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Abstract 

Background:  Brainstem metastases (BSM) are associated with a poor prognosis and their management represents a 
therapeutic challenge. BSM are often inoperable and, in absence of randomized trials, the optimal radiation treatment 
of BSM remains to be defined. We evaluated the efficacy and toxicity of linear accelerator (linac)-based stereotactic 
radiosurgery (SRS) and hypofractionated steretotactic radiotherapy (HSRT) in the treatment of BSM in a series of 
patients treated in different clinical centers.

Methods:  We conducted a multicentric retrospective study of patients affected by 1–2 BSM from different histolo‑
gies who underwent SRS/HSRT. Freedom from local progression (FLP), cancer-specific survival (CSS), overall survival 
(OS), and treatment-related toxicity were evaluated. In addition, predictors of treatment response and survivals were 
evaluated.

Results:  Between 2008 and 2021, 105 consecutive patients with 111 BMS who received SRS or HSRT for 1–2 BSM 
were evaluated. Median follow-up time was 10 months (range 3–130). One-year FLP rate was 90.4%. At the univariate 
analysis, tumor volume ≤ 0.4 cc, and concurrent targeted therapy were associated with longer FLP, with combined 
treatment that remained a significant independent predictor [0.058, HR 0.139 (95% CI 0.0182–1.064]. Median OS and 
CSS were 11 months and 14.6 months, respectively. At multivariate analysis, concurrent targeted therapy administra‑
tion was significantly associated with longer OS [HR 0.514 (95%CI 0.302–0.875); p = 0.01]. Neurological death occurred 
in 30.4% of patients, although this was due to local progression in only 3 (2.8%) patients.

Conclusion:  Linac-based SRS/HSRT offers excellent local control to patients with BSM, with low treatment-related 
toxicity and no apparent detrimental effects on OS. When treated with ablative intent, BSM are an uncommon cause 
of neurological death. The present results indicates that patients with BSM should not be excluded a priori from clini‑
cal trials.
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Introduction
Stereotactic radiosurgery (SRS) given in a single frac-
tion using doses of 18–24  Gy is the current standard 
treatment for patients with a limited number of brain 
metastases (1–4), and its use has progressively replaced 
the use of whole-brain radiotherapy (WBRT) [1–3]; 
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however, patients with brainstem metastases (BSM) [4] 
are often excluded from prospective trials of SRS because 
the fear of excessive toxicity caused by exposure of the 
brainstem to high doses of radiation and its potential 
negative impact on survival. Therefore, there is a lack of 
evidence-based recommendations on the optimal radia-
tion treatment of BSM in terms of techniques and dose-
fractionation, and the management of these patients in 
clinical practice remains controversial.

The reluctance to use SRS as treatment of BSM is 
derived, at least in part, from historical studies dem-
onstrating a maximum tolerated radiation dose for the 
brainstem of 12–12.5 Gy given as a single fraction [5, 6]. 
SRS for BMS was described for the first time in 1993 [7]. 
Since then, several authors reported their retrospective 
experience, usually small and monoinstitutional [8–18]. 
These studies did not show an increased risk of toxicity 
but provided inhomogeneous indication regarding dose 
prescription and clinical results, also due to heteroge-
neity in patients’ selection [11, 18–21]. Moreover, the 
majority of these patients were treated with gamma-knife 
SRS, with few data available for frameless linear accel-
erator (linac)-based SRS. A recent systematic review 
and meta-analysis of those retrospective studies dem-
onstrated the efficacy of SRS in the treatment of BSM; 
however, only a few predictive parameters of treatment 
response were identified [22]. Therefore, it is hard to date 
to infer specific recommendations on dose prescription, 
as well as the identification of predictive factors of out-
come because of the limited available data.

This multicentric retrospective study aims to evalu-
ate the efficacy and safety of frameless linac-based SRS 
or hypofractionated stereotactic radiotherapy (HSRT) to 
BSM and to identify factors predictive of tumor control 
and survival.

Patient and methods
The present multi-institutional study was conducted 
on a retrospective cohort of patients with1-2 BSM who 
received SRS or HSRT between April 2008 and July 
2021. Data were anonymously collected in an internal 
review board (IRB)-approved database. Inclusion cri-
teria were: (a) age > 18  years; (b) diagnosis of BSM con-
firmed by contrast-enhanced MRI acquired no more than 
4 weeks before radiation treatment; (c) Eastern Coopera-
tive Oncology Group (ECOG) performance status ≤ 2. 
Patients treated with concomitant systemic therapy were 
included in the study. SRS could have been administered 
concomitantly to systemic therapy (within one months 
from the last administration). The study was conducted 
in accordance with the principles of the Declaration of 
Helsinki and was approved by the IRB of participating 
Institutions.

Treatment characteristics
Patients underwent a CT simulation without contrast 
media (1-mm slice thickness) for radiation therapy 
planning with a thermoplastic mask. A co-registration 
of volumetric CT and the T1 sequences of the MRI 
(3-dimensional spoiled gradient series with 1-mm slice 
thickness) no older than 2  weeks was used to define 
organs at risk (OARs) and target volumes. Gross tumor 
volume (GTV) encompassed the macroscopic contrast-
enhancing lesion on T1-MRI and was assumed equal to 
the clinical target volume (CTV). The planning target 
volume (PTV) was obtained from the GTV plus an iso-
tropic margin of 0–2 mm. We performed a risk-adapted 
dose prescription. SRS with a dose of 16–18 Gy was gen-
erally administered for lesions ≤ 10  mm, while HSRT 
with total doses of 14–32 Gy given in 2–5 fractions was 
reserved for lesions > 10 mm. The dose was usually pre-
scribed at 80% isodose line and dose optimization was 
performed to cover 95% of PTV with the prescription 
dose. Treatment was administered with a linac using 
either volumetric-modulated arc therapy (VMAT), or 
multiple dynamic arcs (DCAT) or fixed beams.

Follow‑up
Physical examination, toxicity assessment, and radiologi-
cal response with MRI were performed after 45–60 days 
following the first treatment. Subsequently, follow-up 
was performed every 3 months for the first 2 years and 
every 4–6 months for the next 3 years. Tumor response 
was evaluated using the Response Assessment in Neuro-
Oncology (RANO) criteria [23]. MR response assessment 
was based on contrast enhanced T1-w and fluid attenu-
ated inversion recovery  (FLAIR) sequences. Toxicity 
was assessed during and after radiotherapy according to 
the Common Terminology Criteria for Adverse Events 
(CTCAE) v5.0. Acute toxicity was defined as an adverse 
event occurring within 90  days from the beginning of 
treatment, whereas late toxicity after 90 days.

Study end‑points and statistics
The primary end-point was freedom from local progres-
sion (FLP). Secondary endpoints were overall survival 
(OS), cancer-specific survival (CSS), neurological death 
(ND), and toxicity. Survivals were defined as follows: FLP 
as the time between SRS administration and the occur-
rence of in-field or marginal regrowth of the disease; OS 
was defined as the time to death or last follow-up; CSS as 
the time to death due to tumor progression or last follow-
up, and ND as the death due to brain disease progression.

The univariate analysis was performed with the 
Kaplan–Meier method. The log-rank test was applied to 
determine differences between the corresponding curves. 
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The following covariates were evaluated for survival 
end-points: sex, age, lesion volume (cc), PTV margin, 
BSM site (midbrain, pons, medulla oblongata) biologi-
cal effective dose (BED), previous WBRT, primary tumor 
histology, concomitant therapy (target therapy, immu-
notherapy, chemotherapy), fractionation. Univariate and 
multivariate analyses were performed by the Cox propor-
tional hazards model. Clinically relevant variables with a 
p < 0.1 at univariate analysis were included in the multi-
variate analysis. The threshold of tumor volume related 
to SRS response and/or survival was determined with 
the ROC curve method, calculating the highest product 
of (sensitivity*specificity). BED calculations for different 
radiation schedules was determined by linear-quadratic 
model according to an α/β ratio of 10 Gy for tumors. Sta-
tistical analysis was performed using the SPSS statistical 
software package version 26.0 (SPSS Inc, Chicago, IL). A 
p-value ≤ 0.05 indicated a significant association.

Results
Patients’ characteristics
The patient population was represented by 105 patients 
with 111 BSM. Patient and treatment characteristics 
are shown in Table  1. Main primary histology were 
non-small cell lung cancer (NSCLC, 46.6%), breast can-
cer (22%), renal cell carcinoma (10.5%), and melanoma 
(9.5%). Concomitant systemic therapy was administered 
in 76 patients, and included chemotherapy (26.2%), tar-
get therapy (25%), immunotherapy (13.5%), and hormone 
therapy (2.8%). More specifically, targeted therapies 
consisted of anti-HER2 agent (n = 12), ALK inhibitor 
(n = 7), tyrosin-kinase inhibitor (n = 6), and VRAF inhibi-
tor (n = 3). The median follow-up was 11 months (range 
3–130). RT treatment consisted of single-fraction SRS 
for 58 (52.3%) lesions and HSRT (2–5 fractions) for 53 
lesions (47.7%). The median administered BED10 was 
35.7  Gy (range 23.8–60). The GTV volume threshold 
for survival analysis was 0.4 cc (AUC 0.69, 95%CI 0.61–
0.74; p = 0.02). Median BSM volume was 0.4  cc (range 
0.02–23.6).

Freedom from local progression and toxicity
With a median time of 11 months, the 1-year FLP was 
90.4%, with 13 lesions that progressed at a median 
time of 10  months (Fig.  1). Results of univariate and 
multivariate analysis are shown in Table  2. GTV vol-
ume ≤ 0.4  cc, and concurrent targeted therapy were 
predictive of better FLP. In particular, 1-year FLP rates 
were 98.1% for a GTV volume ≤ 0.4 cc and 82.9% for a 
GTV volume > 0.4 cc (p = 0.041). 1-year FLP was 96.5% 
following combined treatment and 86% after SRS/
HSRT alone (p = 0.03), with no difference between 

SRS and HSRT (Fig.  2; p = 0.51). At the multivari-
ate analysis, pons location was an independent fac-
tor of improved FLP [HR 0.202 (95%CI 0.048–0.845); 
p = 0.02], while concurrent targeted therapy was of bor-
derline significance [0.058, HR 0.139 (95% CI 0.0182–
1.064]. No severe acute toxicity occurred. A case of 
grade 2 pseudoprogression was recorded in one patient 
3 months after the treatment, and grade 2 headache in 
3 patients, who were successfully treated with steroids. 
For these patients, perfusion MRI changes were sugges-
tive of symptomatic radiation necrosis. No grade 3 or 
higher acute toxicity occurred.

Table 1  Patients’ and lesions’ characteristics (n = 105)

WBRT: whole-brain radiotherapy; SRS: stereotactic radiosurgery; HSRT: 
hypofractionated stereotactic radiotherapy, GTV: gross tumor volume

Age, median (range) 58 (36–85)

Primary tumor

Lung 49 (46.6%)

Breast 23 (22%)

Kidney 11 (10.5%)

Melanoma 10 (9.5%)

Gastrointestinal 5 (4.8%)

Gynecological 5 (4.8%)

Head & neck 1 (0.9%)

Bladder 1 (0.9%)

Concomitant systemic therapy

Chemotherapy 29 (26.2%)

Targeted therapy 28 (25%)

Immunotherapy 15 (13.5%)

Hormone therapy 3 (2.8%)

None 29 (26.2%)

Unknown 7 (6.3%)

Previous WBRT

Yes 15 (14%)

No 90 (86%)

Brainstem site (n = 111)

Midbrain 33 (30%)

Pons 63 (57%)

Medulla oblongata 15 (13%)

Fraction number (n = 111)

1 58 (52.3%)

2 1 (0.9%)

3 38 (34%)

4 2 (1.8%)

5 12 (11%)

Median total dose SRS (Gy) (range) 18 (12–20)

Median total dose HSRT (Gy) (range) 20 (14–32)

Median BED (Gy10) (range) 35.7 (23.8–60)

Median/mean GTV volume SRS (cc) (n = 58) 0.4/1.3 (0.02–2.8)

Median/mean GTV volume HSRT (cc) (n = 53) 0.4/1.5 (0.08–23.6)
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Overall Survival and prognostic factors
The median OS time was 11  months (range 9–17.4) 
and 1-year OS rate was 49.5% (Fig.  3). The median 
CSS time was 14.6 months (range 10–22.3). The 1-year 
CSS rate was 55.6%. In total, 32 patients (30.4%) had 
ND. The 1-year ND rate was 77.5%. At the last follow-
up, 84 patients (80%) died. Forty-eight (45.7%) died of 
systemic progression and 32 (30.4%) died of intracra-
nial progression; however, this was due to local BSM 
progression only in 3 patients. In four (3.8%) patients, 
death resulted from noncancer causes.

At the univariate analysis, previous WBRT was asso-
ciated with worse 1-year OS (30.5% versus 52.6%, 
p = 0.01), CSS (35.6% versus 58.6%, p = 0.03), and ND 
rates (57.9% versus 80.6%, p = 0.001). Concurrent tar-
get therapy was a predictor of better OS (67.5% ver-
sus 45.8%, p = 0.01) and CSS (70.2% versus 48.2%, 
p = 0.03) rates at 1  year. Similarly, SRS was associated 
with improved OS (p = 0.03). At the multivariate analy-
sis, concurrent targeted therapy remained significantly 
associated with improved OS [HR 0.514 (95%CI 0.302–
0.875); p = 0.01] and CSS [HR 0.573 (95%CI 0.331–
0.992); p = 0.04]. Previous WBRT was an independent 
factor of lower CSS [HR 2.055 (95%CI 1.023–4.128); 
p = 0.04] and ND [HR 3.381 (95%CI 1.287–8.879); 
p = 0.01].

Discussion
Brainstem metastases in cancer patients are usually asso-
ciated with poor survival and quality of life. The presence 
of vital structures justifies the rapid onset of symptoms 
even when the lesion dimension is small. For these inop-
erable lesions, radiotherapy has historically been the 
most widely used therapeutic option. The use of SRS was 
generally limited by the fear of side effects; however, an 
accumulating body of literature in the last two decades is 
demonstrating its efficacy in patients with BSM.

Yet, the largest published series is a multi-institutional 
analysis by Trifiletti et  al. [24] including 547 patients 
with BMS who were treated with Gamma Knife SRS. The 
1-year local control and FLP rates were 81.8% and 90.4%, 
respectively, using a median marginal dose of 16  Gy. In 
the univariate analysis, a marginal dose < 16 Gy was asso-
ciated with worse local control; however, the correlation 
was not confirmed in the multivariate analysis. These 
results compare with those reported in series of SRS for 
cerebral and cerebellar metastases, reporting 1-year local 
control rates of 86.7% to 95% [2, 25].

Differently from other studies, in the current series 
a significant proportion of patients received HSRT, 
typically 14–32  Gy given in 2–5 fractions. The 1-year 
FLP rates were similar, 92.9% and 86.8% after SRS and 
HSRT, respectively, although fractionated SRS was used 

Fig. 1  Kaplan–Meier curve showing freedom from local progression in the overall population
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more often for larger lesions. Based on our results, both 
approaches offer similar excellent long-term tumor con-
trol, at least for a BED 10 > 35  Gy, with low treatment-
related toxicity.

BSM have been generally linked to poor survival due to 
the rapid onset of symptoms, indicating local tumor pro-
gression as a frequent cause of cancer death. However, the 

reported survival in our and other published SRS series 
might suggest a different scenario. The median cancer-
specific survival observed in our study was 14.6 months, 
being similar to those reported by others [21]. In the 
study of Trifiletti et al. [24], median OS time and 1-year 
survival rates were 5.6  months and 32.7%, respectively. 
Interestingly, death rate for BSM progression was 0.7%, 

Table 2  Uni- and multivariate analysis

BED: biological effective dose; HR: hazard ratio; CI: confidence interval; GTV: gross tumorvolume; PTV: planning target volume; BM: brainstem; WBRT: whole-brain 
radiotherapy

Italics values indicate a significant correlation

Univariate analysis Multivariate analysis

Freedom from local progression

BED 35.7 Gy10 0.13 HR 0.455 (95%CI 0.140–1.479); p = 0.19

GTV volume ≤ 0.4 0.041 HR 3.77 (95%CI 0.945–15.061); p = 0.06

PTV margin 0.59 –

BM site
(base = midbrain)

0.09 Pons: HR 0.202 (95%CI 0.048–0.845); p = 0.02
M. Oblongata: HR 0.627 (95%CI 0.150–2.619); p = 0.52

Primary histology 0.74 –

Previous WBRT 0.85 –

Concurrent targeted therapy 0.03 HR 0.169 (95%CI 0.021–1.348); p = 0.09

Single- versus multifraction 0.51 –

Overall survival

BED 35.7 Gy10 0.06 HR 0.887 (95%CI 0.534–1.473); p = 0.64

GTV volume ≤ 0.4 0.45 –

PTV margin 0.17 –

Primary histology 0.17

BM site 0.16 –

Previous WBRT 0.01 HR 1.59 (95%CI 0.827–3.080); p = 0.16

Concurrent targeted therapy 0.01 HR 0.466 (95%CI 0.270–0.804); p = 0.006

Single-versus multifraction 0.03 HR 1.61 (95%CI 0.972–2.696); p = 0.06

Cancer-specific survival

BED 35.7 Gy10 0.26 –

GTV volume ≤ 0.4 0.33 –

PTV margin 0.23 –

BM site
(base = midbrain)

0.06 Pons: HR 0.587 (95%CI 0.338–1.019); p = 0.06
M. oblongata: HR 1.026 (95%CI 0.505–2.082); p = 0.94

Primary histology 0.23

Previous WBRT 0.03 HR 2.055 (95%CI 1.023–4.128); p = 0.04

Concurrent targeted therapy 0.03 HR 0.573 (95%CI 0.331–0.992); p = 0.04

Single- versus multifraction 0.11 –

Neurological Death

BED 35.7 Gy10 0.75 –

GTV volume ≤ 0.4 0.75 –

PTV margin 0.54 –

Primary histology 0.23

BM site
(base = midbrain)

0.15 Pons: HR 0.431 (95%CI 0.179–1.037); p = 0.06
M. Oblongata: HR 0.631 (95%CI 0.172–2.308); p = 0.48

Previous WBRT 0.00 HR 3.381 (95%CI 1.287–8.879); p = 0.01

Concurrent targeted therapy 0.13 0.530 (95%CI 0.197–1.427); p = 0.21

Single- versus multifraction 0.74 –
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Fig. 2  Kaplan–Meier curve showing freedom from local progression stratified according to fractionation (stereotactic radiosurgery (SRS) versus 
hypofractionated stereotactic radiotherapy (HSRT))

Fig. 3  Kaplan–Meier curve showing overall survival
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and ND was 16%. In another large Gamma Knife series 
by Kawabe et  al. [12], the death rate for patients with 
BSM progression was 2.3% and ND rate was 10.9%. In 
our series, we observed a similar death rate of 2.8%, con-
firming that SRS is an effective treatment associated with 
a low mortality rate due to BSM progression.

A point for discussion comes from the role of WBRT 
in the management of BM. For patients with a limited 
number of brain metastases, SRS has become the rec-
ommended treatment over WBRT. In addition, recent 
evidence demonstrated that focal irradiation may have a 
role also in patients with further intracranial progression 
after a first course of SRS [26, 27]. In the current study, 
patients who received a previous WBRT had worse CSS, 
suggesting that SRS should be always considered in all 
patients with limited brain disease, even in presence of 
BSM.

Our study has several limitations due to its retrospec-
tive nature and selection biases; patients were treated 
with different radiation schedules, and a subgroup 
received targeted therapy which might have influenced 
clinical outcomes. Nevertheless, this is the largest series 
of linac-based SRS for BSM, and our data on local control 
and the cause of death strongly support the use of SRS/
HSRT in these patients confirming the excellent results 
reported in previous smaller mono-institutional series 
(see Table 3) [10, 11, 21, 28–30]. Of note, the rate of local 

control observed with frameless linac-based SRS/HSRT 
is in line with other SRS techniques, and our study adds 
evidence to the role of frameless linac-based SRS in the 
treatment of BSM.

In conclusion, frameless linac-based SRS/HSRT is 
a safe and effective treatment associated with excel-
lent local control in patients with BSM, similar to those 
reported for lesions in other regions of the brain, with 
no detrimental effect on survival. Death due to BSM is 
in fact a rare event, and the presence of BSM in cancer 
patients should not be considered an exclusion criterion 
from clinical trials.
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rate
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(6.6%)
Headache (5%)
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fr
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Present study 105 111 35.7 Gy10 
(23.8–60)

1-y: 90.4% 11 months 24.7% 2.8% Headache (2.8%)
Pseudoprogres‑
sion (1%)
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