Skip to main content
. 2022 Jul 27;7:863126. doi: 10.3389/frma.2022.863126

Table 22.

Research topic prediction based on term frequency using the selected Weka algorithm.

Rank Term Observed Term Observed Term Predicted Term Observed
2018 2019 2020 2020
1 DATASET 0.019411 Dataset 0.019293 Embedding 0.020756 Dataset 0.020833
2 EMBEDDING 0.012028 Embedding 0.018099 Dataset 0.017509 Embedding 0.015237
3 ANNOTATION 0.008888 Encoder 0.009572 Encoder 0.011884 BERT 0.01076
4 LSTM 0.008571 LSTM 0.008271 BERT 0.008609 Annotation 0.009168
5 DNN 0.006005 Decoder 0.007093 Decoder 0.008261 Encoder 0.009156
6 SR 0.005689 LM 0.006079 Classifier 0.007376 LM 0.006342
7 RNN 0.005585 Metric 0.005929 LM 0.006825 Transformer 0.006299
8 Encoder 0.005373 BERT 0.005745 Metric 0.006738 SR 0.006232
9 Classifier 0.005365 SR 0.005388 LSTM 0.006276 Metric 0.00604
10 Neural network 0.005334 Annotation 0.005326 Transformer 0.004887 LSTM 0.005866

Predictions are marked in green.