Table 1.
Predictor | VL1 |
TS1 |
TS2 |
TS-rfam |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCC | F1 | Precision | Sensitivity | MCC | F1 | Precision | Sensitivity | MCC | F1 | Precision | Sensitivity | MCC | F1 | Precision | Sensitivity | |
Single Sequence (SS) | 0.663 | 0.713 | 0.835 | 0.622 | 0.671 | 0.691 | 0.853 | 0.581 | 0.622 | 0.640 | 0.812 | 0.529 | 0.645 | 0.664 | 0.826 | 0.555 |
SS + RNAfold (SPOT-RNA-2D-Single) | 0.710 | 0.756 | 0.863 | 0.672 | 0.713 | 0.733 | 0.872 | 0.633 | 0.713 | 0.727 | 0.883 | 0.618 | 0.734 | 0.750 | 0.890 | 0.647 |
SS + PSSM | 0.684 | 0.736 | 0.830 | 0.661 | 0.719 | 0.748 | 0.826 | 0.683 | 0.670 | 0.696 | 0.797 | 0.618 | 0.676 | 0.704 | 0.797 | 0.631 |
SS + DCA (PLMC) | 0.681 | 0.737 | 0.808 | 0.677 | 0.702 | 0.736 | 0.779 | 0.698 | 0.694 | 0.720 | 0.808 | 0.650 | 0.681 | 0.710 | 0.795 | 0.642 |
SS + RNAfold + PSSM + DCA | 0.697 | 0.749 | 0.828 | 0.683 | 0.724 | 0.752 | 0.830 | 0.687 | 0.714 | 0.737 | 0.838 | 0.657 | 0.730 | 0.752 | 0.851 | 0.674 |
SS + RNAfold + PSSM + DCA + MSA Sampling | 0.705 | 0.757 | 0.827 | 0.698 | 0.782 | 0.806 | 0.854 | 0.763 | 0.713 | 0.739 | 0.815 | 0.675 | 0.729 | 0.755 | 0.829 | 0.693 |
SS + RNAfold + PSSM + DCA + MSA Sampling + Ensemble (SPOT-RNA-2D) | 0.712 | 0.760 | 0.845 | 0.691 | 0.800 | 0.819 | 0.893 | 0.757 | 0.735 | 0.754 | 0.870 | 0.665 | 0.755 | 0.773 | 0.888 | 0.684 |
Note: Bold indicates the best performance metric of a model.