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Abstract

Only a fraction of patients with cancer respond to immune checkpoint blockade (ICB) treatment, 

but current decision-making procedures have limited accuracy. In this study, we developed a 

machine learning model to predict ICB response by integrating genomic, molecular, demographic 

and clinical data from a comprehensively curated cohort (MSK-IMPACT) with 1,479 patients 

treated with ICB across 16 different cancer types. In a retrospective analysis, the model achieved 

high sensitivity and specificity in predicting clinical response to immunotherapy and predicted 

both overall survival and progression-free survival in the test data across different cancer types. 

Our model significantly outperformed predictions based on tumor mutational burden, which was 

recently approved by the U.S. Food and Drug Administration for this purpose1. Additionally, 

the model provides quantitative assessments of the model features that are most salient for the 

predictions. We anticipate that this approach will substantially improve clinical decision-making in 

immunotherapy and inform future interventions.

Cancer immunotherapies, such as ICB, are capable of inducing the immune system to 

effectively recognize and attack tumors2. The primary approved agents include antibodies 

that target CTLA-4 or PD-1/PD-L1, which can induce durable responses in patients with 
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advanced-stage cancers. However, most patients do not derive clinical benefit2. Some large 

phase 3 clinical trials have reported negative results in unselected patients3–6, highlighting 

the need to identify who will respond to immunotherapy. Recent studies have described 

different biological factors that affect ICB efficacy2,7–9. However, none of these factors acts 

in isolation and, thus, cannot alone optimally identify patients who benefit from ICB across 

different cancer types7.

Machine learning approaches have been shown to successfully overcome limitations of 

predictors that rely on a single feature by combining different types of features in a non-

linear fashion10,11. These models have already improved prediction and prognostication in 

healthcare and biomedicine and hold considerable promise to further improve healthcare 

delivery and clinical medicine11 The aim of this study was to develop a machine learning 

algorithm to generate an accurate prediction of a patient’s probability of immunotherapy 

response by comprehensively integrating multiple biological features associated with 

immunotherapy efficacy and to assess their individual contribution to response when 

combined in a single predictive framework.

We acquired complete clinical, tumor and normal sequencing data of 1,479 patients across 

16 different cancer types from Memorial Sloan Kettering Cancer Center (MSKCC) (Fig. 

1a and Supplementary Fig. 1). Approximately 37% of the patients had non-small cell 

lung cancer (NSCLC), 13% had melanoma and the remaining 50% had other cancer types 

(hereafter referred to as ‘others’), including renal cell carcinoma and bladder, head and neck 

and colorectal cancer (Fig. 1a and Table 1). These patients were treated with PD-1/PD-L1 

inhibitors, CTLA-4 blockade or a combination of both immunotherapy agents (Table 1). In 

total, there are 409 patients whose tumors responded to immunotherapy and 1,070 patients 

whose tumors did not respond across the different cancers (Fig. 1a and Table 1). Response 

was based on Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 (ref. 12) or 

best overall response on imaging (Methods). Patients who experienced complete response 

(CR) or partial response (PR) were classified as responders (R); patients who experienced 

stable disease (SD) or progressive disease (PD) were classified as non-responders (NR). 

Patients’ tumors were profiled using the U.S. Food and Drug Administration (FDA)-cleared 

MSK-IMPACT next-generation sequencing platform13 (Methods).

To calculate the probability of response to immunotherapy, we developed an ensemble 

learning random forest14 classifier with 16 input features (hereafter called RF16). We 

incorporated genomic, molecular, clinical and demographic variables in the model, some 

previously reported to be associated with ICB response. The variables incorporated included 

tumor mutational burden (TMB)15–22, fraction of copy number alteration (FCNA)23, 

HLA-I evolutionary divergence (HED)24, loss of heterozygosity (LOH) status in HLA-

I25, microsatellite instability (MSI) status26,27, body mass index (BMI)28,29, sex30, blood 

neutrophil-to-lymphocyte ratio (NLR)31–33, tumor stage34, immunotherapy drug agent20 

and age35 (Methods). Additionally, we included cancer type, whether the patient received 

chemotherapy before immunotherapy and blood levels of albumin, platelets and hemoglobin 

(HGB)36–38 (Fig. 1b).
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We randomized our dataset by cancer type into a training subsample (80%, n = 1,184) (Fig. 

1b and Table 1), for which we developed the prediction algorithm, and a test subsample 

(20%, n = 295), on which we evaluated the trained classifier (Fig. 1b and Table 1). We used 

five-fold cross-validation on the training data to derive the ICB response predictive model 

based on binary classification (responder and non-responder) (Fig. 1b).

The resulting trained model aggregates the predictive effects across the selected clinical, 

molecular, demographic and genomic features to derive a cancer type-specific probability 

of immunotherapy response. By using this type of model, we can quantify how much 

the various features contribute to explaining patient-to-patient variation in response (Fig. 

1c). These estimates represent the contributions of the various categories of predictors 

to response outcomes at the population level. At the individual level, we can score each 

patient based on their response probability (higher values indicate higher probability of ICB 

response) (Supplementary Fig. 2a,b).

When comparing single feature contributions of response prediction, TMB was the predictor 

exerting the greatest effect (Fig. 1c), which is consistent with many independent studies 

showing its association with response15–20. Additionally, the effect of chemotherapy history 

on ICB response was similar to that of TMB. Notably, MSI status was not selected 

by the model as one of the top predictors, likely owing to its strong association with 

TMB (Supplementary Fig. 3). In addition, we quantified the relative contribution of 

levels of albumin, HGB and platelets to ICB response (Fig. 1c). These blood markers 

are known to provide information about the extent of systemic and potentially tumor-

promoting inflammation, which has emerged as an important component of the tumor 

microenvironment because it has the potential to promote angiogenesis, metastasis and 

immunosuppression31,39–41. Although some of the markers have been associated with 

overall prognosis of patients with cancer36–38, it is intriguing that, here, they contributed 

to radiographic response to ICB treatment itself.

We sought to evaluate the performance of the integrated clinical-genetic model using 

multiple metrics42,43. To assess the predictive power of integrating the cancer type, whether 

the patient received chemotherapy before immunotherapy and the blood markers (albumin, 

HGB and platelets), with the other variables that influence ICB response, we developed a 

second random forest model (hereafter called RF11), including only the variables FCNA, 

TMB, HED, NLR, BMI, LOH in HLA-I, sex, age, MSI status, tumor stage and drug class. 

We used the RF11 model as a reference for the RF16 model to determine the added value of 

including additional variables that have not been used widely before to predict ICB response 

(Fig. 1c). Because TMB has been approved by the FDA as a biomarker to predict ICB 

efficacy in solid tumors1, we also compared the performance of the integrated RF16 and 

RF11 models with predictions based on TMB alone.

We first calculated the area under the receiver operating characteristic (ROC) curves and 

precision-recall curves by using the response probabilities computed by the respective 

RF16 and RF11 models and the continuous values of TMB. The integrated RF16 model 

achieved superior performance as indicated by the area under the curve (AUC) in predicting 

responders and non-responders across cancer types compared to TMB alone and the RF11 
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model in both the training set (Fig. 1d; pan-cancer AUC 0.85 for RF16 versus 0.79 for RF11 

versus 0.62 for TMB) and the test set (Fig. 2a; pan-cancer AUC 0.79 for RF16 versus 0.71 

for RF11 versus 0.63 for TMB). We also confirmed higher area under the precision-recall 

curve (AUPRC) achieved by the RF16 model than TMB alone and RF11 in both the 

training set (Supplementary Fig. 4) and the test set (Supplementary Fig. 5). None of RF16’s 

features alone could achieve the level of performance achieved by RF16, suggesting that a 

non-linear combination of multiple features contributed with various degrees to the overall 

prediction performance (Fig. 1c and Supplementary Fig. 6a,b). Additionally, the continuous 

probabilities calculated by the integrated RF16 model were significantly associated with 

response across tumors in the test set (Fig. 2b). The differences in response probability 

between responders and non-responders were significantly higher compared to differences 

in TMB between responder and non-responder groups across the various cancers (Fig. 2b,c; 

pan-cancer P < 0.0001 and P = 0.0005 for RF16 and TMB, respectively).

To stratify the continuous probabilities generated by RF16 into predicted responder and 

non-responder groups, we found the probability that optimizes the sensitivity and specificity 

of the ROC curves in the training set (Fig. 1d). When the probability value exceeds the 

optimal operating point threshold, the patient would be considered a ‘predicted responder’. 

We observed that the probability distributions significantly varied across tumor types in the 

training set (Supplementary Fig. 2a). Therefore, the default cutoff of 0.5 used during cross-

validation (Methods) or a single optimal pan-cancer cutpoint to discriminate responders and 

non-responders would result in low true-positive rate or high false-positive rate, respectively, 

in the training set (Supplementary Fig. 7a,b). We, thus, dichotomized the probabilities into 

predicted responder and non-responder groups by optimizing the sensitivity and specificity 

in the training set for each cancer group (melanoma, NSCLC and others) separately (Fig. 

1d and Supplementary Fig. 2a), which resolved both the low sensitivity or specificity 

significantly (Supplementary Fig. 7c). To test the discriminatory power of these optimal 

cancer-specific cutpoints, we applied them to each cancer group of the test set (Fig. 2d–g). 

To compare the performance of predicting responders and non-responders by RF16 with 

TMB alone, we used ≥10 mutations per megabase (mut/Mb) as the cutpoint for TMB, 

which was approved by the FDA for pembrolizumab1. We found that the RF16 model 

consistently achieved higher predictive performance as measured by sensitivity, specificity, 

accuracy, positive predictive value (PPV) and negative predictive value (NPV) compared to 

TMB alone (Fig. 2h and Supplementary Fig. 7d,e). In particular, the RF16 model achieved 

significantly higher sensitivity than TMB in NSCLC (80.00% for RF16 versus 52.00% for 

TMB) and other cancer types (75.56% for RF16 versus 33.33% for TMB) in the test set 

(Fig. 2h). In a pan-cancer analysis, the RF16 model achieved 76.67% sensitivity and 74.15% 

specificity compared to 47.78% sensitivity and 75.61% specificity achieved by TMB alone 

in the test set (Fig. 2h). Taken together, our integrated RF16 model predicts response to 

ICB therapy with high accuracy, as shown by various common performance metrics across 

different cancer types.

Additionally, the distributions of response probabilities generated from the RF16 model 

trained on pan-cancer data were compared with those from separate models trained on 

cancer-specific data. These response probability distributions were statistically similar in 

both the training and test sets (Supplementary Fig. 8a,b). The RF16 model trained on 
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the pan-cancer data achieved higher predictive performance compared to the RF16 model 

trained on cancer-specific data in the test set (Supplementary Fig. 9a–e and Supplementary 

Table 1). Thus, these results suggest that RF16 trained on the large pan-cancer data was able 

to both learn cancer-specific relationships and generalize relationships that could be relevant 

across cancers, leading to higher predictive performance in the test set.

We further compared the performance of RF16 with that of a logistic regression using the 

same training data and same model features for model calibration (Supplementary Table 

2). The RF16 model consistently achieved higher predictive performance compared to the 

logistic regression in pan-cancer, melanoma, NSCLC and others, in both the training and 

test sets (Supplementary Fig. 10a–f). This result might be partly explained because RF16 

does not assume that the relationships between the model variables and the log odds of 

immunotherapy response are linear, which logistic regression does assume.

To test whether our model could also predict overall survival (OS) before administration 

of immunotherapy, we used the Brier score42, which quantifies the accuracy of a set 

of predictions by calculating the error between observed and predicted OS probabilities. 

Predictions from RF16 resulted in a smaller error than predictions based on reference 

(random) model, TMB alone, or RF11; both in training and test data (Supplementary Figs. 

11a and 12). We further calculated the concordance index (C-index)42 for OS, which ranges 

between 0 and 1 (0.5 being random performance). We found that the C-indices of the 

RF16 predictions were significantly higher than those generated by TMB or RF11 across 

tumor types, both in the training set (Supplementary Fig. 11b; pan-cancer C-index 0.71 

for RF16 versus 0.66 for RF11 versus 0.54 for TMB, P < 0.0001) and the test set (Fig. 

3a,c,e,g; pan-cancer C-index 0.68 for RF16 versus 0.62 for RF11 versus 0.55 for TMB, 

P < 0.0001). Additionally, we found that responders predicted by our RF16 model were 

significantly associated with longer OS compared to patients classified as non-responders in 

the training set (Supplementary Fig. 13a,c,e,g; pan-cancer P < 0.0001, hazard ratio (HR) = 

0.31, 95% confidence interval (CI) = 0.26–0.36) and the test set (Fig. 3b,d,f,h; pan-cancer 

P < 0.0001, HR=0.29, 95% CI = 0.21–0.41). Furthermore, the differences in OS between 

responders and non-responders predicted by RF16 were significantly higher compared to 

differences between responder and non-responder groups predicted by TMB alone across 

the various cancer types (Fig. 3b,d,f,h and Supplementary Fig. 13,14). Additionally, the 

predictions of progression-free survival (PFS) produced by RF16 were significantly more 

accurate than both TMB alone and based on RF11 in the training set (Supplementary Fig. 

15; pan-cancer C-index 0.68 for RF16 versus 0.66 for RF11 versus 0.56 for TMB, P < 

0.0001) and the test set (Fig. 3i,k,m,o; pan-cancer C-index 0.67 for RF16 versus 0.62 for 

RF11 versus 0.56 for TMB, P = 0.0007 and P < 0.0001, respectively). Consistent with 

these results, responders predicted by the RF16 model also had significantly better PFS than 

predicted non-responders in the training data (Supplementary Fig. 16a,c,e,g; pan-cancer P 
< 0.0001, HR=0.31, 95% CI = 0.27–0.36) and the test data (Fig. 3j,l,n,p; pan-cancer P < 

0.0001, HR=0.34, 95% CI = 0.25–0.44), with larger PFS differences between responders 

and non-responders predicted by RF16 than TMB alone across the various cancer types (Fig. 

3j,l,n,p and Supplementary Fig. 16,17).
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Altogether, these data demonstrate that our machine learning approach can forecast 

response, OS and PFS before administration of immunotherapy at high accuracy. In 

addition, our results demonstrate that accurate prediction of ICB response required 

an integrated model incorporating genetic (both germline and somatic), clinical and 

demographic factors and blood markers suggestive of the overall health of the patient. 

Each of the model features can be easily measured from blood and from tumor tissue 

DNA sequencing. Additionally, the values of the peripheral blood markers used in the 

model, such as NLR, albumin, platelets and HGB, are routinely performed in almost all 

blood tests in the clinic. In contrast to what has been suggested44, the association of TMB 

with immunotherapy response was not confounded by melanoma subtype (Supplementary 

Fig 18). One limitation of our model is that we did not have transcriptomic data 

available or tumor PD-L1 staining, which are important information to assess the tumor 

microenvironment. Our analyses provide finer granularity for understanding and quantifying 

the heterogeneity in response to immunotherapy. Additionally, our analyses revealed that a 

non-linear combination of multiple biological factors contributed, with various degrees of 

contribution, to response.

In this study, we developed and tested our model on a large, clinically representative 

database of patients with different cancer types. However, this patient population is limited 

in size and not necessarily representative of the global target population and requires further 

testing on additional large patient cohorts within the context of a clinical trial, which will 

provide a more accurate estimate of model performance. We anticipate that forthcoming 

prospective trials will use similar machine learning approaches to improve existing state-of-

the-art classifiers as we advance in both understanding and availability of molecular data. 

Specifically, molecular features of the tumor immune microenvironment45–49; microbiome 

composition50; diversity of the T cell receptor repertoire51; specific tumor genomic 

alterations52–56, such as mutations of DNA damage response and repair-related genes57,58 

or mutations associated with resistance to ICB; and transcriptomic data might further help 

improve predictive performance. We think that such quantitative models will have important 

implications in the area of precision immuno-oncology for improving patient outcomes.

Methods

Patient data description.

The use of the patient data was approved by the MSKCC Institutional Review Board 

(IRB). All patients provided informed consent to a Memorial Sloan Kettering IRB-approved 

protocol. The main study question (whether our integrated model could predict response 

to immunotherapy, OS and PFS) was specified before data collection began. We addressed 

potential immortal time bias due to left truncation by limiting the cohort to patients followed 

after receiving a cancer diagnosis during the period when tumor sequencing at our center 

was routinely performed. Patients initially selected for this study were those with solid 

tumors diagnosed from 2015 through 2018 who received at least one dose of ICB at our 

center (n = 2,827). All tumors, along with DNA from peripheral blood, were genomically 

profiled using the MSK-IMPACT next-generation sequencing platform (CLIA-approved 

hybridization capture-based assay)13. We excluded patients with a history of more than 
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one cancer, patients without a complete blood count within 30 d before the first dose 

of ICB, patients enrolled in blinded trials and cancer types with fewer than 25 cases. 

The clinical records of the remaining 1,854 patients were manually reviewed to evaluate 

response to therapy, OS and PFS. The process was blinded to patients’ genomic, molecular 

and clinical data. We excluded patients who received ICB in a neoadjuvant or adjuvant 

setting and patients with unevaluable response (lost to follow-up without imaging after 

ICB start). Patients without HLA data due to consent for germline testing or poor HLA 

genotyping quality were also excluded. We further excluded patients without stage and BMI 

information. The final set consisted of 1,479 patients from 16 cancer types (Supplementary 

Fig. 1).

Response, OS and PFS.

The primary study outcomes were response to ICB, OS and PFS. We categorized response 

based on RECIST vl.l (ref.12). If formal RECIST reads were not available, we manually 

reviewed physician notes and imaging studies to categorize overall best response for each 

patient using the same criteria based on change in the sum of diameters of target lesions. 

CR and PR were classified as responders; SD and PD were classified as non-responders. 

PFS was calculated from ICB first infusion to disease progression or death from any cause; 

patients without progression were censored at last attended appointment at MSKCC with 

any clinician. OS was calculated from ICB first infusion to death from any cause; patients 

alive at the time of review were censored at last contact. For patients who received multiple 

lines of ICB, the first line was used for analysis.

Genomic, demographic, molecular and clinical data.

NLR was calculated as the absolute count of neutrophils (per nanoliter) divided by the 

absolute count of lymphocytes (per nanoliter). The units for albumin and HGB were g dl−1 

and platelets per nanoliter. All peripheral blood values were gathered from the closest blood 

test before the first ICB infusion (all within 1 month before ICB start). BMI was calculated 

by dividing patients’ body weight (kg) over the square of height (m2) assessed before 

ICB treatment. TMB was defined as the total number of somatic tumor non-synonymous 

mutations normalized to the exonic coverage of the respective MSK-IMPACT panel in mut/

Mb20. The MSK-IMPACT panel identifies non-synonymous mutations in 468 genes (earlier 

versions included 341 or 410 genes). For tumor-derived genomic data, the MSK-IMPACT 

performed from the earliest retrieved sample was used if a patient had more than one 

MSK-IMPACT test. Clinical and demographic variables incorporated in the model were age 

at ICB first infusion, sex, cancer type, ICB drug class, tumor stage at ICB first infusion 

and history of chemotherapy before ICB treatment start. Cancers were staged according to 

the American Joint Committee on Cancer, 8th edition59 FCNA was calculated as the length 

of FACETS60,61 segments with | cnlr.median.clust | ≥0.2 (that is, segments with log2 CNA 

value >0.2) divided by the total length of all segments. FACETS segments were classified as 

LOH if they had total copy number (tcn) ≥2 and minor allele copy number (lcn) = 0. HLA-I 

loci were classified as LOH if they overlapped (by any amount) an LOH segment. Segments 

with tcn = 1 and lcn = 0 were considered hemizygous, not LOH. MSI status of each tumor 

was determined by MSIsensor62 with the following criteria: stable (0 ≤ MSI score < 3), 
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indeterminate (3 ≤ MSI score < 10) and unstable (10 ≤ MSI score). In the machine learning 

model, we used two groups for MSI status: MSI unstable versus MSI stable/indeterminate.

We performed high-resolution HLA-I genotyping from germline normal DNA sequencing 

data. For each patient, the most recent MSK-IMPACT targeted gene panel was obtained, and 

Polysolver was used to identify HLA-I alleles with default parameter settings63. For quality 

assurance of HLA-I genotyping using MSK-IMPACT, we compared HLA-I typing by 

Polysolver between 37 samples that we sequenced with MSK-IMPACT and whole exome. 

The MSK-IMPACT panel successfully captured HLA-A, HLA-B and HLA-C reads, and 

validation was previously performed25. The overall concordance of HLA-I typing between 

the MSK-IMPACT samples and their matched whole exome sequencing samples was 96%. 

To ensure that HLA-I genes had adequate coverage in MSK-IMPACT BAM files, we also 

applied bedtools multicov tool64, which reports the count of alignments from multiple 

position-sorted and indexed BAM files that overlap with target intervals in a BED format. 

Only high-quality reads were counted, and only samples with sufficient coverage were used.

HED was calculated as previously described in Pierini and Lenz65 and Chowell el al.24. 

Briefly, we first extracted the protein sequence of exons 2 and 3 of each allele of 

each patients HLA-I genotype, which correspond to the peptide-binding domains. Protein 

sequences were obtained from the IMGT/HLA database66, and exons coding for the variable 

peptide-binding domains were selected following the annotation obtained from the Ensembl 

database67. Divergence values between allele sequences were calculated using the Grantham 

distance metric68, as implemented in Pierini and Lenz65. The Grantham distance is a 

quantitative pairwise distance in which the physiochemical properties of amino acids, and, 

hence, the functional similarity between sequences, are considered68. Given a particular 

HLA-I locus with two alleles, the sequences of the peptide-binding domains of each allele 

are aligned69, and the Grantham distance is calculated as the sum of amino acid differences 

(taking into account the biochemical composition, polarity and volume of each amino acid) 

along the sequences of the peptide-binding domains, following the formula by Grantham68

Grantham Distance = ∑Dij = ∑ α ci − cj
2 + β pi − pj

2 + γ vi − vj
2 1/2

(1)

where i and j are the two homologous amino acids at a given position in the alignment; c, 

p and v represent composition, polarity and volume of the amino acids, respectively; and α, 

β and γ are constants; all values are taken from the original study68. The final Grantham 

distance is calculated by normalizing the value from (1) by the length of the alignment 

between the peptide-binding domains of a particular HLA-I genotype’s two alleles. In our 

model, we refer to HED as mean HED, which was calculated as the mean of divergences at 

HLA-A, HLA-B and HLA-C.

Model description.

We implemented a random forest classifier using the scikit-learn package70 in Python 

3.83 programming language (https://www.python.org/). To generate the training (80%) 

and test (20%) datasets, we split the dataset using the train_test_split function, which 

randomly partitions a dataset into training and test subsets with test_size=0.2 parameter. We 
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applied this function to each cancer type individually. To build a random forest classifier 

with the best hyperparameters, we implemented the exhaustive grid search approach 

using the GridSearchCV function to the training dataset with five-fold cross-validation. 

Model features were used as discrete values (chemotherapy prior ICB, cancer type, 

LOH in HLA-I, drug class, MSI status and tumor stage) or continuous values (TMB, 

albumin, NLR, age, HGB, platelets, FCNA, BMI and HED). A total of 10.000 random 

forest classifier models were evaluated with different combinations of hyperparameters: 

max_features=“auto”; n_estimators ranging from 100 to 1.000 with an interval of 100; 

max_depth ranging from 2 to 20 with an interval of 2; min_samples_leaf ranging from 

2 to 20 with an interval of 2; and min_ samples_split ranging from 2 to 20 with an 

interval of 2. As a result, we selected a model with n_estimators= 1,000, max_depth=8, 

min_samples_leaf=20 and min samples_split=2 hyperparameters, which showed the highest 

average accuracy at 0.7559. Also, the RF11 model was built with n_estimators=300, 

max_depth=4, min_samples_leaf=12 and min_samples_split=2 hyperparameters, which 

showed the highest average accuracy at 0.7576. The default cutoff of 0.5 was used when 

using GridSearchCV. To compute the feature importance for the RF16 model, we used 

the permutation-based importance (function Permutationlmportance) from the ELI5 Python 

package (https://eli5.readthedocs.io/).

Logistic regression analysis.

We used the glm function for the logistic regression model. The stepAIC function from the 

MASS package was applied to model selection, and we used the predict function to get the 

response probability of samples in the test set. To compute standardized coefficients, the 

beta function from the reghelper package was used. All the analyses were performed using R 

programming language (https://www.r-project.org/).

ROC and precision-recall curve analyses.

We generated AUC and AUPRC values for random forest and logistic regression models 

using the precrec package71. The prediction power of individual variable was measured 

by the same approach. For continuous variables, we used the actual values of each of 

the variables to generate the AUC and AUPRC values; for categorical variables, such as 

chemotherapy prior ICB (yes or no), drug class (combo or monotherapy), LOH in HLA-I 

(yes or no), MSI (unstable or stable/indeterminate), sex (male or female) and stage (IV or 

others), binary values were used. The optimal thresholds of the probabilities of response 

computed by the random forest and the logistic regression models, which discriminate 

responder and non-responder, were determined in the training set by using the Youden’s 

index method from the ROC curve using the pROC package72. We also determined the 

optimal threshold with the highest F-score, and there was no significant difference in the 

predictive power of the thresholds using Youden’s index or F-score.

Statistical analyses.

To compare the distributions of response probability generated by the integrated model 

and TMB among response groups, the two-sided Mann-Whitney U test was used. The 

correlation coefficients between the response probabilities from the pan-cancer and cancer-

specific models were calculated by Spearman’s rank test using the cor_test function from 
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the correlation package. We calculated the C-index of our model predictions and TMB alone 

by the concordance.index function and compared them using the cindex.comp function, 

which implements a paired Student’s t-test from the survcomp package73. Brier score 

was calculated using the pec package74. We visualized ROC and precision-recall curves 

and calculated the AUC using the precrec package71. The Kaplan-Meier plot, log-rank 

P values and Cox proportional HRs were generated by the survminer package. All the 

aforementioned packages and functions are included in R programming language (https://

www.r-project.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1|. Overview of development of the model for integrated clinical-genetic prediction of ICB 
response.
a, Bar chart showing the number of patients in each of the 16 cancer types. We categorized 

response based on RECIST vl.1 (ref.12) or best radiographic response. CR and PR were 

classified as R; SD and PD were classified as NR. Numbers in parentheses denote the 

number of patients in NR and R groups, respectively. b, General overview of the random 

forest model training and testing procedure. Sixteen cancer types were divided into training 

(80%) and testing (20%) subsets individually. A random forest model was trained on 

multiple genomic, molecular, demographic and clinical features on the training data using 

five-fold cross-validation to predict ICB response (NR and R). The resulting trained model 

with the best hyperparameters was evaluated using various performance metrics using the 

test set. c, Feature contribution of the 16 model features calculated in the training set 

(n = 1,184) to predict ICB response. The error bars denote standard deviation of feature 

contribution. d, ROC curves and the corresponding AUC values of RF16, RF11 and TMB 
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alone in the training set across multiple cancer types. The numbers on the ROC curves 

denote the corresponding optimal cutpoints for RF16, which maximize the sensitivity and 

specificity of the response prediction. SCLC, small cell lung cancer.
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Fig. 2|. Model performance across multiple cancer types in the test set.
a, ROC curves and corresponding AUC values of RF16, RF11 and TMB alone. b, 

Comparison of response probability distributions calculated by RF16 between NR and R 

groups. Two-sided P values were calculated using the Mann-Whitney U test. Center bar, 

median; box, interquartile range; whiskers, first and third quartiles ±1.5x interquartile range. 

c, Comparison of TMB between NR and R groups. Two-sided P values were calculated 

using the Mann-Whitney U test. Center bar, median; box, interquartile range; whiskers, first 

and third quartiles ±1.5x interquartile range. d-g, Confusion matrices showing predicted 

outcomes generated by RF16 and TMB, as indicated, in pan-cancer (d), in melanoma (e), 

in NSCLC (f) and in others (not melanoma/NSCLC) (g), respectively. To define high TMB 

tumors, we applied the threshold of ≥10 mut/Mb, which was approved by the FDA to predict 

ICB efficacy of solid tumors with pembrolizumab1. h, Performance measurements of RF16, 

RF11 and TMB illustrated by sensitivity, specificity, accuracy, PPV and NPV.
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Fig. 3|. Model predicts OS and PFS across multiple cancer types in the test set.
a, Comparison of C-index and 95% Cl for predicting OS among RF16, RF11 and TMB in 

the pan-cancer cohort (n = 295). b, Pan-cancer association between ICB response predicted 

by RF16 and OS. c, Comparison of C-index and 95% Cl for predicting OS among RF16, 

RF11 and TMB in melanoma (n = 37). d, Association between ICB response predicted by 

RF16 and OS in melanoma, e, Comparison of C-index and 95% Cl for predicting OS among 

RF16, RF11 and TMB in NSCLC (n=108). f, Association between ICB response predicted 

by RF16 and OS in NSCLC. g, Comparison of C-index and 95% Cl for predicting OS 

among RF16, RF11 and TMB in others (not melanoma/NSCLC) (n = 150). h, Association 

between ICB response predicted by RF16 and OS in others. i, Comparison of C-index and 

95% Cl for predicting PFS among RF16, RF11 and TMB in the pan-cancer cohort (n = 295). 

j, Pan-cancer association between ICB response predicted by RF16 and PFS. k, Comparison 

of C-index and 95% Cl for predicting PFS among RF16, RF11 and TMB in melanoma (n 
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= 37). l, Association between ICB response predicted by RF16 and PFS in melanoma. m, 

Comparison of C-index and 95% Cl for predicting PFS among RF16, RF11 and TMB in 

NSCLC (n = 108). n, Association between ICB response predicted by RF16 and PFS in 

NSCLC. o, Comparison of C-index and 95% Cl for predicting PFS among RF16, RF11 and 

TMB in others (n = 150). p, Association between ICB response predicted by RF16 and PFS 

in others. Two-sided P values for comparison of C-indices and survival times were computed 

using the paired Student’s t-test and log-rank test, respectively.

Chowell et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chowell et al. Page 20

Table 1|

Characteristics of patients in the study

Characteristic Total patients (n = 1,479) Training set (n = 1,184) Test set (n = 295)

Sex, n (%)

 Female 668 (45.17) 529 (44.68) 139 (47.12)

 Male 811 (54.83) 655 (55.32) 156 (52.88)

Age, median, years (IQR) 64 (55–71) 64 (55–71) 64 (55–72)

Cancer type, n (%)

 NSCLC 538 (36.38) 430 (36.32) 108 (36.61)

 Melanoma 186 (12.58) 149 (12.58) 37 (12.54)

 Renal 91 (6.15) 73 (6.17) 18 (6.10)

 Bladder 82 (5.54) 66 (5.57) 16 (5.42)

 Head and neck 69 (4.67) 55 (4.65) 14 (4.75)

 Sarcoma 67 (4.53) 54 (4.56) 13 (4.41)

 Endometrial 65 (4.39) 52 (4.39) 13 (4.41)

 Gastric 64 (4.33) 51 (4.31) 13 (4.41)

 Hepatobiliary 52 (3.52) 42 (3.55) 10 (3.39)

 SCLC 50 (3.38) 40 (3.38) 10 (3.39)

 Colorectal 46 (3.11) 37 (3.13) 9 (3.05)

 Esophageal 44 (2.97) 35 (2.96) 9 (3.05)

 Pancreatic 35 (2.37) 28 (2.36) 7 (2.37)

 Mesothelioma 34 (2.30) 27 (2.28) 7 (2.37)

 Ovarian 31 (2.1) 25 (2.11) 6 (2.03)

 Breast 25 (1.69) 20 (1.69) 5 (1.69)

Drug class, n (%)

 PD-1/PD-L1 1,221 (82.56) 969 (81.84) 252 (85.42)

 CTLA-4 5 (0.33) 5 (0.42) 0 (0.00)

 Combo 253 (17.11) 210 (17.74) 43 (14.58)

ICB response, n (%)

 Responder 409 (27.65) 319 (26.94) 90 (30.51)

 Non-responder 1,070 (72.35) 865 (73.06) 205 (69.49)

Chemotherapy prior ICB, n (%)

 No 463 (31.30) 370 (31.25) 93 (31.53)

 Yes 1,016 (68.70) 814 (68.75) 202 (68.47)

Stage, n (%)

 I-III 97 (6.56) 78 (6.59) 19 (6.56)

 IV 1,382 (93.44) 1,106 (93.41) 276 (93.44)

Combo, PD-1/PD-L1 plus CTLA-4; IQR, interquartile range; SCLC, small cell lung cancer.
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