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Summary:

In data collection for predictive modeling, under-representation of certain groups, based on 

gender, race/ethnicity, or age, may yield less-accurate predictions for these groups. Recently, 

this issue of fairness in predictions has attracted significant attention, as data-driven models 

are increasingly utilized to perform crucial decision-making tasks. Existing methods to achieve 

fairness in the machine learning literature typically build a single prediction model in a manner 

that encourages fair prediction performance for all groups. These approaches have two major 

limitations: i) fairness is often achieved by compromising accuracy for some groups; ii) the 

underlying relationship between dependent and independent variables may not be the same across 

groups. We propose a Joint Fairness Model (JFM) approach for logistic regression models for 

binary outcomes that estimates group-specific classifiers using a joint modeling objective function 

that incorporates fairness criteria for prediction. We introduce an Accelerated Smoothing Proximal 

Gradient Algorithm to solve the convex objective function, and present the key asymptotic 

properties of the JFM estimates. Through simulations, we demonstrate the efficacy of the JFM 

in achieving good prediction performance and across-group parity, in comparison with the single 

fairness model, group-separate model, and group-ignorant model, especially when the minority 

group’s sample size is small. Finally, we demonstrate the utility of the JFM method in a real-

world example to obtain fair risk predictions for under-represented older patients diagnosed with 

coronavirus disease 2019 (COVID-19).
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1. Introduction

1.1 Applied Context

The issue of making fair predictions has attracted significant attention recently in machine 

learning as a critical issue in the application of data-driven models. Though machine 

learning models are increasingly utilized to perform crucial decision-making tasks, recent 

evidence reveals that many carefully designed algorithms can learn biases from the 

underlying data and exploit these inequities when making predictions. For example, large 

systematic biases in prediction performance have been detected for machine learning models 

in areas such as recidivism prediction relative to race (Angwin et al., 2016), ranking of job 

candidates relative to gender (Lahoti et al., 2018) and face recognition relative to both race 

and gender (Ryu et al., 2018; Buolamwini and Gebru, 2018).

There is an emerging recognition that such biases in data often leads to unfair performance 

from predictive models in healthcare for certain groups (Char et al., 2018), such as 

women (Larrazabal et al., 2020), ethnic and racial minorities (Seyyed-Kalantari et al., 

2020; Chen et al., 2021), and individuals with public insurance (Seyyed-Kalantari et al., 

2020; Chen et al., 2021). Biased representations of different populations in biomedical 

studies, and the under-performance for under-represented populations, limit the potential 

benefits that can be achieved for these communities. In particular, when model-based 

predictions are used to prioritize patients for rationed services (e.g. organ transplantation, 

care management programs, or ICU services), under-performance for the under-represented 

patient populations will lead to unfair treatments for these patients (Paulus and Kent, 2020).

A particularly motivating example that we use in this paper is the mortality prediction 

for patients infected with coronavirus disease 2019 (COVID-19). As of January 23 2021, 

COVID-19 has infected more than 96 million people globally, accounting for more than 

2 million known deaths. Older patients are particularly vulnerable to severe outcomes and 

death due to COVID-19. The Centers for Disease Control and Prevention (CDC) reported 

that the fatality rate was 18.8% for patients older than 80 years whereas the overall fatality 

rate is estimated at 5% or less for all patients (Kompaniyets and Goodman, 2021). This 

difference in survival highlights an urgent need for risk stratification of older patients 

with COVID-19 based on routine clinical assessments. However, most COVID-19 studies 

have not been stratified by age groups (Tehrani et al., 2021). Thus, as an example, when 

applying a risk prediction equation generated from the general population to older patients 

with COVID-19, the model in Tehrani et al. (2021) predicts high-risk scores overall due to 

their older age, higher prevalence of comorbidities and more laboratory abnormalities. This 

resulted in insufficient and unfair risk stratification for these patients as not all older patients 

are at the same risk of death from COVID-19 (Tehrani et al., 2021).

1.2 Existing Approaches

Methods to address fairness in the machine learning literature typically begin with a formal 

probabilistic definition of fairness. In the context of risk prediction, predictive fairness at 

the group level means that a risk prediction model has performance characteristics (such as 

accuracy, ranking, or calibration) that are relatively independent of group membership. For 
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example, if the false positive rate for a classification model is defined as P(y = 1|y = 0), 
where y is the model’s prediction, then enforcing equality can be stated as requiring 

that these distributions be as close as possible between groups. Other definitions include 

demographic parity (Calders et al., 2009), equalized odds or equal opportunity (Hardt et al., 

2016), disparate treatment, and impact and mistreatment (Zafar et al., 2019, 2017a). It is 

well-recognized that there is no unique optimal way to define fairness, leading to trade-offs 

between different approaches (Zafar et al., 2017b).

Given a fairness criterion, the second component of a fairness strategy requires an 

algorithmic approach, typically consisting of either 1) pre-processing the data by mapping 

the training data to a transformed space where the dependencies between sensitive attributes 

and class labels disappear (Kamiran and Calders, 2012; Dwork et al., 2018); or 2) post-

processing of a trained prediction model; for example, (Kamishima et al., 2012; Hardt et 

al., 2016) modify the probability of the decision being positive and negative predictions 

from an existing classifier to limit unfair discrimination; or 3) “in-process” methods, where 

fairness is accounted for during training of a model by adding a fairness constraint to 

the objective function. Examples of in-process methods include Zemel et al. (2013) who 

proposed to learn a fair representation of the data and classifier parameters by optimizing a 

non-convex function, and Zafar et al. (2017b) who defined a convex function as a measure of 

(un)fairness and suggested optimizing accuracy subject to the convex fairness constraints as 

well as their converse.

A key feature of nearly all existing approaches is that a single set of classifier parameters 

is estimated using fairness criteria that encourage fair prediction performance across 

all groups. This approach has two main limitations: i) fairness is often achieved by 

compromising accuracy of some groups; ii) the underlying relationship between dependent 

and independent variables may not be the same across groups, and the differences in 

predictive features may be of interest. In the example of predicting mortality risk for patients 

with COVID-19, while one would expect some features to have the same association with 

mortality for both older and younger patients, the associations between mortality and other 

features may be different between age groups. For instance, being overweight or obese 

(Body Mass Index [BMI] > 25kg/m2) increases the risk for mortality associated with 

COVID-19, particularly among adults aged < 65 years (Kompaniyets and Goodman, 2021) 

However, geriatric BMI guidelines are different from those for younger adults. For older 

adults, higher BMIs are often associated with greater energy stores and a better nutritional 

state overall, which is beneficial for patients’ survival outcomes when serious infections 

develop.

Estimating separate prediction models for each group does not leverage potential similarities 

between the groups. Moreover, estimating a single prediction model, even while using 

fairness criteria, will likely result in sub-optimal estimation or prediction performance for 

one group in order to achieve fair performance with a single set of parameters shared across 

groups. Outside the context of algorithmic fairness, Danaher et al. (2014) proposed the joint 

graphical lasso method, a technique for jointly estimating multiple models corresponding to 

distinct but related conditions. Their approach is based upon a penalized log-likelihood 

approach, which penalizes the differences between parameter estimates across groups. 
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Penalized log-likelihood approaches have often been used by other authors like Yuan and 

Lin (2007), Friedman et al. (2007b) etc. for similar estimation purposes while minimizing 

the disparities in estimates across groups. In all such cases, however, prediction performance 

was not emphasized.

In this paper, we propose the joint fairness model, a technique for jointly estimating 

multiple logistic regression models corresponding to distinct but related groups, in order 

to achieve fair prediction performance across groups. The model parameters are estimated 

by encouraging prediction fairness, while simultaneously ensuring high predictive accuracy 

irrespective of heterogeneity across groups. The rest of this paper is organized as follows. In 

Section 2, we present the proposed joint fairness model. Section 3 describes the algorithm to 

find its optimal solution. In Section 4, we discuss asymptotic consistency of the estimators. 

We illustrate the performance of our proposed approach in simulation studies in Section 

5; and apply our approach to the motivating example of predicting COVID-19 mortality 

outcomes for patients of different age groups in Section 6. Finally, we summarize and 

discuss our findings in Section 7.

2. Problem Formulation

For binary outcomes, consider K groups of datasets Sk = {(Xki, yki) ∈ ℝp × {0, 1} : i = 1, ⋯, nk}
with K ⩾ 2 representing group membership. Throughout the paper, group memberships 

are known and observed. Assuming that the n = ∑k = 1
K nk observations are independently 

distributed, then yki ~ Bernoulli(pki), and yki : ℝp {0, 1} is the predicted value based on 

predictor features Xki. We focus on the development of a fair prediction approach for the 

widely-used logistic regression model. The log-likelihood of the logistic model for the data 

from all groups takes the form

∑
k = 1

K
ℓ(βk; Xk, yk) = ∑

k = 1

K
∑
i = 1

nk

(ykiXkiβk − log (1 + exp (Xkiβk))) . (1)

Define β = (β1, ⋯, βK) ∈ ℝpK. Maximizing the likelihood function in (1) with respect to βk in 

each group separately yields the maximum likelihood estimates of parameters βk for each 

group k, thus making separate predictions yk per group. If we ignore group memberships, β
can be estimated by maximizing the likelihood function in equation (1) setting all βk equal to 

a single global parameter vector β and making predictions y per individual (irrespective of 

group) using that global parameter vector.

If the K datasets correspond to observations collected from K distinct but related groups, 

then one might wish to borrow strength across the K groups to estimate β and predict y, 

rather than estimating parameters βk for each group separately, or estimating a single set of 

βk for all k which could lead to heterogeneous prediction performance across the groups. 

Therefore, instead of estimating β by maximizing the likelihood in equation (1), we consider 

a penalized log-likelihood approach and jointly estimate β by maximizing an objective 

Do et al. Page 4

Biometrics. Author manuscript; available in PMC 2023 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function of ∑k = 1
K ℓ(βk; Xk, yk) in equation (1) subject to constraints on (i) fairness, PF(β; X, y, 

λF) (ii) parameter similarity, PSim(β; λSim), and (iii) parameter sparsity, PSp(β; λSp).

minimize
β ∈ ℝpK

F(β) = − ∑
k = 1

K 1
nk

ℓ(βk; Xk, yk) + PF(β; X, y, λF) + PSim(β; λSim)

+ PSp(β; λSp) .
(2)

We propose a fairness penalty function PF(β; X, y, λF) that encourages each group 

to have similar predictive performance. In this work we use equalized odds (Hardt 

et al., 2016) which encourages each group to have similar false positive rates (FPRs) 

and false negative rates (FNRs). Thus, we want to minimize the absolute difference 

between FPRj and FPRk P(y j = 1 ∣ yj = 0) − P(yk = 1 ∣ yk = 0) , and that between FNRj and 

FPRk: P(y j = 0 ∣ yj = 1) − P(yk = 0 ∣ yk = 1) . Under the logistic regression model, the absolute 

differences of FPRs and FNRs are nonconvex due to the nonconvexity of the sigmoid 

function. We will instead minimize the absolute difference of the expected linear 

components of the two groups E Xjβj ∣ yj = 0 − E Xkβk ∣ yk = 0 . The proposition below 

shows that the absolute difference of the expected probabilities is upper-bounded by the 

absolute difference of the expected linear components. Thus, minimizing group differences 

in expected linear components guarantees that group difference of false predictions is 

minimized.

PROPOSITION 2.1: For any 1 ⩽ j, k ⩽ K, j ≠ k, and y ∈ {0, 1} the following inequality holds:

E 1
1 + exp(−Xjβj) yj = y − E 1

1 + exp(−Xkβk)
yk = y

⩽ 1
4 E Xjβj yj = y − E Xkβk yk = y .

Proof: See Web Appendix 4.

Note that the empirical estimate of the expectation is

E Xkβk yk = y = 1
|Sky| ∑

i ∈ Sky

Xiβk,

where Sky = {i : yki = y} is a subgroup of subjects with a true response value y in group k, 

with y ∈ {0, 1}. Thus, our fairness penalty, that bridges the between-group gaps in the linear 

components of FPRk and FNRk, is defined as:

PF(β; X, y, λF) = PFPR(β; X, y, λF) + PFNR(β; X, y, λF)

= λF ∑
j < k

1
|Sj0| ∑

i ∈ Sj0

Xiβj − 1
|Sk0| ∑

i ∈ Sk0

Xiβk

+ λF ∑
j < k

1
|Sj1| ∑

i ∈ Sj1

Xiβj − 1
|Sk1| ∑

i ∈ Sk1

Xiβk

(3)
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where the summation Σj < k represents ∑k = 2
K Σj = 1

k − 1 for notational simplicity.

The similarity penalty PSim(β; λSim) is chosen to encourage similarity across the K 

parameter estimates. Here we use the generalized fused lasso penalty (Hoefling, 2010; 

Danaher et al., 2014; Dondelinger et al., 2018) defined as

PSim(β; λSim) = λSim ∑
j < k

βj − βk 1, (4)

herein referred to as the fusion-similarity penalty. The sparsity penalty PSp(β) is chosen to 

encourage sparse estimates and to avoid ill-defined maximum likelihood estimates when 

sample sizes nk < p.

PSp(β; λSp) = ∑
k = 1

K
λSpk βk 1 . (5)

In the three penalty functions, λF, λSim, and λSp are nonnegative hyperparameters. Here 

PSp(β; λSp), PF(β; X, y, λF), and PSim(β; λSim) are convex penalty functions, so that the objective 

function in equation (2) is convex in β. The proposed model jointly estimates β to achieve 

fair performance across groups, herein referred to as the joint fairness model (JFM). In 

contrast, the dominant approach for fair predictions in the current literature is to estimate 

a single set of β parameters with constraints on the quality of performance metrics across 

groups. In the context of logistic regression, Bechavod and Ligett (2017) proposed a Single 

Fairness Model (SFM) to minimize the following objective function.

minimize
β ∈ ℝp

− ∑
k = 1

K
ℓ(β; Xk, yk) + λF ∑

j < k
∑

y ∈ {0, 1}
1

|Sjy| ∑
i ∈ Sjy

Xiβ − 1
|Sky| ∑

i ∈ Sky

Xiβ + λSp ∥ β ∥1 .

In contrast to the proposed JFM, it does not allow for group-specific different βks, leading to 

two potential limitations: i) fairness is often achieved by compromising the likelihood (ℓ(β; 

Xk, yk)) of some groups; ii) inflexible model mis-specification when the βks are different.

The proposed JFM objective function improves prediction parity through three components. 

First, it considers a weighted group total likelihood to upweight the groups with smaller 

sample sizes. Second, PF(β; X, y, λF) encourages estimates that achieve fair performance 

across groups. Third, the similarity penalty term improves estimation and prediction 

efficiencies when multiple subgroups are related but not identical (Hoefling, 2010; Danaher 

et al., 2014). Computationally, we found that multiple different combinations of βk often 

result in very similar objective values; thus, the similarity term can help optimization 

algorithms for the JFM converge to one of the multiple combinations by favoring similar 

values of βk. Other formats of the similarity penalty could be used in our proposed JFM 

framework. For example, the group lasso penalty (Yuan and Lin, 2006) has been shown 

to encourage similar sparsity patterns across groups (Obozinski et al., 2010; Danaher 

et al., 2014), while the fused lasso term is more aggressive in encouraging similar 
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βk estimates. The penalty functions in (3), (4), and (5) are based on the L1 norm. 

They can be flexibly adapted to an L2 penalization or to a combination of L1 and L2 

penalizations. The differences between L1 and L2 penalties have been well discussed in the 

literature (Tibshirani, 1996; Zou and Hastie, 2005). For the fairness penalty, Bechavod and 

Ligett (2017) showed that there are no significant differences in the empirical predictive 

performances between the L1 and L2 fairness penalty forms other than the L2 form of the 

similarity penalty penalizes large differences more aggressively so that models have less 

chance to obtain group-specific estimates.

3. Accelerated Smoothing Proximal Gradient Algorithm for JFM

In this section, we introduce an accelerated smoothing proximal gradient (ASPG) algorithm 

(Chen et al., 2012) to solve Problem (2) for the JFM. The objective function of (2) is convex 

in β so that a global optimal solution can be attained. However, conventional proximal 

gradient-based or coordinate descent approaches (generally used for lasso-like methods) 

cannot be directly applied to solve Problem (2) because there is no closed-form solution for 

the proximal operator associated with PFPR and PFNR.

3.1 Nesterov smooth approximation

To overcome the difficulty originating from the non-differentiability of the fairness and 

similarity penalties, we decouple the terms into a linear combination of the decision 

variables via the dual norm and then apply the Nesterov smoothing approximation 

(Nesterov, 2005). We start with matrix representations of the fairness penalty terms 

PFPR(β; X, y, λF) = λF D0β 1 and PFNR(β; X, y, λF) = λF D1β 1, where Dy ∈ ℝK(K − 1)/2 × pK is 

defined as below. Similarly, we use the matrix representation of the similarity penalty 

PSim(β; λSim) = λSim Fβ 1 with F defined as below.

Dy =

x1y −x2y 0 ⋯ 0
⋮

0 x2y −x3y ⋯ 0
⋮

F =

Ip −Ip 0 ⋯ 0
⋮

0 Ip −Ip ⋯ 0
⋮

Here, Xky = 1
|Sky| ∑i ∈ Sky Xi is the average predictor vector for group k with true outcome y, and 

Ip is the p-dimensional identity matrix. The matrix form of the fairness penalty term and the 

similarity penalty term is therefore defined as:

PF(β; X, y, λF) + PSim(β; λSim) =
λFD0

λFD1

λSimF
β

1

= ‖DλF, λSimβ‖1 .

Thus, the objective function (2) can be written in matrix form:

minimize
β

− ∑
k = 1

K 1
nk

ℓ(βk; Xk, yk) + ‖DλF, λSimβ‖1 + ∑
k = 1

K
λSpk‖βk‖1, (6)
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where the associated proximal operator of ‖DλF, λSimβ‖1 does not have a closed form solution. 

We apply the Nesterov smooth approximation to approximate ‖DλF, λSimβ‖1 by a smooth 

function

fμ(β; λF, λSim) = sup αTDλF, λSimβ − μ
2 ∥ α ∥2

2 : ∥ α ∥∞ ⩽ 1 . (7)

Proposition A.1 in Web Appendix 1 provides the maximum gap between DλF, λSimβ 1 and its 

Nesterov approximation fμ(β; λF, λSim).

As demonstrated in Proposition A.2 in Web Appendix 1, for any μ > 0, fμ(β; λF, λSim) is 

smooth and convex with respect to β, whose gradient takes the following form:

∇fμ(β; λF, λSim) = DλF, λSim
T α∗, (8)

where α∗ = argmax{αTDλF, λSimβ − μ
2 ∥ α ∥2

2 : ∥ α ∥∞ ⩽ 1}. Moreover, the gradient is Lipschitz 

continuous with a Lipschitz constant Lμ = μ−1 DλF, λSim 2
2, where ∥ ⋅ ∥2 denotes the matrix 

spectral norm (which is equivalent to the largest singular value of the matrix). We can show 

further that α* can be calculated as α∗ = S∞(μ−1DλF, λSimβ), where S∞(·) is the projection onto 

the unit L∞ ball such that [S∞(x)]i = xiI[ − 1, 1](xi) + I(1, ∞)(xi) − I( − ∞, − 1)(xi), where I is the indicator 

function. Details are provided in Web Appendix 1.

3.2 Accelerated Smoothing Proximal Gradient Algorithm

With DλF, λSimβ 1 substituted by the Nesterov smooth approximation fμ(β; λF, λSim), problem 

(6) becomes

minimize
β

F(β) = − ∑
k = 1

K 1
nk

ℓ(βk; Xk, yk) + fμ(β; λF, λSim) + ∑
k = 1

K
λSpk βk 1, (9)

whose first two terms are convex smooth functions. Although the sparsity penalty term 

∑k λSpk βk 1 is non-differentiable, it can be managed through the proximal gradient method 

using the soft-thresholding operator S with a closed form solution (Friedman et al., 2007a).

Algorithm l presents the proposed ASPG algorithm, starting from parameter initialization, to 

gradient descent iterations with proximal and momentum steps, until convergence. Although 

Algorithm 1 minimizes the Nesterov smooth approximation, Theorem 3.1 proves that the 

solution can reach arbitrarily close to the global optimum of Problem (2).

THEOREM 3.1: Let {β(t) : t = 1, 2, ⋯} be a sequence generated by Algorithm 1. Then for any t 
⩾ 1 and desired δ > 0

F(β(t)) − F(β ∗ ∗ ) ⩽ δ + 2L β(0) − β∗
2
2

t2
,
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where β* and β** are global minimizers of Problem (9) and Problem (2), respectively and L 
is the Lipschitz constant of the function in (7).

Proof: See Web Appendix 4.

Based on Theorem 3.1, the rate of the convergence of Algorithm 1 is O pK
δ(ε − δ) , given a 

desired accuracy ε > 0. The complexity of a single iteration of Algorithm 1 is O((n+K2)pK). 

For additional details see Propositions A.4 and A.5 in Web Appendix 1. The proposed JFM 

Algorithm 1 is for the fusion-similarity term. The algorithm can be readily extended to 

include a group-similarity term as presented in Web Appendix 2.

4. Asymptotic properties of the JFM estimates

We now present asymptotic results for the JFM parameter estimates β obtained by solving 

Problem (2). We assume p remains constant and n increases to infinity.

Consider the following assumptions:

Assumption 1. ℐ(βk)/nk → Ck, where Ck is a positive definite p×p matrix, for k = 1, ⋯, K, 

where ℐ(βk) is the information matrix of size p × p. For simplicity, we assume there are no 

intercept terms in βk.

Assumption 2. As n = min
k = 1, ⋯, K

nk ∞, max
βk

ℐ(βk)
− 1

2 ℐ(βk) ℐ(βk)
− 1

2
T

− Ip

2

0, where 

ℐ(βk) is the empirical information matrix, and Ip is a p × p identity matrix.

The following theorem proves n-consistency for the estimators, complying with the fairness 

and similarity constraints between the two groups as well as the sparsity constraint. We note 

that the theorem holds even if the sample size of one group increases faster than the other 

group’s.

THEOREM 4.1: Let βk for k = 1, ⋯, K, minimize the loss function (2). If 

λF
(n)/ n λF

(0) ⩾ 0, λSim
(n) / n λSim

(0) ⩾ 0, and λSp
(n)/ n λSp

(0) ⩾ 0, then under the assumptions 1 and 

2

n β k − βk
d uk, (10)

where (u1, ⋯, uK) = argmin V(u1, ⋯, uK),

V(u1, ⋯, uK) = ∑
k = 1

K
uk

TWk + 1
2 ∑

k = 1

K
uk

TCkuk

+λF
(0) ∑

j < k
∑

y ∈ {0, 1}
T(Xjyuj − Xkyuk, Xjyβj − Xkyβk)

+λSim
(0) ∑

j < k
∑

l = 1

p
T(ujl − ukl, βjl − βkl) + λSp

(0) ∑
k = 1

K
∑

l = 1

p
T(ukl, βkl) .
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Here T(u, β) = u ⋅ sign(β) ⋅ I(β ≠ 0) + |u | ⋅ I(β = 0), and Wk ∼ Np(0, Ck), where 

Ck = lim
nk ∞

1
nk

∑i = 1
nk XkiXki

T , and 1
|Sky| ∑i ∈ Sky Xi = Xky for k = 1, ⋯, K and y = 0, 1.

Proof: See Web Appendix 4.

5. Simulation Study

We performed a series of simulations to evaluate the proposed JFM, and compared it with 

the approaches of a group-separate individual logistic regression model, a group-ignorant 

vanilla logistic regression model, and the SFM method (Bechavod and Ligett, 2017) 

implemented using an SFM-ASPG algorithm (see Web Appendix 3). When applying the 

group-separate model, regression coefficients were estimated for each group separately with 

an L1 penalty. The group-ignorant model estimates a single logistic regression with group 

membership as an additional covariate with an L1 penalty.

5.1 Simulation Setup

We consider a two-group problem (K = 2) for simplicity, with group 1 as the over-

represented group and group 2 as the under-represented group with respect to the sample 

sizes. The training samples were simulated as follows. The predictor matrix Xk was 

independently generated from a standard normal distribution. The binary outcome yki 

was then simulated from Bernoulli(πi(xki)), where πi(xki) = exp(xkiβk)
1 + exp(xkiβk)

. Out of the total 

number of features, 40% in each group had non-zero coefficients (β’s). The non-zero 

coefficients were each set to the value 3. The simulations were conducted under three 

scenarios to investigate performances at various levels of shared parameters, sample sizes 

and dimensionalities.

• Scenario 1 (Difference in True Model): The proportion of shared features 

between the two groups ranged from 0% to 100% of features with non-zero 

coefficients. The intercepts were selected so that the baseline event prevalences 

were at 30% and 50% for the under- and over-represented groups The sample 

sizes were set at 500 and 200 for group 1 and 2 respectively. The number 

of features was set to p = 100. Note that when small proportions of features 

are shared between groups, the fairness and similarity penalty terms are mis-

specified given that Xβk and βk are different between groups. As a result, 

performances in these settings allow us to investigate the robustness of the JFM 

approach to mis-specification of the fairness and similarity penalty terms.

• Scenario 2 (Difference in Sample Size): The sample size of the under-

represented group (group 2) ranged from 50 to 300 while the sample size of 

group 1 was fixed at 500. The number of features was set to p = 100. Half of the 

features with non-zero coefficients were shared between the groups.

• Scenario 3 (High Dimensionality): The number of features p ranged from 50 

to 2,000. Sample sizes were 500 and 200 for group 1 and 2 respectively. For 

each value of p, 40 features had non-zero coefficients, with half of the non-zero 

features being shared.
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We evaluated the methods on independent test datasets with large sample sizes (n = 

1,000 for both groups) under the same simulation setups. The Area under the Receiver 

Operating Characteristic curve (AUC) was used to assess the predictive ability of each 

model. Prediction unfairness was assessed by the group difference in AUCs. In addition, 

Mean Squared Errors (MSEs) for all βs were examined to assess parameter estimation 

performance, and TPRs of the associated features and TNRs of the non-associated features 

were used to assess variable selection performance. Medians and interquartile ranges (IQRs) 

of the assessment metrics were generated from 20 replicates for each experiment. Predictive 

performances and their unfairness in terms of FPR and FNR were calculated with a 

predicted probability cutoff of 0.5, as presented in Web Appendix 8. We present additional 

simulation scenarios in Web Appendix 9.

5.2 Choice of the Hyperparameters

The group-ignorant model, group-separate model, SFM, and JFM contain 1, K, 2, and K + 

2 hyperparameters respectively. For every method, five-fold cross-validation on the training 

dataset was used to determine the hyperparameters. For the vanilla models (group-separate 

and group-ignorant), the lasso penalty term was selected by optimizing cross-validation 

AUCs. For the fairness-aware models (SFM and JFM), we investigated and compared 

a series of evaluation metrics for selecting hyperparameters using cross-validation. The 

metrics include overall AUCs and Brier scores (defined as ∑(pki − yki)2) on all samples 

(ignoring group memberships), group average of AUCs or Brier scores, and the group 

average of AUCs or Brier scores subtracting their disparities. Web Appendix 7, Web Figures 

2, 3, and 4 demonstrate the empirical performance of the hyperparameters selected by 

the various strategies in the test datasets for the simulation scenarios. In summary, we 

find that the hyperparameters optimizing cross-validated group-average metrics showed 

better performance than sample-average or average metrics subtracting disparities. The 

hyperparameters optimizing AUCs in general generated the best AUC performances, while 

the hyperparameters optimizing Brier scores generated the best MSEs from the perspective 

of parameter estimation. We find that both are better empirically than threshold-based 

metrics such as classification accuracy. Lastly, the group average calculated by the harmonic 

mean is more robust than the arithmetic mean when the group sample sizes are unbalanced.

5.3 Simulation Results

For Scenario 1, Figure 1(a) displays the estimated AUC for the under-represented group 

versus the proportion of shared features in the two groups. The AUCs of the under-

represented group from the JFM, SFM, and group-ignorant models improved as the 

proportion of shared features increased. The SFM and group-ignorant models were highly 

sensitive to the percentage of shared non-zero features as they both estimate a single set 

of parameters for both groups. In contrast, the JFM showed consistently higher AUC than 

the other three methods. When the proportion of shared features is high, the JFM estimated 

higher AUCs and smaller variances than those from the group-separate model. The JFM’s 

overall AUC performance was similar to that of the SFM and the group-ignorant model. 

When the proportion of shared features is low, the JFM estimated higher AUCs than the 

SFM and the group-ignorant model, and showed similar AUC to the group-separate model. 
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Figure 1(b) displays the estimated AUC for the majority group against the proportion of 

shared features in the two groups. The JFM was robust in achieving comparable AUC to 

that of the group-separate model. The SFM and group-ignorant models were highly sensitive 

to the percentage of shared features for the majority group, with lower AUCs when the 

proportion of shared parameters is low.

Figure 1(c) displays the estimated overall AUCs, and Figure 1(d) displays the group 

disparity of the AUCs from the four approaches. In particular, although both the SFM and 

JFM achieved smaller disparities than the group-ignorant model in Figure 1(d), Figure 1(a–

b) underscores the limitation of the SFM with no flexibility of group-specific parameters. 

When the true models of the two groups are different, the SFM often achieved better 

parity by compromising the performance for the majority group. These figures together 

demonstrate that the JFM achieves fair prediction performance robustly across the range of 

possible proportions of shared features between groups, by training the classifiers jointly 

with a flexible parameterization. Web Figure 5(a) through 5(d) compares the average of 

prediction TPR and TNR and disparity in TPR and TNR differences of the four methods. 

The patterns are similar to those observed for AUCs. Coefficient MSEs are presented in 

Figure 4(a–b) for the minority and majority groups respectively. Under varying proportions 

of the shared parameters, JFM achieves the smallest MSEs across different methods for 

the minority group and similar MSEs to the group-separate model for the majority group, 

demonstrating its improvement for parameter estimation especially for the minority group. 

Web Figure 14(a) through 14(f) compares the variable selection TPRs and TNRs of the four 

methods. The patterns are similar to MSEs.

Figure 2 displays the performance of the four methods as a function of the sample size 

of the under-represented group, with other settings fixed. In Figure 2(a), the AUCs of the 

under-represented group from all models improved as sample size of that group increased. 

The JFM showed consistently higher AUCs and smaller variances than those from all the 

other models. JFM outperforms the other models the most when the minority group’s 

sample size is small, showing the benefits of borrowing information between groups in 

situations with unbalanced sample sizes. Figure 2(b) illustrates that the AUC of the majority 

group was not impacted for the JFM and group-separate methods. However, the AUC of the 

majority group decreased as the sample size of the under-represented group increased for the 

SFM and the group-ignorant models. This decrease highlights an undesirable aspect of these 

two methods, namely, they compromise accuracy by estimating a single set of classifier 

parameters. Figure 2(c) and 2(d) illustrates that the JFM achieves overall satisfactory AUCs 

and parity between groups across varying sample sizes of the under-represented group. Web 

Figure 6 compares the average of TPR and TNR and disparity of TPR and TNR of the four 

methods. In addition, the JFM substantially reduced coefficient MSEs (Figure 4(c)) under 

all simulated sample sizes for the minority group compared to all competing methods. The 

MSEs were similar between the JFM and the group separate model for the majority group, 

and both were lower than the MSEs of the group ignorant and SFM models.

Figure 3 displays the performance of the four methods while varying the number of 

features from 200 to 2000, and holding the number of associated features constant at 40. It 

demonstrates that the JFM method in going from low dimensional to high dimensional 
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settings can maintain overall satisfactory prediction performances and parity between 

groups. Web Figure 11 displays the performance of the four methods while varying the 

number of features from 200 to 2000, and setting the number of associated features to 

a fixed proportion of the total number of features. The resultant patterns are similar to 

Figure 3. The JFM consistently had the smallest MSEs under all simulated numbers of 

covariates for both the minority and majority groups. In particular, the JFM showed the 

largest reduction of MSEs with small number of covariates.

We investigated the empirical computational complexity of the JFM approach as a function 

of increasing numbers of features and sample sizes in Web Appendix 3. Web Figure 1 

shows that the JFM computation time is approximately O(p1.5) and O(n). This matches our 

theoretical analysis on complexity since the per-iteration complexity is O(np) and the rate 

of convergence is O(p0.5). Details are presented in Web Appendix 6. We also implemented 

an alternative JFM algorithm using a group lasso similarity penalty (referred to as JFM-

Group, Web Figure 15), and compared its performance with JFM-Fusion (presented above). 

The results showed largely similar performances. The JFM-Fusion showed slightly better 

predictive performance than the JFM-Group when the two groups share more than 80% 

of the features, which is in line with previous reports that the fusion penalty term more 

aggressively enforces similarities across groups (Yuan and Lin, 2006; Obozinski et al., 2010; 

Danaher et al., 2014).

6. COVID-19 Risk Prediction Case Study

We applied the JFM, in comparison with other methods, to predict mortality related 

to COVID-19 from patients’ routine ambulatory encounters and laboratory records prior 

to COVID-19 infection, with the goal of better stratification of patient risk for clinical 

management. We used a retrospective EHR dataset of 11,594 patients of age 50+ with 

laboratory-confirmed COVID-19 at New York University Langone Health (NYULH) 

from March 2020 to February 2021. Among the 11,594 patients, 1,242 (10.7%) died 

of COVID-19. The patients were divided into four groups by their age at the time of 

COVID-19 diagnosis: 50-64, 6574, 75-84, and 85+ with 5, 905 (50.9%), 2, 946 (25.4%), 

1, 814 (15.6%), and 929 (8.0%) patients, respectively. The observed mortality rates were 

4.44%, 11.17%, 18.96% and 33.05%, respectively. Candidate features (p = 82) included 

demographic variables, such as age, sex, race/ethnicity, smoking status, body mass index 

(BMI); common chronic disease history such as diabetes, dementia, chronic kidney diseases 

(CKD); Myocardial Infarction (MI) & Atrial Fibrillation (AF); and routinely collected 

laboratory markers, such as lipid panels, blood panels, albumin, creatinine, aspartate 

aminotransferase (AST) etc. obtained from patients routine ambulatory histories before 

their COVID-19 infections. To build the prediction models, we randomly split the dataset 

into training (n = 8, 115, 70%) and testing (n = 3, 479, 30%) sets. We first standardized 

all features to zero-mean and unit variance. Five-fold cross-validation was conducted on 

the training set to determine the hyperparameters for each model. Hyperparameters for the 

group-separate and group-ignorant models were selected to maximize the groupwise AUCs 

and the overall AUC, respectively, while those for the SFM and JFM were determined 

to maximize the harmonic mean of groupwise AUCs. Subsequently, we trained the final 

models with the optimal hyperparameters using the entire training set and applied the final 
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models to the testing dataset to demonstrate their predictive performance. We repeated 

the training/testing split 10 times and averaged the performances across the 10 splits. 

Table 1 presents the AUCs and the averages of TPR and TNR of the four methods 

for each age group. The JFM performed better across all age groups than the separate 

model did, demonstrating that joint modeling yields higher efficiency. Compared with 

the group ignorant model, the JFM performed better in the three older age groups, with 

comparable AUC for the 50-64 age group, which resulted in smaller disparities in prediction 

performance overall. This phenomenon supports the observed pattern in simulation studies 

that the JFM reduced disparities in prediction performances without impacting those from 

the majority groups. In contrast, the SFM tended to reduce prediction disparities by lowering 

the performances for the majority groups. Figure 5 presents the boxplots of odds ratios 

(ORs) of selected demographic and clinical features estimated by the JFM. These results 

support the hypothesis that some features have common associations between groups, and 

some have group-specific ORs. For example, the decreasing OR estimates of BMI along 

age-groups confirmed the prior hypothesis that the association between BMI and COVID-19 

mortality is heterogeneous between age-groups. In the JFM estimates, BMI is positively 

associated with higher risks of COVID-19 mortality for patients younger than 75, but with 

smaller and even reversed ORs in the oldest age groups. For older adults, higher BMIs are 

often associated with greater energy stores and a better nutritional state overall, which is 

beneficial for patients’ survival outcomes when infected by COVID-19. The proportion of 

underweight patients (BMI<18) increased from 0.6% in the age group 50-64 to 5.5% in 

the age group 85+. The underweight status, often a proxy of frailness, has been repeatedly 

reported as a strong risk factor of COVID-19-induced multi-organ failure and mortality in 

older patients (Tehrani et al., 2021). On the other hand, the JFM can improve efficiencies 

for covariates with rare prevalence in a subgroup. For instance, dementia has been reported 

as a risk factor with COVID-19 mortality. In the group-separate model, dementia was 

insignificant in patients aged 50-64, mainly due to its low prevalence in this group (0.6%). In 

contrast, dementia was significantly associated with mortality in all age groups with similar 

ORs in the JFM estimates.

7. Conclusions and Discussion

In this study we introduced a joint fairness model for jointly estimating sparse parameters, 

on the basis of observations drawn from distinct but related groups, with the goal of 

achieving fair performances across groups. We employ an efficient accelerated smoothing 

proximal gradient algorithm to solve the joint fair objective function, which has convex 

penalty functions. Our algorithm is computationally tractable for high-dimensional datasets. 

Further, we presented the asymptotic distributions of βk. Our JFM predictions outperform 

competing approaches over a range of simulations and in an example application dataset.

We note that the JFM relies on separate hyperparameters (K + 2 hyperparameters) to control 

sparsity, fairness and similarity. This reliance can be viewed as a strength rather than a 

drawback because one can vary separately the amount of similarity, sparsity and fairness to 

enforce in the group-specific estimates. In situations with many groups, further assumptions 
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can be made to reduce the number of sparsity hyperparameters (i.e. λSpk = ckλSp). Possible 

choices of ck include 1
nk

 so that sparsity is inversely proportional to the number of samples.

While nearly all existing fairness-aware prediction approaches estimate a single set of 

classifier parameters, one exception is a recent study that proposes using multi-task learning 

(MTL) to improve algorithm fairness (Oneto et al., 2019). However, MTL research focuses 

on joint architecture, optimization, and task relationship learning, which is a different 

emphasis from the proposed JFM approach to improve risk prediction performance for 

underrepresented populations.

Theorem 4.1 established consistency of the JFM estimators. Its asymptotic distribution 

needs to be further investigated to lay the foundation of its inference. Moving forward, 

the proposed JFM framework can be extended for time-to-event outcomes by using similar 

constraints to those proposed here. It can also in principle be extended to non-linear models 

by adding a suitable fairness penalty term to the objective function.

Given the increasing ability to subclassify diseases according to their molecular features 

and the recognition that substantial heterogeneity exists in many molecular subtypes, most 

diseases will be eventually classified into a collection of multiple subtypes with unbalanced 

sample sizes. Therefore, the proposed JFM has wide application potential to improve 

prediction efficiencies and reduce subgroup prediction disparities beyond applications 

addressing gender, race/ethnicity and age disparities.

A Python package implementing the JFM is available at https://github.com/hyungrok-do/

joint-fairness-model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Data Availability Statement

The data that support the findings in this paper are available on request from the 

corresponding author. The data are not publicly available due to privacy or ethical 

restrictions.
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Figure 1: 
Experimental Results for Scenario 1
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Figure 2: 
Experimental Results for Scenario 2
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Figure 3: 
Experimental Results for Scenario 3
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Figure 4: 
Coefficients MSEs for Scenario 1 – 3
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Figure 5: 
Estimated Odds Ratios for COVID-19 Dataset
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Algorithm 1

Accelerated Smoothing Proximal Gradient (ASPG) Algorithm for the JFM

1: Input: Data Xk, yk for k = 1 … K, hyperparameters λF, λSim, λSp, ϵ, μ

2: Output:β = (β1, ⋯, βK) solving the joint fairness objective function (2).

3: Initialize:β(0) = 0, γ(0) = 0, s(0) = 1

4: L = 1
4  max {λmax(XkTXk) : k = 1, ⋯, K} + μ−1 DλF, λSim 2

2

5: fort ⩾ 1 do

6:   α(t) = γ(t−1) − L−1 (−∇ℓ (γ(t−1))) + ∇fμ (γ(t−1)))

7:   β(t) = S (α(t); L−1λSp)

8:   if ‖β(t) − β(t−1)‖2 ⩽ ϵ

9:   s(t) = 1+ 1 + 4s(t − 1)2

2

10:   γ(t) = β(t) + s(t − 1) − 1
s(t) β(t) − β(t − 1)

11:   t ← t + 1

12: end for

13: β  ← β(t).

Biometrics. Author manuscript; available in PMC 2023 June 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Do et al. Page 24

Table 1:

Predictive Performance on COVID-19 Case Study

Models
AUCs Average of TPR and TNR

50-64 65-74 75-84 Over 85 50-64 65-74 75-84 Over 85

Group-separate 0.838 0.773 0.709 0.649 0.780 0.722 0.669 0.632

Group-ignorant 0.855 0.786 0.735 0.659 0.803 0.731 0.687 0.639

SFM 0.847 0.774 0.728 0.660 0.791 0.724 0.688 0.640

JFM 0.852 0.791 0.736 0.672 0.794 0.731 0.690 0.659
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