green. Chromosomal location of CpG sites (x-axis) and protein genes (y-axis) are
presented. A list of the full association counts for each protein and CpG site can be
found in Supplementary Data 8, 9.
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wide significance threshold (P < 3.6 × 10−8)25 and a further 39 replicated
at nominal P <0.05 (Supplementary Data 11 and Supplementary Fig. 3).
When accounting for 26 pQTMs that were previously reported by
Zaghlool et al. and 10 pQTMs that were previously reported by Hillary
et al.14,19, 2892 of the 2928 fully-adjusted pQTMs were previously
unreported. Of these 2892 pQTMs, 1109 involved the levels of 41
proteins that weremeasured by Zaghlool et al. (973 pQTMs for PAPPA
and 136 additional pQTMs for the levels of 40 proteins), whereas 1783
pQTMs involved the levels of proteins that were previously unmea-
sured (1116 pQTMs for PRG3 and 667 further pQTMs for 148 proteins).

Proteome associations with brain health phenotypes
We next conducted a proteome-wide association study of brain health
characteristics (protein PheWAS of brain imaging, cognitive scoring
and APOE e4 status, alongside age and sex; Fig. 4). Distribution plots
for the seven cognitive scores and seven brain imaging phenotypes are

presented in Supplementary Figs. 4, 5. A maximum sample of 1065
individuals was available (mean age 59.9 years [SD 9.6], 59% Female;
Supplementary Data 2); all 774 individuals from the pQTM study were
included in these analyses. A threshold formultiple testing adjustment
was calculated based on 143 independent components that explained
>80% of the 4235 SOMAmer levels (Supplementary Data 3 and Sup-
plementary Fig. 1). This equated to P <0.05/(143) = 3.5 × 10−4. The levels
of 587 plasma proteins were associated with age and 545 were asso-
ciated with sex, with 222 proteins common to both phenotypes
(Supplementary Data 12). When comparable associations from three
studies (with N > 1000) were tested20,26,27, 97% of age and 98% of sex
associations replicated in one or more of studies (Supplementary
Data 12).

There were 191 unique protein markers that had a total of 405
associations with brain health characteristics (Supplementary Fig. 6
and Fig. 4a). These consisted of 95 brain imaging (Supplementary

Fig. 3 | Pleiotropic associations in the fully-adjusted methylome-wide asso-
ciationstudies (MWAS). apQTMs thathadP < 4.5 × 10−10 (Bonferroni threshold for
multiple testing adjustment) in the fully-adjusted MWAS are plotted as individual
points (dark blue) with chromosomal locations of the 191 protein genes (upper)
and the 1837 CpGs (lower) on the x-axis. 19 proteins with ≥10 associations with
CpGs are highlighted in turquoise and labelled on the upper plot. Nine CpGs with

≥6 associations with protein levels are highlighted in turquoise on the lower plot.
Results were generated through linear regression models. Full summary statistics
with full P values can be accessed in Supplementary Data 6. b A selection of CpGs
with highly pleiotropic signals in the fully-adjusted MWAS and the corresponding
function of the gene the CpGs were located within. Created with BioRender.com.
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Data 13), 296 cognitive test score (SupplementaryData 14) and 14APOE
e4 status (Supplementary Data 15) associations. Supplementary
Data 16 stratifies these associations by direction of effect and Sup-
plementary Data 17 provides full summary statistics for all 405 asso-
ciations. Of the seven brain morphology traits, Relative Brain Age and
General Fractional Anisotropy (gFA) had the largest number of asso-
ciations, with 24 and 22 proteinmarkers identified, respectively. Of the
cognitive score traits, Processing Speed and General Cognitive Ability
scores were associated with the highest number of protein markers
(102 and 73, respectively). The underlying data for the 14 APOE
e4 status associations are plotted in Supplementary Fig. 7.

Stratifying the 405 associations by direction of effect revealed
that the majority (89%) of associations involved higher levels of the
proteins that were associated with less favourable brain health (Sup-
plementary Data 16). Eighty-seven of the 405 associations involved
protein levels that were associated with more favourable brain health;

this signature included the levels of SLITRK1, NCAN and COL11A2.
Higher levels of ASB9, RBL2, HEXB and SMPD1 were associated with
poorer brain health. Protein interaction network analyses for the genes
corresponding to the 191 protein markers (Supplementary Fig. 8)
indicated that many of the proteins clustered together, implying
shared underlying functions. An inflammatory cluster including CRP,
ITIH4, C3, C5, COL11A2 and SIGLEC2 was present and higher levels of
these markers were associated with poorer brain health outcomes.
Gene set enrichment analyses on the 191 genes corresponding to the
protein markers (Supplementary Fig. 9) supported the link between
many of the proteins associated with poorer brain health and the
innate immune system, while also implicating extracellular matrix,
lysosomal, metabolic and additional inflammatory pathways. Tissue
expression profiles of the 191 genes (Supplementary Fig. 10) indicated
that many of the markers were expressed non-neurological tissues;
however, some proteins were expressed in nervous tissues. Markers
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Fig. 4 | Phenome-wide associations studies (PheWAS) of 4058 plasma proteins
and brain health. a Number of protein marker associations with P < 3.5 × 10−4 for
each of the 15 traits related to brain health in the phenome-wide protein associa-
tion studies (protein PheWAS). These studies included amaximum sample of 1065
individuals with protein measurements from Generation Scotland and tested for
associations between 15 phenotypes and the levels of 4058 plasma proteins via
linear mixed effects regression. Cognitive score (green), brain imaging (light blue)
and APOE e4 status (dark blue) associations are summarised. Full summary sta-
tistics for the 405 associations with P values are presented in Supplementary
Data 17. All associations were generated through linear regression and were

adjusted for multiple testing correction. b Heatmap of standardised beta coeffi-
cients for 77 of the 405 protein PheWAS associations (P < 3.5 × 10−4 indicated by an
asterisk). These include three proteins that had associations with both APOE
e4 status and one or more cognitive scores, in addition to 22 proteins that had
associations with both a brain imaging measure and a cognitive score. Negative
and positive beta coefficients are shown in blue and red, respectively. A heatmap
describing the full 405 associations for APOE e4 status, cognitive scores and brain
imaging measures is available in Supplementary Fig. 6. All associations were gen-
erated through linear regression andwere adjusted formultiple testing correction.
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such as ASB9 and NCAN were found to be consistently identified
across multiple brain imaging traits as markers of poorer and better
brain health, respectively (Supplementary Data 16). While many of the
associations for brain imaging measures identified proteins that were
distinct from those found for cognitive scores and APOE e4 status, 22
protein markers were associated with both a cognitive score and a
brain imaging trait (Fig. 4b and Supplementary Data 18). A principal
components analysis of the 22 protein levels was conducted. The first
five components had an eigenvalue >1 and a cumulative variance of
>80% was explained by the first 10 components. These are both
commonly-used thresholds for deciding how many principal compo-
nents to retain28 (Supplementary Fig. 11). ThreeAPOE e4 statusmarkers
(ING4, APOB and CRP) were also associated with cognitive
scores (Fig. 4b).

Replication of protein PheWAS associations
Six of the 14APOE e4 status associations replicatedprevious SOMAmer
protein findings (N SOMAmers = 4785 and N participants = 227)10, and
eight previously unreported relationships involved NEFL, ING4, PAF,
MENT, TMCC3, CRP, FAM20A and PEF1. Several of the markers for
cognitive function were identified in previous work relating Olink
proteins to cognitive function (such as CPM)29 and work that char-
acterised SOMAmer signatures of cognitive decline and incident Alz-
heimer’s disease (such as SVEP1)8. No studies have performed
SOMAmer-based, whole proteome PheWAS studies of the brain ima-
ging and cognitive score traits we have profiled in a heathy ageing
population that were not enriched for neurodegenerative diseases.
However, replication of associations from several studies9,29,30 was
found for a small subset of associations (Supplementary Data 19).

Integrationof the brain health proteomewith our pQTMdataset
Differential DNAm signatures were explored for the 191 protein
markers that had P < 3.5 × 10−4 in associations with either cognitive
scores, brain imaging measures or APOE e4 status in the protein
PheWAS. Of the 191 proteins, 17 had pQTMs in the fully-adjusted
MWAS. Higher levels of 15 of these proteins were associated with
poorer brain health, while AMY2A and CST5 were associated with
more favourable brain health. There were a total of 35 pQTMs
involving 31 unique CpGs that were located within 20 distinct genes
(Supplementary Data 20), with 15 trans (Fig. 5) and 20 cis associa-
tions. All pQTMs were previously unreported. The 20 cis pQTMs
involved the levels of CHI3L1, IL18R1, SIGLEC5, OLFM2, UGDH,
CRHBP, AMY2A and CFHR1 proteins. The trans pQTMs involved the
levels of SCUBE1, RBL2, TNFRSF1B, CST5, HEXB, ACY1, CRTAM,
SMPD1 and RBP5 proteins.

Of the 20 cis pQTMs, 11 involved CpGs in different genes to the
protein-coding geneon the same chromosome,whereas the remaining
9 pQTMs involved CpGs located within the protein-coding gene. Sev-
eral CpG sites were associated with multiple protein levels in the trans
pQTMs (Fig. 5). DNAm at site cg06690548 in the SLC7A11 gene was
associated with RBP5, ACY1 and SCUBE1 levels. The cg11294350 site in
the CHPT1 gene was associated with HEXB and SMPD1 levels. The
cg07839457 site in the NLRC5 gene was associated with the levels of
CRTAM and TNFRSF1B. There was also a protein that had several trans
associations with multiple CpG sites; pQTMs were identified between
circulating RBL2 levels and cg01132052, cg0539861, cg18487916,
cg27294008 andcg18404041, within theNEK4/ITIH3/ITIH1gene region
of chromosome 3.

Functional mapping of neurological pQTMs
A lookup that integrated information from the GoDMC and eQTLGen
databases assessed whether pQTMs were partially driven by an
underlying genetic component. This identified methylation quantita-
tive trait loci (mQTLs) for CpGs that were associated with CHI3L1,
IL18R1 and SIGLEC5 levels and were also expression quantitative trait

loci (eQTLs) for the respective proteins (Supplementary Data 20).
Further visual inspection of the distributions for the 35 pQTMs indi-
cated that trimodal distributions – suggestive of unaccounted SNP
effects—were present for CpGs involved in seven of the pQTMs (Sup-
plementary Fig. 12).

Tissue expression profiles for the 33 genes that were linked to
either CpGs or proteins in the 35 neurological pQTMs are summarised
in Supplementary Fig. 13. Gene set enrichment for these 33 genes
identified enrichment for immune effector pathways in a subset of 11
genes, whereas a cluster of four genes (SMPD1, HEXB, AMY2A and
AMY2B) were enriched for amylase and hydrolase activity (Supple-
mentary Fig. 14).

Of the 35 pQTMs, seven had CpGs that were located in either a
CpG Shore or Shelf position and therewere 13 that were located either
1500 bp or 200bp from the TSS of the protein-coding gene (Supple-
mentary Data 20). Fifteen pQTMs involved CpGs that were located in
the gene body and 7 were located in either the first exon or UTR
regions (Supplementary Data 20).

Promoter-capture Hi-C and ChIP-sequencing integration were
used to assess the interactions and chromatin states of our pQTMs and
associated CpG loci. This analysis focused on 11 of the 20 cis pQTMs
that involved CpGs on the same chromosome as the protein-coding
gene, but was located in a different gene. Mapping information is
presented for the seven proteins involved in these pQTMs in Supple-
mentary Figs. 15–21. In all instances, we found evidence of spatial co-
localisation of these genes using promoter-capture Hi-C data from
brain hippocampal tissue. We attempted to contextualise these sites
further with ChIP-seq (ENCODE project) analyses of active chromatin
marksH3K27ac andH3K4me1 and repressive chromatin H3K4me3 and
H3K27me3 in both peripheral blood mononuclear cells (PBMCs) and
brain hippocampus. ChIP-seq data suggested that in many instances
there were shared regulatory regions that existed across both blood
and hippocampal samples that were hubs for local promoter interac-
tions. For example, promoter loops were found linking the S100Z and
CRHBP genes, with a signature of activating (H3Kme1 and H3K27ac)
and silencing (H3k27me and H3K4me3) marks (normally considered
bivalent chromatin) that may form the basis for shared regulation of
this gene locus.

Discussion
We have conducted a large-scale integration of the circulating pro-
teome with indicators of brain health and blood-based DNA methyla-
tion. We characterised 191 protein markers that were associated with
either brain imagingmeasures, cognitive scores orAPOE e4 status in an
ageing population. We also report methylome-wide characterisations
for the SOMAscan® panel V.4 (4058 proteinmeasurements) in a nested
subset of thispopulation. By overlapping thesedatasets,weuncovered
35 methylation signatures for 17 protein markers of brain health. We
delineated pQTM CpGs that had evidence of underlying genetic
influence and characterised the potential for chromatin interactions
for genes involved in cis pQTMs. As this population consists of older
individuals that were not enriched for neurodegenerative diseases, the
markers we identify are likely indicators of healthy brain ageing.

Many of the 191 proteins identified in the protein PheWAS were
part of inflammatory clusters with shared functions in acute phase
response, complement cascade activity, innate immune activity and
cytokine pathways. Tissue expression analyses suggested that a large
proportion of the 191 proteinmarkers were not expressed in the brain;
this supports work suggesting that sustained peripheral inflammation
influences general brain health31,32 and accelerates cognitive
decline17,33–35. However, a subset of proteins were expressed in the
central nervous system. Given that leakage at the blood-brain-barrier
interface has been hallmarked as a part of healthy brain ageing36,37,
there is a possibility that brain-derived proteins may enter the blood-
streamas biomarkers. SLIT andNTRK Like FamilyMember 1 (SLITRK1),
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Neurocan (NCAN) and IgLON family member 5 (IGLON5) were exam-
ples of proteins expressed in brain for which higher levels associated
with either larger grey matter volume, larger whole brain volume, or
higher general fractional anisotropy. SLITRK1 localises at excitatory
synapses and regulates synapse formation in hippocampal neurons38.
NCAN is a component of neuronal extracellular matrix and is linked to
neurite growth39. IGLON5 has been implicated in maintenance of
blood–brain–barrier integrity and an anti-IGLON5 antibody disease
involves the deterioration of cognitive health40. Taken together, the
protein markers identified in the PheWAS may, therefore, reflect
pathways that could be targeted to improve brain health.

Integration of our fully-adjusted protein MWAS dataset revealed
35 associations between DNAm and 17 protein markers of brain health
(Fig. 6; Supplementary Data 20). All 35 associations were previously

unreported. While this study is focused on blood DNAm—limiting
generalisation to brain DNAm—many of the 35 pQTMs involved CpGs
and proteins that have been previously implicated in neurological
processes. DNAm at site cg06690548 (located in the SLC7A11 gene)
was of particular interest; differential DNAm at this CpG in blood has
been identified as a causal candidate for Parkinson’s disease (N > 900
cases and N > 900 controls)41. Xc- is the cystine-glutamate antiporter
encoded by SLC7A11, which facilitates glutamatergic transmission,
oxidative stress defence andmicroglial response in the brain42,43 and is
a target for the neurodegeneration-associated environmental neuro-
toxin β-methylamino-L-alanine41. Analyses in the wider Generation
Scotland cohort suggests that cg06690548 is a site associated with
alcohol consumption44. The proteins associated with cg06690548 in
the subset of this cohort that we assessed (ACY1, SCUBE1 and RBP5)
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have known links to liver function45–47. DNAm at cg06690548 in blood
has also been recently implicated in the largest MWAS of amyotrophic
lateral sclerosis (ALS) to date (6763 cases, 2943 controls)48. Given that
ACY1, SCUBE1 and RBP5 were markers for either lower processing
speed and higher relative brain age, the CpG sites we identify in this
study—such as cg06690548—may be important plasma markers for
mediation of environmental risk on brain health that merit further
exploration. cg06690548 lies within the first intron of SLC7A1141,
indicating that this site is of potential functional significance.

The presence of NLRC5-associated CpGs and various other
inflammatory proteins in our neurological protein pQTMs suggests
that themethylomemay capture an inflammatory component of brain
health. Many of the genes corresponding to CpGs and proteins

involved in the 35 pQTMs were enriched for immune effector pro-
cesses and were not expressed in brain. However, some genes did
show evidence for brain-specific expression, such as acid sphingo-
myelinase (SMPD1) and Hexosaminidase Subunit Beta (HEXB). The
HEXBandSMPD1proteins associatedwithDNAmat cg11294350 (in the
CHPT1 gene), are involved in neuronal lipid degradation in the brain
and have been associated with the onset of a range of neurodegen-
erative conditions49–52. RBL2 is another protein that had partial
expression signals across brain regions; the NEK4/ITIH3/ITIH1 region
was the location for five CpGs with differential DNAm linked to RBL2
levels. This region is implicated in schizophrenia and bipolar disorder
by several large-scale, genome-wide association studies (GWAS)53–56.
Similarly, the RBL2 locus has been associated with intelligence,

Fig. 6 | Exploration of trans pQTMs for proteinmarkers of brain health. a Three
trans associations with the CpG site cg06690548 in the SLC7A11 gene, which
encodes a synaptic protein that is involved in glutamate transmission and oxidative
stress. cg06690548 has been implicated in methylome-wide studies of Parkinson’s
disease and Amyotrophic lateral sclerosis (ALS) risk. b Five trans associations
between CpGs in the ITIH3/ITIH1/NEK4 region on chromosome 3 and the levels of
RBL2, which was associated with lower Global Grey Matter Volume. The RBL2 gene
has been implicated in genome-wide associations studies (GWAS) of cognitive
ability, intelligence and educational attainment. The ITIH3/ITIH1/NEK4 region has

been implicated in GWAS of Schizophrenia and Bipolar disorder. c Two trans
associations between DNAm at cg11294350 in the CHPT1 gene and two proteins
with lysosomal-associated function (SMPD1 and HEXB) that were associated with
higher Relative Brain Age and lower General Fractional Anisotropy. Associations
with a positive beta coefficient are denoted as red connecting lines, whereas
associations with a negative beta coefficient are denoted as blue connecting lines.
The full 35 pQTMs for protein markers of brain health (15 trans and 20 cis) can be
found in Supplementary Data 20. All associations were generated using linear
regression and were adjusted for multiple testing. Created with BioRender.com.
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cognitive function and educational attainment in GWAS (n > 260,000
individuals)34,57,58.

Given that this study utilised CpGs from the Illumina EPIC array, 15
of the 31 unique CpGs did not have mQTL characterisations in public
databases, which primarily comprise results from the earlier 450 K
array. However, our plots showing pQTM associations suggested that
for several CpGs (such as cg11294350 that associated with SMPD1 and
HEXB), there may be a partial genetic component influencing DNAm.
As mQTLs tend to explain 15–17% of the additive genetic variance of
DNAm59, it is possible that the signals we isolate in these instances are
partially driven by genetic loci, but are also likely driven by unmea-
sured environmental and biological influences. In the case of SIGLEC5,
IL18R1 and CHI3L, mQTLs were identified that were also eQTLs, pro-
viding evidence that mQTLs for these CpG sites were possible reg-
ulators of protein expression.

Integration of promoter-capture Hi-C chromatin interaction and
ChIP-seq databases60 provided evidence for long-range interaction
relationships for cis pQTMs with CpGs in different gene regions that
are proximal to the protein-coding gene of interest. This suggests that
in such instances, the pQTMs may reflect regulatory relationships in
the 3-dimensional genomic neighbourhood. The pQTMs therefore
direct us towards pathways that can be tested in experimental con-
structs. Positional information suggested that many CpGs involved in
neurological pQTMs lay within 1500bp of the TSS of the respective
protein-coding gene. While positional information of CpGs is thought
to infer whether DNAm is likely to play a role in the expression reg-
ulation of nearby genes, this is still somewhat disputed. Some studies
suggest that transcription factors regulate DNAm61 and differential
methylation at gene body locations predicts dosage of functional
genes62. Additionally, the DNAm signatures of proteins we quantify
represent widespread differences across blood cells that are related to
circulating protein levels and are therefore not derived from the same
cell-types as proteins. Despite this limitation, previous work supports
DNAmscores for proteins as usefulmarkersof brain health, suggesting
there is merit in integrating DNAm signatures of protein levels in dis-
ease stratification18.

Our study has several limitations. First, though full replication of
our results was not possible, our replication of pQTMs identified by
Zaghlool et al.14 reinforces inflammation signalling as intrinsic to the
methylome signature of bloodproteins. This also suggests that pQTMs
may be common across ancestries. Second, we observed a substantial
inflation for PAPPA and PRG3 proteins. While comprehensive adjust-
ment for estimated immune cells was performed and the remainder of
CpGs involved in pQTMs did not show high correlations (Supple-
mentary Fig. 2), concurrently measured blood components such as
haemoglobin, red blood cells and platelets were not available. Future
studies should seek to resolve signals with more detailed blood-cell
phenotyping and immune cell estimates63. Third, 89% of the proteins
identified in our protein PheWAS did not have epigenetic pQTMs; this
may be due to 1) the presence of pathways relating to neurological
disease that are not reflected by blood immune cell DNAm, 2) under-
powered analyses, or 3) the presence of indirect associations that are
not captured by our MWAS approach. Fourth, the extent of non-
specific and cross-aptamer binding with SOMAmer technology has not
been fully resolved64. Fifth, there are likely unknown genetic influences
on pQTMs. Further characterisation of pQTLs and advances in multi-
omic modelling techniques15 will aid in the separation of genetic and
environmental influences on epigenetic signatures. Sixth, differences
in blood and brain DNAm and pQTLs are emerging; these indicate that
blood-based markers may not fully align to biology of brain
degeneration65,66. However, our ChIP-seq analysis of chromatin reg-
ulation suggested that some regulatory states may persist between
blood and brain. Seventh, profiling DNAm signatures alone cannot
capture the full role of the epigenome in brain health. Integration of
morediverseepigeneticmarkerswill be critical to further resolve these

relationships. Finally, though we have incorporated a wide portfolio of
brain health measures, we recognise that these are not extensive.
Increasing triangulation across modalities, as we have shown here, will
be useful in identifying candidate markers.

In conclusion, by integrating epigenetic and proteomic data with
cognitive scoring, brain morphology and APOE e4 status, we identify
191 protein markers of brain health. We characterise DNAm signatures
for all 4058 proteins included in the study, uncovering 35 associations
between differential DNAm and the levels of 17 of the protein markers
of brain health. These data identify candidate targets for the
preservation of brain health and may inform risk stratification
approaches.

Methods
The Generation Scotland sample population
A YouTube video providing an overview of this study and detailing
how summary statistics can be accessed is available at: https://www.
youtube.com/channel/UCxQrFFTIItF25YKfJTXuumQ. The Stratifying
Resilience andDepression Longitudinally (STRADL) cohort used in this
study is a subset ofN = 1188 individuals fromGeneration Scotland: The
Scottish Family Health Study (GS). Generation Scotland constitutes a
large, family-structured, population-based cohort of >24,000 indivi-
duals from Scotland67. Individuals were recruited to GS between 2006
and 2011. During a clinical visit detailed health, cognitive, and lifestyle
information was collected in addition to biological samples. Of the
21,525 individuals contacted for participation, N = 1188 completed
additional health assessments and biological sampling ~5 years after
GS baseline68. Of these, N = 1,065 individuals had proteomic data
available and N = 778 of these had DNAm data available. Four indivi-
duals from this subset were excluded from the DNAm sample due to
having incomplete depression status information, leaving 774 indivi-
duals available for analyses. Supplementary Data 2 summarises the
demographic characteristics across the two groups, with descriptive
statistics for phenotypes.

Proteomic measurement
SOMAscan®V.4 technologywas used toquantify plasmaprotein levels.
This aptamer-based assay facilitates the simultaneous measurements
of multiple Slow Off-rate Modified Aptamers (SOMAmers)69. SOMA-
mers were processed for 1065 individuals from the STRADL subset of
Generation Scotland. Briefly, binding between plasma samples and
target SOMAmers was achieved during incubation and quantification
was recorded using a fluorescent signal on microarrays. Quality con-
trol steps included hybridisation normalisation, signal calibration and
median signal normalisation to control for inter-plate variation. Full
details of quality control stages are provided in Supplementary Infor-
mation. In the final dataset, 4235 SOMAmer epitope measures were
available in 1065 individuals and these corresponded to 4058 unique
proteins (classified by common Entrez gene names). Supplementary
Data 1 provides annotation information for the 4235 SOMAmer mea-
surements that were available.

DNAm measurement
Measurements of blood DNAm in the STRADL subset of GS subset
were processed in two sets on the Illumina EPIC array using the same
methodology as those collected in the wider Generation Scotland
cohort70–72. Quality control details are provided in Supplementary
Information. Briefly, samples were removed if there was a mismatch
between DNAm-predicted and genotype-based sex and all non-
specific CpG and SNP probes (with allele frequency >5%) were
removed from themethylation file. Probes which had a beadcount of
less than 3 inmore than 5% of samples and/or probes in which >1% of
samples had a detection P > 0.01 were excluded. After quality con-
trol, 793,706 and 773,860 CpG were available in sets 1 and 2,
respectively. These sets were truncated to include a total of 772,619
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common probes and were joined together for use in theMWAS, with
476 individuals included in set 1 and 298 individuals in set 2. DNAm-
specific technical variables (measurement batch and set) were
adjusted in all MWAS models.

Phenotypes in Generation Scotland
All phenotypes in Generation Scotland MWAS and PheWAS samples
are summarised in Supplementary Data 2. An epigenetic score for
smoking exposure, EpiSmokEr73 was calculated for all individuals with
DNAm. The meffil74 implementation of the Houseman method was
used to calculate estimated white blood cell proportions for Sets 1 and
2. Blood reference panels were sourced from Reinius et al.75 with
accession GSE35069. The blood gse35069 complete panel was used to
imputed measures for Monocytes, Natural Killer cells, Bcells, Granu-
locytes, CD4+T cells and CD8+T cells. Eosinophil and Neutrophil esti-
mates were also sourced through the blood gse35069 panel. Body
mass index (body weight in kilograms, divided by squared height in
metres) was available for all individuals, alongside depression status
(defined using a research version of the Structured Clinical Interview
for DSM disorders (SCID) assessment), which was coded as a binary
variable of no history of depression (0) or lifetime episode of
depression (1). Five individuals did not have depression status infor-
mation and were excluded from MWAS and PheWAS analyses, where
appropriate. APOE e4 status was available for 1050 individuals. APOE
e4 status was coded as a numeric variable (e2e2 =0, e2e3 =0, e3e3 = 1,
e3e4 = 2, e4e4 = 2). Fifteen e2e4 individualswereexcludeddue to small
sample size.

Scores from five cognitive tests (Supplementary Fig. 4; Supple-
mentary Data 2) measured at the clinic visit for the STRADL subset of
GS were considered. Cognitive scores were measured at the baseline
clinic visit68 and full details are provided in Supplementary Infor-
mation. Briefly, these included the Wechsler Logical Memory Test
(maximum possible score of 50), the Wechsler Digit Symbol Sub-
stitution Test (maximum possible score of 133), the verbal fluency
test (based on the Controlled Oral Word Association task), the Mill
Hill Vocabulary test (maximum possible score of 44) and the Matrix
Reasoning test (maximum possible score of 15). Outliers were
defined as scores >3.5 standard deviations above or below the mean
and were removed prior to analysis. The first unrotated principal
component combining logical memory, verbal fluency, vocabulary
and digit symbol tests was calculated as a measure of general cog-
nitive ability (g). General fluid cognitive ability (gf) was extracted
using the same approach, but with the vocabulary test (a crystallised
measure of intelligence) excluded from the model. While highly
similar to g, the gf score is exclusive to measures such as memory
and processing capability that are considered fluid. gf may therefore
be of greater relevance for assessing cognitive decline in ageing
individuals.

The derived brain volume measures (Supplementary Fig. 5; Sup-
plementary Data 2) were recorded at two sites (Aberdeen and
Edinburgh)68. Data processing used the resources provided by the
Edinburgh Compute and Data Facility (http://www.ecdf.ed.ac.uk/).
Brain volume data included total brain volume (ventricle volumes
excluded), global grey matter volume, white matter hyperintensity
volume and total intracranial volume. Intracranial volume was treated
as a covariate to adjust for head size in all tests including brain volume
associations. The derived global white matter integrity measures
included gFA and global mean diffusivity. The protocols applied to
derive the brain volume measures from T1-weighted scans, and white
matter integrity measures from diffusion tensor imaging scans were
measured at baseline35,68,76 and full details are provided in Supple-
mentary Information. Brain Age was estimated using the software
package brainageR (Version 2.1; https://doi.org/10.5281/zenodo.
3476365, available at https://github.com/james-cole/brainageR),
which uses machine learning and a large training set to predict age

from whole-brain voxel-wise volumetric data derived from structural
T1 images3. This estimate was regressed on chronological age to pro-
duce ameasure of Relative Brain Age (residuals from the linearmodel).
Outliers for all imaging variables were defined as measurements
>3.5 standard deviations above or below the mean and were removed
prior to analyses.

Phenome-wide association analyses
Prior to running protein PheWAS analyses, protein levels were
transformed by rank-based inverse normalisation and scaled to have
a mean of zero and standard deviation of 1. Models were run using
the lmekin function in the coxme R package (Version 2.2–16)77. This
modelling strategy allows for mixed-effects linear model structure
with adjustment for relatedness between individuals. Models were
run in the maximum sample of 1065 individuals, with the 4235 pro-
tein levels as dependent variables and phenotypes as independent
variables. Continuous variables were scaled to mean of zero and
variance one and missing data were excluded from lmekin models.
Each model adjusted for age and sex (male = 1, reference female = 0).
A random intercept was fitted for each individual and a kinship
matrix was included as a random effect to adjust for relatedness.
Diagnosis of depression (case = 1, reference control = 0) at the
STRADL clinic visit was included as a covariate in all models, due to
known selection bias for depression phenotypes in STRADL68. Clinic
study site and protein lag group (storage time before proteomic
sequencing) were included as covariates in all models. For the ana-
lyses with age and sex as the predictors of interest, two beta coeffi-
cients for age and sex were extracted from the samemodel structure.
In the remaining PheWAS models, either numerical APOE e4 status
variable (e2 = 0, e3 = 1, e4 = 2), cognitive test scores or brain imaging
phenotypes were included in addition to the described covariates as
scaled predictors. The beta coefficients were extracted for the phe-
notype in each protein-phenotype association. All analyses of brain
volume measures included further adjustment for intracranial
volume (ICV) and study site as main effects, in addition to the
interaction between these variables. ICV was used to account for
head size. Processing batch, and presence or absence of manual
intervention during quality control were also included as covariates
for volumetric brain imaging associations. The Prcomp function in
the stats R package (Version 3.6.2)78 was used to generate principal
components for the 4,235 SOMAmer measurements (N = 1065). 143
components explained >80% of the cumulative variance in protein
levels (a commonly-used threshold for the retention of principal
components28: Supplementary Fig. 1 and Supplementary Data 3).
These 143 components were used to derive the PheWAS multiple
testing adjustment threshold of P < 0.05 / 143 = 3.5 × 10−4. This
method was chosen due to the presence of high intercorrelations
within the protein data.

Epigenome-wide association study of protein levels
Prior to running the MWAS, protein levels for 774 individuals with
complete phenotypic informationwere log transformed and regressed
on age, sex, study site, lag group, 20 genetic principal components
(generated from multidimensional scaling of genotype data from the
Illumina 610-Quadv1 array) and known pQTL effects (from a previous
genome-wide association study of 4034 SOMAmers targeting 3622
proteins from Sun et al.)20. Residuals from these models were then
rank-based inverse normalised and taken forward as protein level data.
Methylation data were in M-value format and were pre-adjusted for
age, sex, processing batch, methylation set and depression status73. A
second model further adjusted for estimated white blood cell pro-
portions (Monocytes, CD4+T cells, CD8+T cells, BCells, Natural Killer
cells, Granulocytes and Eosinophils). While Neutrophil estimates were
available, they were excluded due to high correlation (r > 0.95) with
Granulocyte proportions (Supplementary Fig. 22). Finally, the fully-
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adjusted model further regressed DNAm onto an epigenetic score for
smoking, EpiSmokEr73 and BMI.

Omics-data-based complex trait analysis (OSCA)79 Version 0.41
was used to run EWAS analyses. Within OSCA, a genetic relationship
matrix (GRM) was constructed for the STRADL population. A
threshold of 0.05 was used to identify 120 individuals likely to be
related based on their genetic similarity. For this reason, the MOA
method was used to calculate associations between individual CpG
sites and protein levels, with the addition of the GRM as a random
effect to adjust for relatedness between individuals79. CpG sites were
the dependent variables and the 4235 proteins were the independent
variables.

Four fully-adjusted models did not converge (NAGLU, CFHR2,
MST1, PILRA) and were excluded. A threshold for multiple testing
correction (P < 4.5 × 10−10) was based on 143 independent protein
componentswith cumulative variance >80% (Supplementary Fig. 1 and
Supplementary Data 3) (P < 0.05/(143 × 772,619) CpGs). A more con-
servative threshold based on total number of SOMAmers was also
considered (P < 0.05/(4235 × 772,619) = 1.5×10−11) and is detailed in
Supplementary Data 4-6. pQTMs were classified as cis if the CpG was
on the same chromosome as the protein-coding gene and fell within
10Mbof the transcriptional start site (TSS) of the protein gene. pQTMs
involving a CpG located on a different chromosome to the protein-
coding gene, or >10Mb from the TSS of the protein gene were classed
as trans.

Circos plots were created with the circlize package (Version
0.4.12)80. BioRender.com was used to create Figs. 1, 2, 3 and 6. All
analyses were performed in R (Version 4.0)81.

Functional mapping and tissue expression analyses
Functionalmapping and annotation82,83 gene set enrichment and tissue
expression analyses were conducted for genes corresponding to pro-
tein markers that were identified through the PheWAS study, in addi-
tion to genes linked to either CpGs or proteins in the neurological
pQTM subset. Protein-coding genes were selected as the background
set and ensemble v92 was used with a false discovery rate adjusted
P <0.05 threshold for gene set testing. For the genes corresponding to
protein markers in the PheWAS a minimum overlapping number of
genes was set to 3. The STRING84 database was queried to build a
protein interaction network based on all proteins that had associations
in the PheWAS. mQTL and eQTL lookups were performed using the
GoDMC59 and eQTLGen databases85, respectively. UCSC database
searches were used to profile the positional information relating to
CpGs in the pQTMs.

Although inter-chromosomal chromatin interactions are unli-
kely to be stable and persistent, seven proteins with cis pQTMs
involving CpGs located intra-chromosomally to the proximal
protein-coding gene were considered for ChIP-seq and promoter-
capture Hi-C mapping to interrogate local chromatin interactions
and states that might form the basis for co-regulation of these loci.
ChIP-seq data from PBMCs and brain hippocampus were selected
from the ENCODE project86, with accession identifiers available in
Supplementary Data 21. Processed promoter-capture Hi-C data for
brain hippocampal tissue was integrated from Jung et al.60, and are
available at NCBI Geo with accession GSE86189. Data concerning
both promoter-prometer interactions and promoter-other interac-
tions were concatenated and all regions subsequently visualised on
the WashU epigenome browser87.

Ethics declarations
All components of GS received ethical approval from the NHS Tayside
Committee on Medical Research Ethics (REC Reference Number: 05/
S1401/89). GS has also been granted Research Tissue Bank status by
the East of Scotland Research Ethics Service (REC Reference Number:
20/ES/0021), providing generic ethical approval for a wide range of

uses within medical research. All participants included in the current
study provided informed consent for the use of their data for biome-
dical research.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The fully-adjusted MWAS summary statistics for 4231 protein levels
generated in this study have been deposited in the MRC-IEU EWAS
catalogue24. These files are also available through a Zenodo repository
at https://doi.org/10.5281/zenodo.680145888.

Datasets generated in this study are made available in Supple-
mentaryDatafiles 1–21. The rawdata fromGenerationScotland are not
available due to them containing information that could compromise
participant consent and confidentiality. Generation Scotland is run as a
Resource for the research community. Requests to use the Resource
are made from: Academic collaborators: employees who are party to
the Generation Scotland Collaboration Agreement, or researchers or
employees of an academic institution or the NHS. Commercial orga-
nisations: specific arrangements have been defined to allow commer-
cial organisations to access Generation Scotland resources. Data can
be obtained from the data owners. Instructions for accessing Genera-
tion Scotland data can be found here: https://www.ed.ac.uk/
generation-scotland/for-researchers/access; the GS Access Request
Form can be downloaded from this site. Completed request forms
mustbe sent to access@generationscotland.org to be approvedby the
Generation Scotland Access Committee.

For any further correspondence and material requests please
contact Dr Riccardo Marioni at riccardo.marioni@ed.ac.uk. Source
data are provided with this paper.

Code availability
All R code used in this study is available with open access at the fol-
lowing Github repository: https://github.com/DanniGadd/Epigenome-
and-phenome-wide-study-of-brain-health-outcomes.
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