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Abstract
Purpose of Review  Epidemiologic studies have observed elevated health risks in populations living near unconventional oil 
and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment 
approaches used in or available for epidemiologic studies, emphasizing studies of children’s health outcomes.
Recent Findings  Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal 
patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring 
data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. 
All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or 
environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful 
surrogates for the complex mix of potential hazards.
Summary  Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and 
relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including 
dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure 
pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collec-
tion of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assess-
ments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation 
to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.

Keywords  Unconventional oil and gas · Exposure assessment · Children’s health · Epidemiologic studies

Introduction

Unconventional oil and gas development (UOGD) involves 
the production of oil and natural gas from deep geologic 
formations such as shale using horizontal drilling and This article is part of the Topical Collection on Early Life 
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high-volume hydraulic fracturing. Shale gas production in 
the USA increased more than eightfold over the past decade, 
from 3,110 to 25,226 billion cubic feet from 2009 to 2019 
[1]. In 2019, there were approximately 150,000 active UOG 
wells in the USA [2], with an estimated 1.5 to 4 million 
people living within 1.6 km of a UOG well [3]. Considerable 
community concerns and public debate have accompanied 
the rapid growth of the UOG industry regarding the multi-
tude of potential human health hazards, including air pollu-
tion, noise, odors, water contamination, radioactive releases, 
seismic activity, traffic, and psychosocial stress [4, 5]. Poten-
tial benefits of UOGD include increased employment oppor-
tunities and wages, increased income for landowners who 
lease their land, lower energy prices, and domestic energy 
independence [6]. However, benefits are not distributed 
equally, may be short-term, and should be considered in the 
context of local and global environmental health impacts 
from fossil fuel extraction [7].

Epidemiologic studies have examined the human health 
impacts of UOGD, with the majority focused on children’s 
health [8]. While the bulk of these studies provide evidence 
of increased risk of adverse health outcomes in children 
(e.g., low birth weight, preterm birth, congenital anomalies, 
childhood asthma hospitalizations, and childhood cancer), 
studies have not been entirely consistent across endpoints. 
Limitations in exposure assessment methods can contrib-
ute to uncertainty about associations, and heterogeneity in 
methods can lead to different conclusions. In this narrative 
review, we (i) discuss the process and hazards of UOGD, 
(ii) describe the strengths, limitations, and challenges of 
environmental exposure assessment approaches relevant 
for UOGD health studies, and (iii) review the application of 
such methods in the epidemiologic literature, with a focus 
on studies of pediatric populations.

Process of Unconventional Oil and Gas 
Development (UOGD)

UOGD, considered upstream oil and gas activity (ver-
sus downstream transport and refinement processes), is a 
complex process with multiple phases that vary over time 
and location [9]. The process starts with application and 
approval of the necessary permits. Next, the UOG well 
pad is prepared, which involves building access roads and 
clearing land where infrastructure for one or more UOG 
wells is stationed. Next is the drilling phase in which a bore-
hole is drilled vertically approximately 1.6 to 3.2 km (1–2 
mi) below ground, before the trajectory of the drill bit is 
turned to bore horizontally through the hydrocarbon-bearing 
rock layers. Steel pipes (casing) and cement are installed 
to maintain the integrity of the borehole and to isolate the 
upper portions of the borehole from the surrounding aquifer. 

Hydraulic fracturing then occurs, during which millions of 
gallons of water, chemical additives, and sand are injected 
into the well under high pressure and expelled through per-
forations in the casing to create fractures in the rock. When 
the pressure is released, the oil and/or gas, together with a 
portion of the injected fracturing fluids (flowback), move 
from the newly created fractures into the well and up to the 
surface for collection [10]. The production phase begins as 
oil and gas that flows up the well is separated at the sur-
face from formation fluids (produced water) and transmitted 
through gathering pipelines from the wellhead to a storage 
facility or a processing plant. The approximately 7 to 14 mil-
lion gallons of wastewater (flowback and produced water) 
generated during the operating lifetime of an UOG well [11] 
may be discharged to surface water following treatment, 
injected in class II injection wells, reused, or disposed of 
in unlined percolation pits, practices that vary by state [12]. 
Solid waste (e.g., drill cuttings) is commonly disposed of in 
municipal landfills [13]. At the end its production life, the 
well should be permanently sealed, although some wells are 
kept idle or abandoned and become increasingly likely to 
lose integrity as they age [14].

UOG‑Related Stressors

Chemical Contaminants in Water

With more than 9 million people in the USA relying on 
drinking-water sources located within 1.6  km (1 mile) 
from a UOG well [9], water contamination from UOGD 
has been a major community concern [15, 16]. Hundreds 
of chemicals have been reportedly used in injection water 
or detected in wastewater, including known and suspected 
endocrine disruptors and carcinogens, such as metals, vola-
tile organic compounds, polycyclic aromatic hydrocarbons, 
phthalates, and per- and poly-fluoroalkyl substances (PFAS) 
[9, 17–23]. Water contamination may occur due to surface 
spills of fracturing or wastewater fluids, release of improp-
erly treated wastewater, structural failures, and well leaks [9, 
12, 24–29]. Groundwater monitoring studies conducted thus 
far do not support widespread contamination [30–33]. How-
ever, groundwater and surface water impairments, spills, and 
violations have been documented across multiple states [15, 
24, 26, 34–38].

Air Pollutants

UOGD generates air pollutants from various sources, 
including well and road construction; use of diesel-pow-
ered construction, drilling, and transportation equipment 
and vehicles; dust generation during drilling; intentional 
flaring of natural gas; and volatilization of wastewater 
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constituents [39–41]. Emission sources have different tem-
poral profiles and may be continuous over varying time 
frames (e.g., diesel equipment, leaks) or be intermittent 
(e.g., flaring, venting). They may also occur at the well 
pad or off-site from transportation or associated UOG 
infrastructure [42]. Studies of airborne emissions or con-
centrations have identified several pollutants associated 
with UOGD activities, including carcinogens (e.g., diesel 
particulate matter, polycyclic aromatic hydrocarbons), and 
reproductive and/or developmental toxicants (e.g., ethylb-
enzene, toluene) [18, 39, 43–47].

Radiation, Radioactivity, and Radon

Technologically enhanced naturally occurring radioactive 
compounds (TENORMS) have been detected in a variety 
of wastes generated by UOGD, including produced water 
[48–50], lateral drill cuttings [50], and impoundment sedi-
ments [51], and co-occur with sludges and mineral scales 
that accumulate inside UOGD equipment [48]. TENORMS 
have also been found in streambed sediments next to facili-
ties managing UOGD wastewaters [52]. Additionally, higher 
indoor radon levels were observed in homes with more or 
closer UOG wells compared to those with fewer or farther 
UOG wells [53, 54]. Health effects of radiation exposure 
include adult and childhood cancers [55], impaired lung 
function [56], increased blood pressure [57], and oxidative 
stress [58].

Sensory Stressors

Sensory stressors include noise, artificial light at night, and 
odors [59–62]. Noise pollution can activate the sympathetic 
nervous system; lead to annoyance, stress, and sleep distur-
bance; and potentially contribute to cardiovascular disease 
and adverse birth outcomes [62, 63]. Odorous compounds 
can reflect mixtures of volatile organic or sulfuric com-
pounds, which have neurotoxic and respiratory effects, and 
can also trigger annoyance, concern, and anxiety at levels 
below established toxicity thresholds [64, 65].

Socio‑Environmental Disturbances

Social and environmental disturbances include, but are not 
limited to, deterioration of roadway infrastructure [66], 
increased traffic accidents [67], visible changes to the eco-
logical landscape [68], and earthquakes [69]. Social impacts 
such as disruption of community cohesion [70], increased 
crime [71, 72], and decreased property values [73, 74] also 
threaten communities near UOGD.

Greenhouse Gases

Methane, a potent greenhouse gas, is emitted to the air 
throughout UOGD from leaks and intentional releases (e.g., 
venting) [75]. Although methane is not directly toxic to 
nearby communities, except at very high levels in tap water, 
at which it poses a flammability danger, its indirect effects 
on future health risks through its role in climate change is 
an important threat to children’s health. This aspect is not 
generally considered in the current UOGD-related epidemio-
logic literature, which tends to be retrospective.

Exposure Assessment Methods and Review 
of Epidemiologic Studies

We review the features, strengths, and limitations of five cat-
egories of methods for assessing exposure to UOGD-related 
stressors [76]: surveys, environmental measurements, aggre-
gate proximity-based models, pathway-specific models, and 
biological monitoring (Table 1, Fig. 1). We identified pub-
lished epidemiologic studies designed to assess an expo-
sure–response relationship between UOGD (or both con-
ventional and UOGD) and human health conducted in the 
USA and Canada through searches in PubMed and Google 
Scholar using keywords related to oil and gas and health 
outcomes and reference lists of identified studies, with the 
last search conducted on January 31, 2022. While of public 
health value, we excluded small community surveys lacking 
clear comparison groups and studies of physical outcomes 
such as injuries or traffic accidents. Our search yielded 
42 epidemiologic studies, of which 29 studies included a 
pediatric population or results related to children’s health 
(Table 2). We describe the exposure assessment methods 
used in each publication (Table 2).

Survey Methods

Overview

Surveys are used to gather self-reported, individual-level 
information on a wide variety of exposure-related factors, 
such as participant behavior, activities, observations, and 
perception of UOGD. None of the epidemiologic studies 
identified in this review utilized this method (Table 2).

Strengths

Surveys are comparatively inexpensive tools that can be 
administered to many individuals across a vast geographic 
scale and allow for acquisition of current and histori-
cal information. Surveys have been useful for assessing 
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Table 1   Strengths and limitations of UOGD exposure assessment methods for use in health studies

Exposure assessment 
method

Summary Strengths Limitations

Survey methods Questionnaires, surveys, or 
interviews may be used 
to collect individual-level 
exposure information

Comparatively inexpensive
Can be administered to many participants
Can gather information on a wide variety 

of exposures and exposure-related factors
Can ask about present and past behaviors 

and exposures
Can gauge participants’ perceptions of 

exposure

Cannot capture exposures that are not known 
or observable to participants (e.g., chemical 
stressors) with precision or specificity

Provides mainly qualitative information
Information provided by participants may be 

subject to bias (e.g., recall bias), and retro-
spective information may be inaccurate

Aggregate proxim-
ity-based models 
and metrics

Distance and density-based 
mathematical models 
that assume exposure 
to UOGD varies in a 
predictable and consist-
ent way in relation to 
proximity to source

Easily scalable for large studies
Comparatively inexpensive
Provides aggregate measure of exposure 

when etiologic agent is not known
Often use publicly available information
Can be used retrospectively or to align 

with etiologic windows of interest

Cannot separate individual etiologic agents or 
routes of exposure

May not capture all routes of exposure (e.g., 
water) well or equally

Based upon the assumption that UOG exposure 
varies in a predictable and consistent way in 
relation to proximity to source

Does not address differences in exposures due 
to behaviors and activities

May not reflect true patterns of environmental 
stressors (e.g., hydrologic patterns in compari-
son to buffer distance)

Pathway-specific 
models and metrics

Models designed to cap-
ture one or more specific 
exposure pathways (e.g., 
flaring, air pollution, 
radioactive material)

Scalable for large studies
Comparatively inexpensive
May provide more precise estimates than 

general spatial models when etiologic 
agent or pathway of concern is known

Often use publicly available information
Can be used retrospectively or to align 

with etiologic windows of interest

Generally requires large amounts of specific 
data that may not be available in all locations

Computationally intensive
Models have varying sources of error to account 

for (e.g., for the flaring model, double-count-
ing of edge pixels in satellite imagery)

Environmental 
measurements

Quantification of UOG-
related chemicals, ele-
ments, or compounds in 
air, water, soil, or other 
environmental media. 
Includes area monitor-
ing and direct personal 
monitoring

Provides information on both location and 
magnitude of exposure

Provides objective and quantitative meas-
urements of specific etiologic agents

Measurements may be incorporated into 
models and used to validate or improve 
models

Repeated measurements may be used to 
quantify duration of exposure and tem-
poral variations

Expensive and logistically difficult for large-
scale studies (e.g., equipment, cost/compre-
hensiveness tradeoffs, strict protocols when 
interacting with human subjects)

Chemicals used or produced not all known
Nearly impossible to capture the numerous poten-

tial contaminants across the various media
Timing sampling to coincide with intermittent 

or localized exposures (e.g., spills, release 
of air pollutants during peak production) is 
difficult and relies on timely and publicly 
available reporting of incidents

Sampling at one point in time is unlikely to 
accurately represent long-term exposures

Environmental measurements may not be 
reflective of individual exposure

Biological monitor-
ing

Measurements of UOG-
related chemicals, 
elements, or compounds 
in biologic media (e.g., 
urine, blood, hair)

Provides integrated measure of exposure 
from multiple pathways

Accurate measure of individual-level 
exposure

Collection of biosamples requires participant 
cooperation and consent, strict adherence to 
ethical guidelines and protocols, and sample 
collectors trained in the necessary techniques 
(e.g., phlebotomy)

Expensive
Etiologic agent(s) must be known, and the large 

range of UOG-related compounds makes 
targeted biomonitoring challenging

Biomarkers are not available for all contami-
nants

Etiologic agents have varying half-lives, and a 
one-time measurement may not reflect long-
term exposure

Does not provide information on the source or 
route of exposure
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perceived exposures such as the felt experience of earth-
quakes, which may be as or more relevant for health out-
comes as compared to objective measures of seismicity. 
For example, the US Geological Survey (USGS) Did You 
Feel It (DYFI) is a crowd-sourced database where indi-
viduals submit an online report to the USGS about the 
time, location, and felt impact of an earthquake [77]. USGS 
uses these reports to estimate a community decimal inten-
sity for each seismic event at the ZIP code level. In addi-
tion, participant self-reported housing damage has shown 
strong correlation with cumulative ground motion assessed 
from shakemaps (i.e., visual displays of ground shaking 
occurring at different locations immediately after an earth-
quake). In terms of UOGD, residents have also reported 
on observable changes to their air or water, such as odors, 
change in the color, appearance, turbidity, or foaming of 
their drinking water [16, 30, 78].

Limitations and Challenges

The utility of exposure assessment surveys is limited to 
hazards that are directly knowable and observable by 
residents and therefore are not suitable for most UOGD-
related chemicals and radioactive materials, which are 
odorless, colorless, and not detectable by human senses. 
Moreover, even observable changes (e.g., color change, 
foaming, turbidity, odor) cannot readily be translated into 
quantitative exposure estimates for specific agents.

Models and Metrics

Overview

Human exposure models are mathematical expressions of 
attributes of the environment, community, or individual that are 
expected to influence exposure. These can take several forms, 

such as geostatistical models that map proximity to a contaminant 
source or physically based models that draw upon established 
principles governing how contaminants move through various 
media (e.g., air, water, soil) to predict the transport of a stressor 
from source to receptor. Here, we group models into aggregate 
proximity-based models, which treat UOGD as a collective 
entity, and pathway-specific models which focus on a particular 
source or exposure pathway related to UOGD. All epidemiologic 
studies published to date have used models to assess exposure to 
UOGD, with the majority using aggregate approaches (Table 2).

Aggregate Proximity‑Based Models 
and Metrics

Counts or Geographic Aggregation

These metrics consider presence or number of UOGD facili-
ties per ZIP code, county, or circular buffer around a resi-
dence, used in 21 epidemiologic studies to date (Table 2). 
This metric assumes that residents of geographic units with 
higher numbers of UOGD facilities experience higher lev-
els of exposure. Because environmental exposures do not 
respect administrative boundaries, use of these types of spa-
tial units is subject to edge effects (i.e., wells located just 
across a Census tract border). These metrics have recently 
been extended to estimate counts of UOG wells around other 
receptors, such as drinking water sources [79].

Distance

The mapped Euclidean distance to the UOG well nearest 
to a home or other receptor is another simple metric that 
assumes that homes closer to UOG wells are more likely to 
be exposed or face higher levels of exposure. This calcula-
tion is based upon a single well—the closest well—and does 

Fig. 1   Characteristics of 
unconventional oil and gas 
development exposure assess-
ment methods. The location of 
the icon indicates where each 
method lies on a spectrum of 
the respective characteristics
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Table 2   Features and applications of UOG exposure assessment methods in studies of UOGD and health outcomes

UOG exposure assess-
ment methoda

Description of expo-
sure assessment

Lead author (year) by study endpoints

Adverse perinatal out-
comes (n = 21)

Hospitalizations, asthma, 
cardiovascular diseases, or 
mortality (n = 12)

Cancer 
(n = 3)

Other health outcomesb 
(n = 6)

Aggregate proximity-based metrics and models
  Presence or number 

of wells or per-
mits per zip code, 
county, or other 
geographic unit

Area-based count 
density; number of 
wells per a specified 
area or administra-
tive boundary

Ma (2016)* [119]
Tran (2021)* [120]
Busby (2017)* [121]
Tang (2021)* [122]
Tran (2020)*,c [81•]
Apergis (2019)* [123]
Hill (2018)* [124]
Hill (2022)* [79]

Jemielita (2015)* [125]
Willis (2018)* [126]
Denham (2019)* [127]
Denham (2021) [128]
Willis (2020)*,c [99]
Peng (2018)* [129]
Johnston (2021) [130]

Fryzek [131] 
(2013)*

Finkel [132] 
(2016)

Deziel (2018) [133] Beleche 
(2018) [134]

Komarek (2017) [72]
Johnson (2020) [135]

  Distance to UOG 
well

Geographic distance 
between residence 
and nearest UOG 
well

Currie (2017)* [136]
Willis (2021)* [137•]

Koehler (2018)c [42]

  Inverse distance 
weighted well 
count

A count of all wells 
within a prescribed 
area around a home 
(i.e., buffer) that 
gives more weight to 
wells located closer. 
May be intensity-
adjusted or phase-
specific

Stacy (2015)* [138]
McKenzie (2014)* [139]
Whitworth (2018)* [82]
Whitworth (2017)* [140]
Janitz (2019)* [141]
Caron-Beaudoin (2021)* 

[142]

Koehler (2018)c [42]
Li (2022) [98]

McKenzie 
(2017)* 
[143]

  Inverse distance-
squared weighted

A count of all wells 
within a prescribed 
area around a home 
(i.e., buffer) that 
gives more weight to 
wells located closer. 
Assumes that the 
exposure potential 
declines rapidly with 
distance, as a func-
tion of the distance 
squared

González (2020)* [83]

  Activity-based 
metric

A count of all wells 
within a prescribed 
area around a home 
that gives more 
weight to wells 
located closer. 
Assumes that the 
exposure potential 
declines rapidly with 
distance, as a func-
tion of the distance 
squared. Assumes 
that each phase of 
well development 
has different expo-
sure potential that 
may be represented 
by features of the 
well (e.g., total well 
depth, daily natural 
gas production 
volume)

Casey (2016)* [80]
Casey (2019)* [144]
Tran (2020)*,c [81•]

McAlexander (2020) [145]
Koehler (2018) [42]c

Rasmussen (2016)* [104]
Willis (2020)*,c [25]

Tustin (2016) [146]
Casey (2018) [147]
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not incorporate the density of wells in the area surrounding 
a residence.

Distance‑weighted metrics

Inverse-distance or inverse distance-squared weighted UOG 
well counts improve upon simple distance measures by 
accounting for the number of UOG wells within a buffer 
zone (generally 1, 2, 5, or 10 km) while weighting the 
closer wells more heavily than the distant wells by assum-
ing a decline in exposure potential as an inverse (Eq. 1) or 
inverse-squared (Eq. 2) function of distance.

where d is the distance between the ith UOG well and a 
residence, and n the number of UOG wells.

These models assume all wells have the same maximum 
exposure potential regardless of production volume, waste-
water produced, well phase, topography, or meteorology. 
Distance-weighted metrics have been commonly used in 
epidemiologic analyses (n = 9 studies, Table 2).

Activity‑Based Metrics

Activity-based models extend distance-based metric by also 
including attributes of UOG wells expected to influence 
exposure potential, such as vertical well depth or production 
volume [41, 80, 81•]. Nine health studies to date have used 
some form of an activity-based metric (Table 2).

(1)IDW well count =

∑n

i=1

1

d
i

(2)ID
2
Wwell count =

∑n

i=1

1

d
2

i

Strengths

Aggregate proximity-based models offer the advantage of 
being scalable (i.e., feasible to apply to large geographic 
areas or populations) and thus practicable for assignment 
of exposure to thousands of wells across the thousands of 
subjects sometimes included in health studies. Proximity-
based spatial surrogates offer the opportunity to assess 
exposures retrospectively, which is important if the etio-
logically relevant time windows occur in the past. They can 
also be calculated to align windows of health vulnerability 
(e.g., trimesters) with the phases of UOGD to create phase-
specific metrics (e.g., UOG exposure during production). 
These temporal considerations are of particular importance 
for adverse birth outcomes and childhood cancer, because 
effect estimates can vary based on the timing of expo-
sure [82, 83]. Conversely, other studies of adverse birth 
outcomes have observed strong correlations in exposure 
assessments across trimesters, making it difficult to exam-
ine potential differences [84•, 85].

These approaches also serve as an aggregate measure 
of the myriad of physical, chemical, and social stressors 
potentially associated with UOGD. This aggregation is a 
useful feature for this complex industrial process, where 
exposures to multiple hazards are likely and the domi-
nant stressor is not known and may differ from well to 
well. Additionally, the linkage of health data or risks with 
relatively simple metrics like distance between home and 
UOG well is directly relevant and actionable for policy 
makers and stakeholders; for example, such data can be 
used to inform the establishment of setback distances, the 
minimum allowable distance between an oil and gas well 
and sensitive human receptors (e.g., residences, schools, 
or hospitals).

Table 2    (Continued)

UOG exposure assess-
ment methoda

Description of expo-
sure assessment

Lead author (year) by study endpoints

Adverse perinatal out-
comes (n = 21)

Hospitalizations, asthma, 
cardiovascular diseases, or 
mortality (n = 12)

Cancer 
(n = 3)

Other health outcomesb 
(n = 6)

Pathway-specific models and metrics

  Air pathway McKenzie (2019a)* [96•] McKenzie (2019b) [97]
Li (2022) [98]

  Flaring Cushing [84•] (2020)* Willis (2020) [99]*,c

* Indicates a study with a pediatric population or a population that includes both children and adults with results presented separately for children
a Note that no epidemiologic studies included in this review used surveys, environmental measurements, or biological monitoring to assess expo-
sure to UOGD
b Other health outcomes includes studies of self-reported health symptoms, mental health outcomes, nasal/sinus symptoms, fatigue, migraine, 
and sexually transmitted infections
c This study applied multiple metrics that fit into multiple categories
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Limitations and Challenges

Proximity-based spatial surrogates do not allow for 
identification of etiologic agents underlying observed 
associations [86]. Additionally, the effects of processes 
affecting chemical fate and transport, such as advec-
tion, dispersion, and transformation reactions that alter 
contaminant toxicity, are unlikely to be approximated 
by simple spatial metrics. Moreover, the accuracy of 
the underlying assumption that UOG-related exposures 
diminish predictably with distance likely varies by expo-
sure type. For example, the impacts of increased traffic, 
ecological disturbance, or formation of secondary air 
pollutants may not be appropriately captured by a model 
that presumes a linear attenuation of exposure intensity 
with increasing distance. Approaches that are based on 
buffers (e.g., 1 km radius around a residence) are limited 
by the fact that the actual exposures do not follow perfect 
circular patterns. Because these metrics have only been 
compared to environmental measurements in a small 
number of studies (e.g., 30, 41, 94), our understanding 
of their ability to capture specific etiologic agents is still 
unfolding.

The epidemiologic studies conducted to date have 
predominantly relied on secondary data sources, such 
as birth, hospitalization, or electronic medical records, 
without participant contact. This has necessitated the use 
of single address (e.g., maternal residence at birth) to 
assign exposures, which could introduce exposure mis-
classification due to unaccounted residential mobility 
[87, 88]. While residential mobility is an important con-
sideration in studies of children’s health, risk estimates 
have generally been robust to the impact of residential 
mobility on exposure assessments [89, 90]. The potential 
to introduce error is compounded if evaluating diseases 
with longer exposure windows or latency periods (e.g., 
adult cancer).

Pathway‑Specific Proximity‑Based Models 
and Metrics

Overview

In contrast to aggregate models, approaches have been 
developed to capture specific stressors such as air emis-
sions [41], flaring [91], drinking water vulnerability [92], 
radioactivity [93•], earthquakes [94, 95], and ancillary 
UOG infrastructure [42]. The strengths and limitations 
for these approaches are discussed below. To date, five 
epidemiologic studies have applied a pathway-specific 
exposure model (Table 2).

Air Pathway Models

An activity model included weighting factors based on 
air emissions data that accounts for changes in emissions 
between and within phases of well development was con-
structed for Colorado [41] and subsequently applied in an 
epidemiologic study of congenital malformations and adult 
cardiovascular endpoints [96•, 97]. Limitations include the 
requirement of specific UOG data (e.g., production volumes 
and number of tanks per well pad) that may not be readily 
available in all states. Application to other regions would 
require assumptions that the emissions are correlated with 
the measured factors and that these are similar across pro-
ducers and formations. In addition, while targeting the air 
pathway, it does not provide information on specific pollut-
ants of concern.

Li et al. (2020) constructed a downwind proximity-based 
model and compared it to radioactivity measurements 
available from a national network of environmental radia-
tion monitors [93•]. They created circular sectional buffer 
around each residence. To isolate emissions from upwind 
industrial activities, they sliced a 90° circular sector centered 
on the daily upwind direction for each circular buffer and 
summed the number of UOGD wells in each wedge-shaped 
buffer based on daily wind fields. They found an associa-
tion between UOGD wells and downwind radiation meas-
urements. This downwind model was applied in one health 
study of all-cause mortality among Medicare beneficiaries, 
which observed significant higher mortality risk associated 
with living downwind of UOGD wells [98].

Flaring‑Specific Model

A flaring-specific model was developed for Texas using data 
from the Visible Infrared Imaging Spectroradiometer (VIIRS) 
Nightfire satellite instrument (which detects thermal sources) 
alongside reported estimates of vented and flared gas from the 
Railroad Commission of Texas [91]. The model was used to 
identify flaring events and to estimate the gas volume of each 
flare in a study of birth outcomes in Texas, which found that 
exposure to a higher number of flaring events was associated 
with increased risk of preterm birth [84•]. This model provides 
high resolution estimates of flared locations and volumes using 
publicly available VIIRS data, which covers the entire planet 
(albeit asynchronously). The model may overestimate the num-
ber of flares in a region due to artifacts of VIIRS [91]. Willis 
et al. (2020) used flaring volumes by zip code data to classify 
exposures (among other metrics) in a study of pediatric asthma 
hospitalizations in Texas [99]. While there was an association 
between oil and gas well density and increased hospitalizations, 
the results specific to flaring volumes were inconclusive.
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Metrics for Injection‑Induced Earthquakes

Exposure to earthquakes can be based on location of the 
epicenter, timing of the earthquake, and magnitude of the 
seismic event. Generally, earthquakes greater than (or equal 
to) magnitude 4 have been considered relevant for human 
exposure and health. These have been used to assess short-
term exposure windows for acute health outcomes, such as 
1 month prior to health events [94], and longer-term win-
dows such as summing cumulative peak ground acceleration 
from shakemap data over a 6-year period [95]. Prior work 
has connected earthquakes to adverse perinatal and child 
health [100–103], but no studies have evaluated the role of 
UOGD-induced earthquakes and adverse birth outcomes.

Ancillary UOGD Infrastructure

Few studies have considered UOGD infrastructure beyond 
the well pad. Koehler et al. (2018) incorporated compres-
sor station locations into an inverse-distance squared expo-
sure metric that also included pad development, drilling, 
hydraulic fracturing, and gas production [42]. This metric 
performed similarly to a previously used inverse distance 
squared metric that did not incorporate compressor stations 
in evaluations of respiratory outcomes [104]. The authors 
hypothesized this occurred because compressor stations 
were co-located in space and time with the other phases of 
UOGD activity measured.

Hydrological Models and Metrics

Physics-based estimates of water-well vulnerability (i.e., the 
likelihood of contamination) that draw on hydrological prin-
ciples to simulate groundwater flow rates and patterns can 
improve exposure assignments in human-health studies focus-
ing on the drinking-water pathway. Soriano et al. (2020) used 
hydrologic models to simulate the capture zones of residen-
tial drinking-water wells and estimated vulnerability based on 
the probability that a capture zone encompassed UOG infra-
structure (i.e., well pads) [105]. Physics-based vulnerability 
estimates can also predict the likelihood of future exposures, 
thereby enabling households of greatest risk to be targeted for 
prospective monitoring and preventative actions to minimize 
exposure to UOG contaminants. Physics-based models can be 
computationally intensive and are challenging to scale to large 
geographic areas required of many population-based epide-
miologic studies. To circumvent this challenge, Soriano et al. 
(2021) used vulnerability estimates of a physics-based model 
of groundwater flow and chemical transport to train a machine-
learning model that classified the vulnerability of household 
wells on the basis of predictors readily computable from a 
geographic information system [92]. A predictor combining 

information on topography, hydrology, and proximity to con-
taminant sources (inverse distance to nearest upgradient UOG 
source) was found to be highly important for accurate machine-
learning model predictions of vulnerability. This new metric 
was recently applied as an exposure indicator in a groundwater 
monitoring study by Clark et al. (2022) [106•] and has not yet 
been applied in any published epidemiologic studies.

Strengths

Pathway-specific models may offer improved accuracy over 
simple proximity models due to their incorporation of chemi-
cal transport, source characteristics, land use, meteorology, 
and other factors. This can reduce exposure misclassification 
in epidemiologic studies and help disentangle the effects of 
different exposure routes or hazards, providing important 
information for additional monitoring studies or exposure 
mitigation strategies.

Limitations and Challenges

Pathway-specific models may be computationally intensive 
and require substantial information for parameterization that 
may be difficult to acquire. The increased complexity can make 
the models less readily scalable to large geographical areas, 
although recent advances in computational and statistical 
approaches are helping to circumvent this issue. In addition, 
more complex models may be less readily interpretable to the 
public and policy makers. If the models predict exposures at a 
single residential address, they are prone to the same error as 
the simple proximity models in terms of residential mobility.

Environmental Measurements

Overview

Environmental measurements are quantitative measure-
ments of samples collected from various media (e.g., air, 
water, soil, and dust) that can be used to calculate exposure. 
Environmental measurements can be collected directly at 
the point of contact (e.g., a personal air monitor worn by an 
individual) or from area or ambient settings (e.g., a station-
ary air monitor in a home). No large-scale epidemiologic 
analyses have used environmental measurements to assess 
UOG exposure to date (Table 2).

Strengths

Measurement of targeted analytes often has standard meth-
ods and can be robustly quantitative. Repeated measurements 
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could help quantify duration and temporal variations in 
exposures. Measurements can be incorporated into models 
as weighting factors or can be used to evaluate or calibrate 
models. Measurements can be used to establish exposure 
pathways or assess the dominant pathways, demonstrating 
whether agents reportedly used in UOG development are 
reaching human receptors and by which mechanisms. Envi-
ronmental measurements can be highly relevant to individual 
exposure and can be reported to stakeholders and residents. 
These can also be compared to health-based standards and 
guidelines where available. Untargeted analyses can reveal 
the presence of unexpected contaminants.

Limitations and Challenges

Measurements (particularly those with sufficient spatiotem-
poral resolution to be informative at an individual level) may 
not be feasible or may be prohibitively costly in a large-scale 
epidemiologic study. Furthermore, monitoring networks do 
not exist for many relevant environmental stressors. Given 
the lack of timely and publicly available reporting of UOG-
related incidents (e.g., spills, leaks) and the resource-inten-
sive nature of environmental sampling, it is difficult to coor-
dinate sampling efforts with environmental releases. As a 
result, if monitoring is conducted at only a single time point, 
it is unlikely to represent the full range of past exposures or 
peak exposure at that location. This issue is particularly sali-
ent for groundwater measurements given the lack of moni-
toring and regulatory oversight of domestic groundwater 
wells [104, 107] which may be shallow and made even more 
vulnerable to contamination as their casing and cement seals 
deteriorate with age. Monitoring is further complicated by 
the challenging and non-random access to such groundwater 
(i.e., permission must be granted by a property owner) [105, 
108]. For both air and water, it is impossible to measure 
everything of interest because there are numerous potential 
pollutants of public health concern [17, 18]. Environmental 
sampling also requires carefully designed protocols, partici-
pant cooperation and consent, quality control procedures, 
and appropriate analytical capabilities and materials to prop-
erly collect and quantify target analytes.

Identification of target analytes for measurement is chal-
lenging because constituents of fracturing fluids are reported 
in an inconsistent and voluntary manner [23, 109, 110]. Nat-
urally occurring compounds mobilized by the UOG process 
and transformation products that are not used deliberately 
may evade targeting for analysis [111, 112]. There are also 
limited data for comparison, although there are efforts to 
build publicly available datasets of detections to complement 
disclosure databases [113]. In terms of water measurements, 
publicly available pre-drill data are sparse [33, 114], and 
many contaminants of emerging concern do not have health 

standards or guidelines. As such, it is difficult to identify 
exposures that are “elevated” or present a definitive health 
risk. For air pollution, there are fewer federal monitoring 
stations in rural areas that tend to host UOGD compared to 
heavily populated metropolitan areas, and a small number of 
atmospheric pollutants are systematically measured.

Finally, because true exposure is a combination of envi-
ronmental concentrations and human behaviors and activi-
ties, collected measurements may not be representative of 
actual human exposure or reflect heterogeneity in exposures 
across persons. Individuals are rarely stationary, and their 
exposure profile will be highly influenced by the different 
microenvironments where they spend time as well as their 
behavior and activities in those microenvironments. Direct 
personal air sampling devices can overcome this issue, or 
surveys can complement measurements with individual-
level information about behaviors and activities. For exam-
ple, with respect to water-based exposures, people may con-
sume water or other beverages from multiple locations or 
may have treatment systems that alter the water chemistry. 
A study of 255 homes in Pennsylvania and Ohio located in 
areas with UOGD found that more than 20% of their par-
ticipants reported drinking primarily bottled water, which 
could come from many sources, instead of water from their 
private well [106•].

Biological Monitoring of Exposure

Overview

Biological monitoring is a direct measure of chemical expo-
sure that integrates all potential routes of exposure into one 
measurement of internal dose. No large-scale epidemiologic 
studies have used biological monitoring to assess UOG 
exposure (Table 2), and to our knowledge, only two pilot 
studies have measured exposure biomarkers among individu-
als living in a community with UOG activity [115, 116]. 
These studies observed elevated levels of benzene metabo-
lites and manganese in urine and manganese, barium, alu-
minum, and strontium in the hair of pregnant women liv-
ing atop the Montney Formation in Northeastern British 
Columbia, Canada, as compared to reference populations 
in both Canada and France. Individual measurements were 
not compared to proximity to or density of UOG activity, 
meaning it is possible the population was exposed to other 
sources of VOCs and trace metals.

Strengths

Biological measurements provide an integrated and direct 
measure of total body burden that reflect multiple expo-
sure pathways and routes and the different activities and 
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microenvironments of individuals. Biological monitoring 
may also be useful in identifying etiologic agents associ-
ated with health outcomes.

Limitations and Challenges

The broad range of compounds associated with UOGD com-
plicates targeted biomonitoring. Because UOG chemicals 
typically have numerous indoor and outdoor sources, bio-
logical monitoring cannot provide insights into the dominant 
source or route of exposure. Many biomarkers have short 
half-lives and therefore new measurements may not reflect 
prior exposures during etiologically relevant time windows. 
Finally, to collect biosamples, researchers must obtain par-
ticipant consent, adhere to ethical guidelines and protocols, 
and train sample collectors in the necessary methodology 
(e.g., phlebotomy), all of which raise cost and prevent barri-
ers to broad, systematic study. Although children often have 
a higher body burden of environmental chemicals compared 
to adults, collection of biospecimens may be particularly 
challenging or not possible among pediatric populations, for 
reasons of practicality (e.g., compliance, ability to achieve 
sufficient sample volume) and ethics (e.g., the invasive 
nature, obtaining informed assent) [117, 118].

Conclusions

In this review, we describe the features of UOG exposure 
assessment methods, which are summarized in Fig. 1. We also 
enumerate the many challenges facing UOGD exposure assess-
ment, including limited information on the identity and inten-
sity of chemical and non-chemical stressors, sparse monitoring 
data in areas with active UOGD, the episodic or infrequent 
release of chemicals or other hazards, and the complexity of 
the different stressors with regard to temporal, spatial, release, 
and dispersion patterns. Despite these issues, published epi-
demiologic studies generally relying on relatively simple, 
aggregate proximity-based models, have consistently identi-
fied increased risk of health problems, particularly in children. 
Improved methods could potentially reduce uncertainty and 
provide evidence for specific exposure pathways. While the 
substantial analytic capabilities required for large-scale envi-
ronmental measurements may make them impractical for use 
in a traditional epidemiologic study, such studies are highly 
valuable and could shed light on pathways of exposure, par-
ticularly in a cohort subset. Not all stressors lend themselves to 
the approaches discussed in this review, such as estimating the 
health impacts of greenhouse gases (e.g., methane), which may 
not immediately or directly affect health but will hold global 
consequences for future generations. As epidemiologic inves-
tigation of UOGD is still a relatively nascent research area, 
UOGD exposure assessment methods have already progressed 

substantially and will continue to be refined as new informa-
tion comes to light and researchers tackle these challenges.
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