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Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission
chain of COVID-19 disease. Recent research uses the deep convolution neural network (DCNN) as the discoverer or classifier of
COVID-19 X-ray images. (e most challenging part of neural networks is the subject of their training. Descent-based (GDB)
algorithms have long been used to train fullymconnected layer (FCL) at DCNN. Despite the ability of GDBs to run and converge
quickly in some applications, their disadvantage is the manual adjustment of many parameters. (erefore, it is not easy to
parallelize them with graphics processing units (GPUs). (erefore, in this paper, the whale optimization algorithm (WOA)
evolved by a fuzzy system called FuzzyWOA is proposed for DCNN training. With accurate and appropriate tuning of WOA’s
control parameters, the fuzzy system defines the boundary between the exploration and extraction phases in the search space. It
causes the development and upgrade of WOA. To evaluate the performance and capability of the proposed DCNN-FuzzyWOA
model, a publicly available database called COVID-Xray-5k is used. DCNN-PSO, DCNN-GA, and LeNet-5 benchmark models
are used for fair comparisons. Comparative parameters include accuracy, processing time, standard deviation (STD), curves of
ROC and precision-recall, and F1-Score. (e results showed that the FuzzyWOA training algorithm with 20 epochs was able to
achieve 100% accuracy, at a processing time of 880.44 s with an F1-Score equal to 100%. Structurally, the i-6c-2s-12c-2s model
achieved better results than the i-8c-2s-16c-2s model. However, the results of using FuzzyWOA for both models have been very
encouraging compared to particle swarm optimization, genetic algorithm, and LeNet-5 methods.

1. Introduction

COVID-19 was initially designated an epidemic disease by
the World Health Organization (WHO) in March 2020 [1].
Due to the increasing number of deaths, the spread of the
disease, the lack of access to vaccines and particular drugs,
and rapid diagnosis of the disease to break, the transmission
chain has become one of the most important research topics
for researchers. Polymerase chain reaction (PCR) test [2]
and X-ray images [3] are standard methods in detecting

COVID-19. One of the problems of PCR tests is that there
are not enough kits and also it takes a relatively long time to
answer the test. In addition to being affordable, X-ray images
are always and everywhere available. Reducing the time to
diagnose and detect positive cases, even without fever and
cough symptoms, are other benefits of using X-ray images
[4]. AI tools can increase processing time and high accuracy
in detecting patients with COVID-19 [5]. Much research has
been done to identify positive cases of COVID-19 [3, 6].
However, until COVID-19 disease is completely eradicated,
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the need to research and discover new, fast, low-cost, and
accurate techniques is acute. DL is one of the AI techniques
for detecting positive cases of COVID-19 [7]. Training is the
most challenging part of DL. Examples of algorithms used
for DL training are conjugate gradient (CG) algorithm [8],
Krylov subspace descent (KSD) algorithm [9], and Hessian-
free optimization (HFO) approach [10].

While stochastic GDB training methods are simple to
construct and run quickly in the producer for large numbers
of training samples, GDB approaches require extensive
manual parameter adjustment for optimal performance.
(eir structure is sequential and leads to parallelizing them
with GPU become challenging. On the other hand, though
CGmethods are stable for training, they are almost slow lead
to needing multiple CPUs and a lot of RAMs resource [8].
Deep auto-encoders used HFO to train the weights of
standard CNNs, which performs better than Hinton and
Salakhutdinov’s approach for pretraining and fine-tuning
deep auto-encoders [11]. In addition, HFO is weaker than
KSD and more complex. In terms of the amount of memory
required, HFO requires less memory than KSD. KSD op-
timization and classification speeds also work better [9].
Recent years have seen the employment of metaheuristic and
evolutionary algorithms to solve and optimize real-world
problems [12–14]. Despite this, research on optimizing DL
training needs to be given more attention. Optimization
based on metaheuristic algorithms with a hybrid genetic
algorithm and DCNN is the beginning of this field study
[15]. (is model determines the DCNN parameters through
GA’s crossover and mutation processes, with the DCNN
structure modeled as a chromosome in GA. Alternatively,
only the weights and biases of the first convolution layer (C1)
and the third convolution layer (C3) are used as chromo-
somes during the crossover step. In [16], they present an
evolutionary method for fine-tuning the parameters of a
DCNN by utilizing the Harmony Search (HS) algorithm and
several of its improved variants for handwritten field digit
and fingerprint detection. In [17], researchers will develop a
hybrid deep neural network (DNN), using computed to-
mography (CT) and X-ray imaging, to predict the risk of
COVID-19-related disease onset. In [18], a new method of
diagnosing COVID-19 based on chest X-ray images using
artificial intelligence is proposed. In comparison to the state-
of-the-art techniques currently used, the proposed method
will demonstrate outstanding performance.

In [19], the progressive unsupervised learning (PAUL)
algorithm is used for DCNN training. PUL is the easiest way
to implement. (erefore, it is considered a primary
benchmark for unsupervised feature learning. Due to the
fact that clustering data sets might be difficult to categorize,
PUL initially inserts a selection stage between the clustering
and fine-tuning stages. In [20], an approach for automati-
cally building DCNN architectures on the basis of GA is
suggested for optimizing image classification. (e lack of
knowledge about the structure of DCNN is the most crucial
feature of this method. In contrast, the presence of large
DCNNs causes chromosomes to grow, thus slowing down
the algorithm. Due to the faults described, our proposed
strategy comprises training a DCNN model on Data 1 to

identify positive and negative cases of COVID-19 samples
using X-ray pictures. Following that, the previously trained
DCNN’s FCL will be replaced with the new FCL, which has
been tuning using the whale optimization algorithm, and
employs fuzzy logic to adjust its control parameters for
better WOA development and performance. (e name of
the proposed algorithm is called FuzzyWOA. (erefore, in
this article, our main motivation is to investigate the impact
of FuzzyWOA on improving DCNN performance. Our
main contribution in this paper is to improve WOA per-
formance by designing and applying a fuzzy system to
balance the exploration and extraction boundaries in the
search space for automatic detection of COVID-19 using
X-ray images. In this regard, for a fairer comparison, in
addition to FuzzyWOA, PSO, GA, and LeNet-5 are used for
two DCNN models with different structures in order to
automatically detect COVID-19 cases. Of course, it should
be noted that various metaheuristic methods have been used
to train the neural network, such as sine-cosine algorithm
[21], Salp swarm algorithm [22], best-mass gravitational
search algorithm [23], particle swarm optimizer [24], bio-
geography-based optimization [25], dragonfly algorithm
[26], and chimp optimization algorithm [27]. But the
common problem of these algorithms that leads to ineffi-
ciency in some problems is the lack of detection of two
phases of exploration and extraction. One of the advantages
of using FuzzyWOA is establishing a correct trade-off be-
tween the two phases of exploration and extraction in the
algorithm’s search space. Other disadvantages of using some
high metaheuristic methods include being stuck in local
optimizations, low convergence speed, high complexity,
increasing the number of control parameters, and so on. For
this reason, it seems necessary to use an algorithm that
performs better in less time. Improvements to FuzzyWOA
have eliminated all of these drawbacks. Following that, the
other connection weights are kept in the residual layers of
the pretrained DCNN, resulting in the training of a linear
structure using the characteristics of the final layer.

2. Materials and Methods

(is section consists of four subsections. (e first subsection
first introduces WOA and then describes the proposed
FuzzyWOA algorithm.(e second subsection deals with the
DCCN model. (e third subsection is about the COVID
X-ray database, and the fourth subsection describes the
methodology.

2.1. FuzzyWOA. First, the WOA mathematical model is
explained, and then how to use fuzzy logic to develop the
algorithm.

2.1.1. WOA. (e WOA optimization algorithm was intro-
duced in 2016, inspired by the way whales were hunted by
Mirjalili and Lewis [28]. WOA begins with a collection of
randomly generated solutions. Each iteration, the search
agents update their location by using three operators:
encircling prey, bubble-net assault (extraction phase), and
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bait search (exploration phase). Whales discover and en-
circle prey. (e WOA assumes that the best solution right
now his prey. (at once best search agent has been rec-
ognized, all other search agents’ locations will be updated to
point to the best search agent. (is behavior is expressed by
the following equations:

D
→

� C
→

.X
∗��→
(t) − X

→
(t)|,

 (1)

X
→

(t + 1) � X
∗��→
(t) − A

→
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, (2)

where t is the current iteration, A
→

and C
→

are the coefficient

vectors, (X∗
��→

) is the place vector is the best solution so far,
and X

→
is the place vector. In each iteration of the algorithm,

(X∗
��→

) should be updated if a better answer is reached. (e
vectors A

→
and C

→
are obtained using the following equations:

A
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→

� 2. r
→

, (4)

where α→ decreases linearly from 2 to zero during repetitions
and r

→ is a random vector in the distance [0, 1]. (e whale
uses the bubble-net assault strategy to swim simultaneously
around its target and along a contraction circle in a spiral
pattern. To describe this concurrent behavior, it is antici-
pated that the whale would change its location during op-
timization via one of the contractile siege mechanisms or the
spiral model with a 50% probability. Equation (5) defines the
mathematical model for this phase.

X
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bi
.cos(2πl)if p≥0.5, (5)

where D
→

is obtained from equation (6) and refers to the
distance i from the whale to the prey (the best solution ever
obtained). A constant b is used to specify the geometry of the
logarithmic helix, and l is a random value between −1 and 1.
p is a nonzero integer between 0 and 1. Vector A is used with
random values between −1 and 1 to bring search agents
closer to the reference whale. In the search for prey to update
the search agent’s position, random agent selection is used
instead of using the best search agent’s data. (e mathe-
matical model is in the form of the following equations:
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Xran d

�����→
is the randomly chosen position vector (random

whale) for the current population, and vector A
→

is utilized
with random values larger or equal to one to drive the search
agent away from the reference whale [29].

2.1.2. Proposed Fuzzy Logic for Tuning Control Parameters.
(e proposed fuzzy model receives the normalized per-
formance of each whale in the population (normalized

fitness value) and the current values of the parameters α→ and
C
→
. (e output also shows the amount of change using the

symbols Δα and ΔC. (e NFV value for each whale is
obtained by equation (8).

NFV �
fitness − fitnessmin

fitnessmin − fitnessmax
. (8)

(e NFV value is in the range of [0.1]. (is paper’s
optimization problem is of the minimization type, in which
the fitness of each whale is obtained directly by the optimal
amount of these functions. Equations (9) updating the
parameters α→ and C

→
for each whale are as follows:

α→t+1
� α→t

+ Δα

C
→t+1

� C
→t

+ ΔC.

(9)

(e fuzzy system is responsible for updating the
parameters α→ and C

→
of each member of the population

(whale), and the three inputs of this system are the
current value of parameters α→, C

→
, and NFV. Initially,

these values are “fuzzification” by membership functions.
(en their membership value is obtained using μ. (ese
values are applicable to a set of rules and result in the
values ∆α and ∆C. Following the determination of these
values, the “defuzzification” technique is used to ap-
proximate the numerical values ∆α and ∆C. Finally, these
values are applied in equations (9) and (10) to update the
parameters ∆α and ∆C. (e fuzzy system used in this
article is of the Mamdani type (see Table 1). (e suggested
fuzzy model and membership functions used to update
the whale algorithm’s control parameters are shown in
Figure 1.

2.2. Convolutional Neural Network. DCNNs are very sim-
ilar to multilayer perceptron neural networks [30]. (ese
networks are built on the basis of three principles: weight
sharing between connections, local receive fields, and
temporal/spatial subsampling [31, 32]. (e principles
discussed above may be classified into two types of layers:
subsampling layers and convolution layers. (ree con-
volution layers C1, C3, and C5, positioned between layers
S2 and S4, and a final output layer F6 comprise the
processing layers (as shown in Figure 2). Feature maps are
used to arrange these subsampling and convolution layers.
In the last layer, neurons in the convolution layer are
connected to a local receptive field.(us, neurons with the
same feature maps (FMs) receive data from different input
regions until the input is wholly skimmed to share
identical weights. (e FMs are spatially downsampled by a
factor of two in the subsampling layer. For example, in
subsequent layer S4, FM of size 10 ×10 is subsampled to
conforming FM of size 5 × 5. (e last layer is responsible
for categorization (F6). Each FM in this structure is the
result of convolution between the maps of the previous
layer and their respective kernel and a linear filter. (e
weights wk and adding bias bk produce the k

th (FM) FMk
ij

using the tanh function as equation (10).
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FM
k
ij � tanh W

k
× x 

ij
+ bk . (10)

By lowering the resolution of FMs, the subsampling layer
achieves spatial invariance, in which each pooled FM cor-
responds to a single FM in the previous layer. Equation (11)
is defined as the subsampling function.

αj � tanh β 
N×N

αn×n
i + b⎛⎝ ⎞⎠. (11)

where αn×n
i denotes the inputs and β and b, respectively,

denote the trainable scalar and bias. After many convolution
and subsampling layers, the final layer is a completely linked
structure that carries out the classification process. Each
output class has its own neuron. As a result, in the COVID-
19 data set, this layer comprises two neurons for each of its
classes.

2.3. Data set. (e database used with the name COVID-X-
ray-5k consists of 2084 tutorials and 3100 test images [33]. In
thisdata set, since lateral images arenot suitable for identifying
the target and according to the radiologist’s recommenda-
tions, anterior-posterior COVID-19 X-ray images have been
used. Radiologists evaluate data set images, and items that do
not have exact COVID-19 symptoms are removed.Out of 203
images, 19 images will be deleted, and 184 images with clear
signs of COVID-19 will remain. By doing the job in this
manner, the community was introduced, as well as a more
clearly labeled data set. Of the remaining images, 184 images
were used, 100 images were used for network testing, and 84
images were used for network training. Using data aug-
mentation, we increase the number of COVID-19 samples to
420 samples.Due to the small amountofnon-COVIDpictures
in the COVID-chest ray-data set [34], the supplemental
ChexPert data set [35] was used.(is data set contains 224316
chest X-ray images from 65240 individuals. Totally, 2000
images from the non-COVID-19 data set are used for the
training set, and 3000 images are used for the test set. Table 2

summarizes the total number of photos utilized across all
classes (see Table 2 and Figure 3).

Figure 3 illustrates two picture samples from COVID-19
and four standard image samples randomly picked from the
COVID-X-ray-5k data set.

2.4. Methodology

2.4.1. Presentation of Whales. Two fundamental concepts
govern the tuning of deep artificial neural networks: to
begin, the structure’s parameters must be accurately rep-
resented by a FuzzyWOA (candid solution); next, the fitness
function must be defined in terms of the problem at hand.
(e use of FuzzyWOA in DCNN tuning is a distinct phase in
the presentation of network parameters. (erefore, to achieve
the highest and highest detection accuracy, the essential pa-
rameters in DCNN, i.e., weights and FCL, must be clearly
defined. In general, FuzzyWOA optimizes the weights and
biases used to compute the loss function as the fitness function
in thefinal layer. Inotherwords,whales areused inFuzzyWOA
as the last layer’s weight and bias values. (ree main ways are
available for representing the weights and biases of aDCNN as
frank solutions of ametaheuristic algorithm: based on vectors,
matrices, or binary states [26]. Since FuzzyWOA requires a
vector-basedmodel’s parameters, this paper uses equation (12)
for the candidate solution.

Whales � W11.W12. . . . .Wnh.b1. . . . .bh.M11. . . . .Mhm ,

(12)

where n denotes the number of input nodes, Wij denotes the
weight of the connection between the ith input node and the
jth hidden neuron, bj denotes the bias of the jth hidden
neuron, and Mjo denotes the weight of the connection
between the jth hidden neuron and the oth output neuron.
As indicated in Section 2.2, the suggested design is a
straightforward LeNet-5 framework. Two structures are
utilized in this section: i-6c-2s-12c-2s and i-8c-2s-16c-2s,
where C and S denote convolution and subsampling layers,
respectively. All convolution layers have a kernel size of
5× 5, and the scale of subsampling is downsampled by a
factor of two.

2.5. Loss Function. In designing and proposing the proposed
metaheuristic optimizer (DCNN-FuzzyWOA), the task of
DCNN training is the responsibility of FuzzyWOA. (e
purpose of optimization is to obtain the best accuracy,
minimizing classification error and network complexity.(is
target may be calculated using either the whales’ loss function
or the classification procedure’s mean square error (MSE). As
a result, the lost function is defined as equation (13).

y �
1
2

�����������


N
i�0 (o − d)

2

N



, (13)

where o denotes the computed output, d is the desired
output, and N denotes the training sample count. Two

Table 1: Applied fuzzy rules.

If (NFV is low) and ( α→ is low), then (Δα is ZE)
If (NFV is low) and ( α→ is medium), then (Δα is NE)
If (NFV is low) and ( α→ is high), then (Δα is NE)
If (NFV is medium) and ( α→ is low), then (Δα is PO)
If (NFV is medium) and ( α→ is medium), then (Δα is ZE)
If (NFV is medium) and ( α→ is high), then (Δα is NE)
If (NFV is high) and ( α→ is low), then (Δα is PO)
If (NFV is high) and ( α→ is medium), then (Δα is ZE)
If (NFV is high) and ( α→ is high), then (Δα is NE)
If (NFV is low) and (C

→
is low), then (ΔC is PO)

If (NFV is low) and (C
→

is medium), then (ΔC is PO)
If (NFV is low) and (C

→
is high), then (ΔC is ZE)

If (NFV is medium) and (C
→

is low), then (ΔC is PO)
If (NFV is medium) and (C

→
is medium), then (ΔC is ZE)

If (NFV is medium) and (C
→

is high), then (ΔC is NE)
If (NFV is high) and (C

→
is low), then (ΔC is PO)

If (NFV is high) and (C
→

is medium), then (ΔC is ZE)
If (NFV is high) and (C

→
is high), then (ΔC is NE)
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conditions are defined to terminate FuzzyWOA, including
reaching maximum iteration or predefined loss function.

3. Results and Discussion

As mentioned in the previous sections, this paper attempts
to improve the classic DCNN-FuzzyWOA classifier’s

accuracy by proposing and designing a fuzzy system to
adjust the WOA control parameters. For the DCNN-Fuz-
zyWOA simulation, the population size and maximum it-
eration are 15. In DCNN, the batch size is 100, and the
learning rate is 1. Additionally, the number of epochs ex-
amined for each assessment ranges between 1 and 20. (e
test was conducted in MATLAB-R2020a on a PC equipped
with an Intel Core i7-2630QM CPU and 6GB of RAM
running Windows 7, with six distinct runtimes. According
to reference [20], the accuracy rate cannot provide sufficient
information about the detector’s effectiveness.

(e suggested classifier’s effectiveness in all samples was
shown using receiver operating characteristic (ROC) curves.
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Figure 1: A proposed fuzzy model for setting parameters α→ and C
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84
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2
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Sub-Sampling

Full Connection
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Figure 2: (e LeNet-5 DCNN’s architecture.

Table 2: (e COVID data set’s image categories [33].

Category COVID-19 Normal
Training set 84 (420 after augmentation) 2000
Test set 100 3000
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As a result, each sample is assigned an estimated probability
of images PT. Following that, a threshold value T∈ [0.1]was
added. (us, the detection rate was determined for each
value. (us, the obtained values were presented as a receiver
operating characteristic (ROC) curve. In general, the con-
cept of ROC diagram curves can be interpreted so that the
larger the area under the diagram (AUC), the greater the
probability of detection. Figure 4 shows the result of the
ROC curve in the use of DCNN-FuzzyWOA to detect
COVID-19. Also, in order to be able to make a fair com-
parison, a simple DCNN has been used to detect COVID-19.
(is comparison is made because the test data set, the initial

values of the parameters, and the simple CNN structure, i.e.,
LeNet-5 DCNN, are entirely the same. According to what
has been said, the competence and efficiency of DVNN-
FuzzyWOA can be considered fair. On the test data set, the
ROC curves demonstrate that DCNN-FuzzyWOA beats
LeNet-5 DCNN considerably (Figure 4).

(e suggested approach was implemented and executed
10 times, with a total training duration of between 4.5 and
11.5 minutes. (e proposed classifier (DCNN-FuzzyWOA)
for the COVID-19 validation set has a detection power
between 99.01% and 100%. Due to the wide range of possible
outcomes, the 10 trained DCNN-FuzzyWOA models are
ensembled using weighted averaging with validation accu-
racy as the weights. (e DCNN-FuzzyWOA classifier ob-
tains a validation accuracy of 99.27 percent, while the LeNet-
5 DCNN classifier achieves a detection accuracy of between
75.08 and 83.98 percent. (e resultant ensemble achieves an
86.91 percent detection accuracy on the COVID-19 vali-
dation data set. New benchmark models including LeNet-5
DCNN [36], DCNN-GA [20], and DCNN-PSO [37] have
been used to prove the efficiency and performance of
DCNN-FuzzyWOA in detecting positive and negative cases
of COVID-19. (e ROC and precision-recall curves for the
i-6c-2s-12c-2s and i-8c-2s-16c-2s structures are shown in
Figures 5 and 6, respectively. (e simulation results show
that the DCNN-FuzzyWOA classifier or detector provides
better results than other benchmark models.

For a more accurate comparison to understand the
power and ability of DCNN-FuzzyWOA to detect positive
and negative cases of COVID-19, more than 99.01% of the
diagnoses are correct. (e false alarm detection rate is less
than 0.81%. In general, the trade-off between recall and
precision for various threshold levels shows with the pre-
cision-recall curve. (e greatest area under the precision-
recall curve suggests that the accuracy and recall are strong.
High precision shows a low false-positive rate, and high-

Normal Normal Covid

Normal Covid Normal

Figure 3: Images random from the COVID-X-ray-5k data set [33].
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recall indicates a low false-negative rate. Figures 5 and 6
show that DCNN-FuzzyWOA has the largest area under the
precision-recall curve. It demonstrates a lower rate of false-
positive- and false-negative classifications than other
benchmark classifiers (see Tables 3–5).

Tables 3–6 describe the accuracy and computational time
findings for the i-6c-2s-12c-2s and i-8c-2s-16c-2s structures.
(e overall result of the simulation was that the accuracy
improved with increasing epoch. For example, in the first

epoch, compared to LeNet-5 (77.24), the accuracy increased
to 3.84 for DCNN-GA (81.08), 8.63 to DCNN-PSO (89.71),
and 1.73 for DCNN-FuzzyWOA (91.44). As shown in Ta-
ble 3, the improvement in accuracy when 20 epochs are used
is 1.57 for DCNN-GA (96.71), 2.05 for DCNN-PSO (98.76),
and 1.24 for DCNN-FuzzyWOA (100). (e simulation re-
sults show that DCNN-FuzzyWOA is more accurate in all
epochs. As shown in Tables 4 and 6, processing time in
FuzzyWOA is shorter and faster than other methods used.
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As the number of epochs rises, the time efficiency of the
FuzzyWOA becomes increasingly apparent, as the Fuzzy-
WOA’s stochastic structure results in a decrease in the
complexity of the search space. It should be noted that the
i-8c-2s-16c-2s structure findings in Tables 5 and 6

corroborate the previous conclusion about the i-8c-2s-
16c-2s network. As a result, FuzzyWOA can significantly
increase the performance of DCNNs with i-8c-2s-16c-2s and
i-6c-2s-12c-2s structures. Data science experts believe that
the best results can be shown using overall accuracy, ROC

Table 3: Accuracy and STD for the i-2s-6c-2s-12c structure.

Epoch
DCNN-FuzzyWOA DCNN-PSO DCNN-GA LeNet-5

Accuracy STD Accuracy STD Accuracy STD Accuracy STD
1 91.44 N/A 89.71 0.48 81.08 0.11 77.24 0.71
2 91.94 N/A 90.08 0.22 82.05 0.24 78.41 0.23
3 92.09 N/A 90.89 0.45 83.40 0.13 78.99 0.41
4 92.73 N/A 91.53 0.43 85.66 0.12 79.66 0.95
5 93.51 N/A 92.66 0.34 86.91 0.35 80.11 0.19
6 93.84 N/A 92.99 0.38 87.25 0.16 81.25 0.33
7 94.11 N/A 93.35 0.37 88.82 0.24 82.32 0.71
8 94.62 N/A 93.83 0.24 89.33 0.18 83.41 0.91
9 94.77 N/A 94.16 0.33 90.14 0.16 84.53 0.15
10 95.14 N/A 94.51 0.32 90.57 0.42 85.82 0.36
11 95.87 N/A 94.93 0.31 91.27 0.16 86.28 0.37
12 96.29 N/A 95.10 0.30 91.89 0.30 87.23 0.26
13 96.71 N/A 95.65 0.29 92.51 0.21 89.51 0.83
14 96.64 N/A 96.27 0.44 93.34 0.39 90.19 0.31
15 97.88 N/A 96.69 0.23 93.97 0.17 91.50 0.66
16 98.07 N/A 97.04 0.22 94.43 0.41 92.08 0.47
17 98.60 N/A 97.80 0.19 94.82 0.26 93.61 0.62
18 99.13 N/A 98.13 0.67 95.60 0.18 94.33 0.59
19 99.72 N/A 98.61 0.12 96.52 0.33 94.91 0.51
20 100 N/A 98.76 0.09 96.71 0.10 95.14 0.13

Table 4: Time required to compute and standard deviation for the i-2s-6c-2s-12c structure.

Epoch
DCNN-FuzzyWOA DCNN-PSO DCNN-GA LeNet-5
Time STD Time STD Time STD Time STD

1 85.91 N/A 108.55 1.04 115.01 0.78 127.08 0.81
2 115.87 N/A 199.43 1.02 161.76 1.71 195.20 1.07
3 184.65 N/A 283.71 2.08 221.95 2.41 238.85 2.58
4 222.41 N/A 305.86 1.07 260.74 1.09 299.50 1.17
5 291.33 N/A 390.29 1.23 317.55 4.99 310.17 4.37
6 301.96 N/A 448.91 2.11 361.34 3.14 422.39 1.08
7 345.17 N/A 519.57 1.56 433.98 2.08 531.81 2.09
8 379.86 N/A 589.39 1.84 549.27 1.19 579.27 4.01
9 405.16 N/A 618.28 2.42 625.10 1.78 536.90 1.28
10 476.22 N/A 697.68 3.86 677.31 2.77 640.33 4.65
11 495.57 N/A 737.70 3.07 731.79 1.18 678.88 2.65
12 511.79 N/A 793.32 1.73 792.03 3.34 723.74 1.59
13 577.73 N/A 836.15 1.66 841.50 4.28 791.83 2.66
14 601.63 N/A 889.04 2.37 881.53 3.11 845.70 2.13
15 647.85 N/A 923.17 2.09 903.72 1.56 936.62 1.83
16 690.33 N/A 978.64 1.88 930.18 4.66 1005.78 3.11
17 728.36 N/A 1001.79 3.77 982.04 1.23 1075.29 2.64
18 774.14 N/A 1060.8 1.91 1030.77 1.11 1103.21 2.23
19 834.71 N/A 1101.08 2.14 1161.20 3.28 1152.56 3.01
20 880.44 N/A 1186.61 1.89 1240.11 4.79 1256.07 1.74
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Table 5: Accuracy and STD for the i-2s-8c-2s-16c structure.

Epoch
DCNN-FuzzyWOA DCNN-PSO DCNN-GA LeNet-5

Accuracy STD Accuracy STD Accuracy STD Accuracy STD
1 90.23 N/A 87.09 0.20 80.38 0.19 76.33 1.05
2 90.89 N/A 88.40 0.19 80.79 0.17 77.00 0.89
3 91.63 N/A 88.87 0.11 81.15 0.26 78.09 2.32
4 91.81 N/A 90.25 0.14 81.68 0.31 79.34 3.76
5 92.33 N/A 90.66 0.27 82.34 0.19 80.55 1.90
6 93.26 N/A 91.23 0.23 83.71 0.14 81.21 4.58
7 93.19 N/A 92.00 0.30 84.53 0.21 82.38 3.72
8 93.99 N/A 92.19 0.18 85.61 0.16 82.79 1.18
9 94.20 N/A 92.85 0.19 86.67 0.28 83.48 0.52
10 94.18 N/A 93.34 0.36 87.41 0.15 84.31 2.63
11 95.51 N/A 93.28 0.15 88.52 0.22 85.63 2.88
12 95.79 N/A 94.47 0.09 89.05 0.16 86.84 5.23
13 96.37 N/A 95.69 0.11 89.98 0.14 87.37 4.19
14 97.31 N/A 95.91 0.22 90.37 0.32 89.06 3.55
15 97.72 N/A 96.38 0.06 91.25 0.28 90.71 5.10
16 97.92 N/A 96.74 0.33 92.40 0.13 91.76 1.74
17 98.30 N/A 97.29 0.31 93.71 0.19 92.25 3.19
18 98.65 N/A 97.84 0.08 94.64 0.25 93.16 1.53
19 99.08 N/A 98.07 0.28 95.18 0.18 94.72 0.68
20 99.55 N/A 98.63 0.12 96.31 0.12 95.08 4.80

Table 6: Time required to compute and standard deviation for the the i-2s-8c-2s-16c structure.

Epoch
DCNN-FuzzyWOA DCNN-PSO DCNN-GA LeNet-5
Time STD Time STD Time STD Time STD

1 83.35 N/A 110.21 1.04 117.43 1.53 154.51 3.74
2 118.24 N/A 200.17 1.02 158.53 1.64 202.19 2.83
3 165.75 N/A 275.68 2.08 215.37 2.57 244.28 1.97
4 218.60 N/A 311.72 1.07 262.71 1.67 315.37 2.55
5 293.19 N/A 364.33 1.23 321.14 0.91 376.63 3.77
6 321.71 N/A 446.17 2.11 365.31 3.16 418.18 1.84
7 353.63 N/A 528.91 1.56 442.28 2.27 546.92 3.74
8 384.28 N/A 593.53 1.84 550.28 2.16 573.11 4.58
9 410.46 N/A 625.34 2.42 628.31 1.13 535.63 2.63
10 496.39 N/A 670.81 3.86 680.32 4.28 632.27 0.63
11 508.77 N/A 741.73 3.07 734.62 5.33 689.81 3.27
12 542.91 N/A 799.84 1.73 783.49 2.59 722.35 3.36
13 596.72 N/A 842.59 1.69 853.78 1.49 793.44 1.25
14 663.85 N/A 891.70 2.37 892.75 2.27 835.23 2.80
15 689.51 N/A 928.91 2.08 913.36 1.56 947.95 2.33
16 734.38 N/A 974.32 1.87 936.77 2.23 1025.52 4.20
17 770.41 N/A 1011.30 3.76 980.19 1.44 1098.37 0.76
18 829.13 N/A 1063.85 1.95 1032.83 1.78 1110.50 1.58
19 857.67 N/A 1127.63 2.32 1163.27 2.56 1153.48 0.99
20 945.61 N/A 1201.21 1.89 1262.46 5.11 1398.13 1.81
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curve, F1-Score. (erefore, Table 7 examines the F1-Score in
structures i-2s-6c-2s-12c and i-2s-8c-2s-16c.

As shown inTable 7, the results obtained fromFuzzyWOA
aremoreappropriate andencouraging than theothermethods
used. So that, in the twentieth epoch, in the structure of i-2s-
6c-2s-12c, the value of F1-Score reaches 100%.

4. Conclusion

In this paper, using AI tools, i.e., a combination of DCNN,
WOA, and fuzzy logic, an accurate model is designed and
proposed to detect the positive and negative cases of COVID-
19 using X-ray. In addition to using the COVID-Xray-5k
benchmark data set, the DCNN-PSO, DCNN-GA, and
DCNN classic models were used for a fair comparison of the
proposed detector or classifier. Analysis of simulation results
provided comparable and significant results for the proposed
DCNN-FuzzyWOA model. Experts also confirmed the re-
lationship between the results and clinical results. One of the
most significant reasons for the optimal performance of the
DCNN-FuzzyWOAmodel is the adjustment ofWOA control
parameters by the fuzzy system and the determination of a
clear boundary between the exploration and extraction phases
in the search space of theWOA trainer algorithm. All training
algorithms used to train the two convolutional networks were
compared in terms of accuracy, processing time, F1-Score,
and curves of ROC and precision-recall. (e results showed
that FuzzyWOA had a more encouraging performance than
the other methods used. In terms of structure, the i-2s-6c-2s-
12c architecture has been more successful. Of course, despite
getting good results fromDCNN-FuzzyWOA, larger data sets
than COVID-19 are needed to achieve higher accuracy with
more excellent reliability.
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