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Abstract 

Background:  Skin cancer continues to be the most frequently diagnosed form of cancer in the U.S., with not only 
significant effects on health and well-being but also significant economic costs associated with treatment. A crucial 
step to the treatment and management of skin cancer is effective early detection with key screening approaches 
such as dermoscopy examinations, leading to stronger recovery prognoses. Motivated by the advances of deep 
learning and inspired by the open source initiatives in the research community, in this study we introduce Cancer-Net 
SCa, a suite of deep neural network designs tailored for the detection of skin cancer from dermoscopy images that is 
open source and available to the general public. To the best of the authors’ knowledge, Cancer-Net SCa comprises the 
first machine-driven design of deep neural network architectures tailored specifically for skin cancer detection, one of 
which leverages attention condensers for an efficient self-attention design.

Results:  We investigate and audit the behaviour of Cancer-Net SCa in a responsible and transparent manner through 
explainability-driven performance validation. All the proposed designs achieved improved accuracy when compared 
to the ResNet-50 architecture while also achieving significantly reduced architectural and computational complexity. 
In addition, when evaluating the decision making process of the networks, it can be seen that diagnostically relevant 
critical factors are leveraged rather than irrelevant visual indicators and imaging artifacts.

Conclusion:  The proposed Cancer-Net SCa designs achieve strong skin cancer detection performance on the 
International Skin Imaging Collaboration (ISIC) dataset, while providing a strong balance between computation and 
architectural efficiency and accuracy. While Cancer-Net SCa is not a production-ready screening solution, the hope is 
that the release of Cancer-Net SCa in open source, open access form will encourage researchers, clinicians, and citizen 
data scientists alike to leverage and build upon them.
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Introduction
Skin cancer is the most frequently occurring form of can-
cer in the U.S., with over 5 million new cases diagnosed 
each year [1], and continues to rise with every year that 

passes. Furthermore, the annual cost of treating skin 
cancer in the U.S. alone is estimated to be over $8 bil-
lion [2]. Fortunately, prognosis is good for many forms 
of skin cancer when detected early [3], and as such early 
skin cancer detection is an important factor for patient 
recovery. This is particularly critical for melanoma, the 
deadliest form of skin cancer that, if left undiagnosed 
and untreated at an early stage, can spread beyond its 
original location to nearby skin and organs until surgery 
is no longer sufficient and treatment methods such as 
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radiation are required [4]. As such, early diagnosis and 
preventative measures are exceedingly important as the 
death rate and cost of treatment both increase drasti-
cally as the cancer progresses from Stage I to Stage IV 
[5]. However, if diagnosed early on, a simple surgery to 
remove the lesion can increase survival rates by stopping 
the cancer from spreading beyond its origin [6, 7].

Currently, the most popular method of skin lesion 
diagnosis is the dermoscope assisted method [8], which is 
able to achieve a diagnostic accuracy of roughly 75–97% 
[9]. However, it was also found that in the hands of a der-
matologist that has limited experience with the instru-
ment, the use of a dermoscope may reduce the diagnostic 
accuracy rather than augmenting it. In addition, the 
“lack of reproducibility and subjectivity of human inter-
pretation” [7] associated with human based diagnosis 
is one of the main reasons why there has been a signifi-
cant increase in interest for computer assisted diagnosis 
of skin cancer. The use of computer vision and machine 
learning for the diagnosis of pigmented skin lesions has 
been shown to be accurate and practical [5–7, 9–13], and 
can improve biopsy decision making [10], as well as act 
as a pre-screening tool to reduce the amount of a time a 
professional spends on each case. Motivated by the chal-
lenge of skin cancer detection, and inspired by the open 
source and open access efforts of the research commu-
nity, in this study we introduce Cancer-Net SCa, a suite 
of deep neural network designs tailored for the detection 
of skin cancer from dermoscopy images, one of which 
possesses a self-attention architecture design with atten-
tion condensers [14, 15]. To construct Cancer-Net SCa, 
we leveraged a machine-driven design strategy that lev-
erages human experience and ingenuity with the meticu-
lousness and raw speed of machines. We further leverage 
the International Skin Imaging Collaboration (ISIC) data-
set [16] for this study, and illustrate the efficacy of Can-
cer-Net SCa when compared to previously proposed 
deep neural network architectures such as ResNet-50 
[17] and Inception V3 [18], which were both leveraged in 
previous studies to great effect for skin cancer detection 
[19–21]. To the best of the authors’ knowledge, Cancer-
Net SCa is comprised of the first machine-designed deep 
neural network architectures tailored specifically for skin 
cancer detection. Cancer-Net SCa is available to the gen-
eral public in an open-source and open access manner. 
While Cancer-Net SCa is not a production-ready screen-
ing solution, the hope is that the release of Cancer-Net 
SCa will encourage researchers, clinicians, and citizen 
data scientists alike to leverage and build upon them.

The paper is organized as follows. We first discus 
related work on deep learning and machine learning 
methods as well as datasets for skin cancer detection. 
The next section describes the methodology leveraged 

to build the proposed Cancer-Net SCa, the overall net-
work architecture designs of Cancer-Net SCa, as well as 
the explainability-driven performance validation strategy 
leveraged to audit Cancer-Net SCa. Following this, the 
next section presents the quantitative results for evalu-
ating the efficacy of Cancer-Net SCa, qualitative results 
to gain insights into the decision-making behaviour of 
Cancer-Net SCa, and a discussion on the broader impact 
of methods such as Cancer-Net SCa for aiding the clini-
cal decision process. Finally, conclusions are drawn and 
future work is discussed in the final section.

Related work
Motivated by the tremendous advances in the field of 
deep learning [22] and the great potential it has shown 
in a wide range of clinical decision support applications 
[19, 23–29], a number of recent studies have explored 
the efficacy of deep neural networks for the purpose of 
skin cancer detection [19, 28, 30–37]. In a recent study by 
Budhiman et al. [19, 21], a comprehensive exploration of 
different residual network architectures was conducted 
for the purpose of melanoma detection, with the best 
quantitative results found when leveraging a ResNet-50 
[38] architecture. Kassani and Kassani  [35] performed a 
study on five different deep CNN architectures, and also 
determined that the ResNet50 architecture achieved the 
highest average F-score and accuracy when compared 
to networks leveraging AlexNet, VGGNet, and Xcep-
tion based architectures. When comparing a ResNet-101 
architecture against an Inception V3 architecture on a 
2500 image subset of the ISIC dataset, similar perfor-
mance was achieved in [20] with the Inception V3 archi-
tecture displaying an F-score that was 4% higher.

Alternative approaches to leveraging deep neural net-
works and others machine learning methods have been 
proposed for the task of melanoma detection from der-
moscopy images. Codella  et  al.  [39] demonstrate that 
an ensemble-driven technique leveraging a combina-
tion of hand-coded feature extractors, sparse-coding 
methods, SVMs, deep residual networks, and fully con-
volutional neural networks together can achieve state-
of-the-art performance, with a sensitivity of 95% on the 
International Symposium on Biomedical Imaging (ISBI) 
2016 dataset [40]. Hagerly  et  al.  [41] also leverage deep 
learning with handcrafted features, and demonstrate 
that performance can be improved when using them 
in combination rather than individually. Recent efforts 
have also illustrated the effectiveness of attention based 
learning. Zhang et al. [42] leveraged the concept of atten-
tion residual learning to improve the ability to learn dis-
criminating features by generating the attention weights 
from the classification trained network itself rather than 
from extra learnable layers. Evaluated on the ISIC-2017 
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dataset, the attention based networks in [42] achieved 
strong skin lesion classification performance in der-
moscopy images. Yan  et  al.  [43] also investigate visual 
attention based approaches for melanoma detection by 
introducing end-to-end trainable attention modules that 
are able to highlight relevant regions of the image, thus 
providing additional interpretable information to the end 
user. As such, the leveraging of deep learning for the task 
of skin cancer detection from dermoscopy images holds 
considerable promise. However, these more recent mod-
els tend to have a high architectural and computational 
complexity that do not work well in the context of edge 
or embedded devices. In order to integrate a deep learn-
ing solution into a portable dermoscopy device, or one 
that can be used in a dermatologist’s office, the model 
must be lightweight and efficient while maintaining a 
high performance. As such, a current problem that needs 
to be solved in this space is finding models that provide a 
good balance between accuracy and complexity in order 
to be leveraged for on-site dermatology assistance. In 
literature, models with fewer parameters have also been 
leveraged, with Chaturvedi et al. [44] using a MobileNet 
[45] architecture to classify the HAM10000 [46] dataset 
into seven classes of skin cancer. Taufiq  et  al.  [47] and 
Castro et al.  [48] have also created models designed for 
mobile devices, with the former using support vector 
machines and the latter using a CNN based on evolution-
ary algorithms. In this paper, we explore novel architec-
tures that are also deployable on edge devices, catered 
towards usage in a fast-moving clinical environment.

In order for a deep neural network to be successfully 
built for skin cancer detection from dermoscopy images, 
large, high quality datasets are required. For the task of 
melanoma detection, most studies leverage the Interna-
tional Skin Imaging Collaboration (ISIC) [16] dataset, 
which is currently the largest curated skin lesion imaging 
dataset publicly available. However, other studies have 
also found success in leveraging alternative databases. 
Cıcero  et  al.  [49] leveraged images downloaded from 
DermWeb [50], a digital atlas containing a list of der-
matology related links. Ali  et  al.  [51] created their own 
dataset through the use of Generative Adversarial Net-
works (GANs) with self-attention mechanisms, in order 
to generate realistic skin lesion samples to combat the 
frequent problem of unbalanced skin cancer datasets. 
As well, Hagerly  et  al.  [41] used the HAM10000 [46] 
dataset in their study, a database containing over 9000 
images labelled with five classes of skin cancer. Even 
with the abundance of quality skin images and datasets, 
the number of total samples is still orders of magnitude 
smaller than when compared to other domains, such as 
general image classification or text annotation. Labelling, 
segmentation, and acquisition of additional images is 

difficult, which leads many researchers to push for deep 
learning techniques when tackling this problem.

Methods
Data preparation
In this study, we leverage the International Skin Imag-
ing Collaboration (ISIC) dataset, which is an open source 
public access archive of skin images. The dataset consists 
of 23,906 dermoscopy images at the time of the study, 
comprising a variety of skin cancer types such as Squa-
mous Cell Carcinoma, Basal Cell Carcinoma, and Mela-
noma. A total of 21,660 dermoscopy images were labelled 
as either benign or malignant for Melanoma, compos-
ing the dataset leveraged to build Cancer-Net SCa. Out 
of these samples, 2286 were labelled as malignant, and 
the rest as benign. Example dermoscopy images from 
the ISIC dataset for both malignant and benign lesions 
are shown in Fig.  1. It can be observed from the exam-
ple dermoscopy images that the problem of skin cancer 
detection from dermoscopy images is very challenging, 
with the benign lesion shown in Fig. 1b possessing mor-
phological and textural heterogeneous characteristics 
commonly exhibited by malignant lesions, while the 
malignant lesion shown in Fig. 1c exhibiting morphologi-
cal symmetry and textural uniformity commonly found 
in benign lesions. These examples motivate the explo-
ration of deep neural networks for learning the subtle 
characteristics found in skin lesions as captured in der-
moscopy images to better distinguish between benign 
and malignant lesions. Balanced random partitioning 
was conducted to form the training, validation, and test 
sets. Out of the 17,327 total samples in the training data-
set, there were 1847 malignant samples. Out of the 2166 
total samples in the validation dataset, there were 218 
malignant samples. In contrast, the test dataset consisted 
of a balanced split of 221 benign samples and 221 malig-
nant samples. This randomly sampled balanced split in 
testing enables for a better assessment of performance 
when compared with traditional k-fold cross validation, 
as k-fold performance can be skewed due to the major 
imbalances in the ISIC dataset.

During training, data augmentation was applied which 
included rotations (up to 30◦ ), shifts (up to 10%), and 
vertical and horizontal flipping. Each image was resized 
to a size of 224 × 224 pixels, with the 3-channel color 
information retained, with the exception of InceptionV3 
[18], which took in images of shape 299× 299× 3 . Stud-
ies have shown that data augmentation methods such as 
illumination correction and contrast enhancement can 
improve image quality and generalization ability [35], and 
thus these augmentations are implemented as well ( ±10% 
for either type). All methods were carried out in accord-
ance with relevant guidelines and regulations.
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Machine‑driven design exploration
To build the proposed Cancer-Net SCa deep neural net-
work designs to be as tailored as possible around the task 
of skin cancer detection, we leveraged a machine-driven 
design exploration strategy to automatically design a 
highly customized deep neural network architecture 
based on characteristics of the ISIC dataset and the skin 
cancer detection task at hand. Leveraging this strategy 
allows for the automatic discovery of uniquely tailored 
macroarchitecture and microarchitecture designs that 
combine to achieve the optimal balance between repre-
sentational power and complexity for skin cancer pheno-
type characterization from dermoscopy images, beyond 
what a hand-crafted deep neural network architecture 
can provide.

In this study, the machine-driven design exploration 
strategy we leveraged was generative synthesis  [52], 
where the problem of identifying deep neural network 
architectures tailored for a specific task is formulated 
as a constrained optimization problem subject to a set 
of operational constraints related to the task and data 
at hand. More specifically, the constrained optimization 
problem posed here involves finding an optimal genera-
tor G whose generated deep neural network architectures 

{Ns|s ∈ S} maximize a universal performance function U 
(e.g.,  [53]), with constraints around operational require-
ments for a given task as defined by an indicator function 
1r(·),

where S represent a set of seeds to the generator. The 
approximate solution to the constrained optimization 
problem posed in Eq.  1 is determined via an iterative 
optimization process, with initiation of this optimization 
process based on an initial design prototype ϕ , U , and 
1r(·).

In this study, the operational constraint imposed within 
the indicator function 1r(·) was that the validation accu-
racy of the designed deep neural network exceeded that 
of the ResNet-50 architecture leveraged in  [19], which 
was found by the authors of that study to provide the best 
quantitative results amongst different residual network 
architectures. For the initial design prototype ϕ , residual 
architecture design principles [17] were leveraged in this 
study. The use of residual connections have been shown 
to alleviate vanishing gradient and dimensionality prob-
lems, allowing networks to learn faster and easier with 

(1)
G = max

G
U(G(s)) subject to 1r(G(s)) = 1, ∀s ∈ S.

Fig. 1  Sample images from the ISIC Dataset leveraged to build Cancer-Net SCa. Dermoscopy images a and b are both benign, while images c and 
d are both malignant. Image b can easily be mistaken for a malignant lesion, while image c can easily be misclassified as benign to the untrained 
eye
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minor additional cost to architectural or computational 
complexity. Furthermore, given the iterative nature of the 
machine-driven design exploration strategy, we selected 
three of the generated deep neural network architecture 
designs to construct Cancer-Net SCa (i.e., Cancer-Net 
SCa-A, Cancer-Net SCa-B, and Cancer-Net SCa-C).

Network architectures
The proposed Cancer-Net SCa architectures are shown in 
Fig. 2. A number of interesting observations can be made 
about the Cancer-Net SCa architectures, which illus-
trates the efficacy of leveraging machine-driven design 
for constructing highly customized deep neural network 

architectures tailored for skin cancer detection from der-
moscopy images, as opposed to leveraging pre-existing, 
pre-defined deep neural network architecture designs in 
existing literature. Even though the Cancer-Net design 
leverages residual architecture design principles, the 
underlying macroarchitecture and microarchitecture 
designs are substantially different than that of standard 
ResNet designs in numerous aspects that provide sub-
stantially better accuracy as well as efficiency.

Diverse, heterogeneous designs
First of all, it can be observed that the macroarchitec-
ture designs exhibited in all Cancer-Net SCa networks 

Fig. 2  The proposed Cancer-Net SCa network architectures. The number in each convolution module represents the number of channels. 
The numbers in each visual attention condenser represents the number of channels for the down-mixing layer, the embedding structure, 
and the up-mixing layer, respectively (details can be found in [15]). It can be observed that all Cancer-Net SCa architectures exhibit both great 
macroarchitecture and microarchitecture design diversity, with certain models exhibiting specific lightweight macroarchitecture design 
characteristics such as attention condenser and projection–expansion–projection–expansion (PEPE) design patterns comprised of channel 
dimensionality reduction, depthwise convolutions, and pointwise convolutions
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are highly diverse and heterogeneous, with a mix of spa-
tial convolutions, pointwise convolutions, and depth-
wise convolutions, all with different microarchitecture 
designs. In contrast, the macroarchitecture design of 
ResNet is largely homogeneous and consists of a uniform 
sequence of spatial convolutions and pointwise convo-
lutions with repeated microarchitecture designs within 
each stage. In addition, the designs of all Cancer-Net SCa 
network architectures leverages depthwise convolutions 
for greater computational and architectural efficiency 
while achieving strong representational capacity, while 
the ResNet architecture design does not.

Furthermore, it can be observed that the macroarchi-
tecture design of Cancer-Net SCa-A is drastically differ-
ent than that of Cancer-Net SCa-C, with the majority 
of components in the two deep neural network archi-
tectures leveraging different design patterns. These two 
observations reflect the fact that a machine-driven design 
exploration strategy was leveraged and allows for very 
fine-grained design decisions to be made to best tailor for 
the task of skin cancer detection. To craft such diverse, 
highly customized macroarchitecture and microarchi-
tecture designs for the different Cancer-Net SCa models 
by hand would not be possible, and speaks to the great 
potential for high customization via a machine-driven 
design exploration strategy.

Lightweight design patterns
Second, it can be observed that very lightweight design 
patterns are exhibited in the proposed Cancer-Net SCa 
architectures. For example, Cancer-Net SCa-A and Can-
cer-Net SCa-B both leverage projection–expansion–pro-
jection–expansion (PEPE) design patterns comprised of 
channel dimensionality reduction, depthwise convolu-
tions, and pointwise convolutions. The PEPE module 
was discovered by a machine driven exploration strategy 
[15], and comprises of a projection layer that reduces 
dimensionality via pointwise convolution, followed by an 
expansion layer that increases dimensionality via depth-
wise convolution, followed by another projection layer 

and another expansion layer sequentially. Additionally, 
PEPE modules leverage channel decoupling by splitting 
the input channels from the previous layer into sepa-
rate partitions of channels, where each partition is then 
processed independently of each other. The particular 
sequential combination of dimensionality reduction, 
channel decoupling, and pointwise feature mixing ena-
bles a strong balance between representational capacity 
and representational efficiency, thus resulting in highly 
efficient yet effective deep convolutional neural network 
architectures.

In another example, light-weight long-range connectiv-
ity patterns can be observed, which enable improved rep-
resentational power by enabling information from earlier 
layers to flow directly to later layers while maintaining 
connection efficiency by only leveraging it sparingly.

Efficient self‑attention mechanisms
Third, it can be observed that Cancer-Net SCa-C exhib-
its a highly efficient self-attention architecture design 
that leverages the concept of visual attention condens-
ers (VAC) [14, 15]. In comparison, the ResNet architec-
ture does not include these VAC modules that allow the 
Cancer-Net models to achieve far greater efficiency while 
achieving selective attention. The improvements that 
these allow are shown in both the network performance 
and efficiency, and can be seen in Tables 1 and 2.

Table 1  Comparison of parameters, FLOPs, and accuracy for tested network architectures on the ISIC dataset

Best results highlighted in bold

Paper Architecture Parameters (M) FLOPs (G) Accuracy (%)

Budhiman et al. [19] ResNet-50 [38] 23.52 7.72 78.3

Demir et al. [20] Inception V3 [18] 23.80 43.6 84.2

Hassan et al. [58] DenseNet-121 [57] 7.00 2.80 83.9

Ech-Cherif et al. [59] MobileNetV2 [45] 4.20 0.57 83.9

Cancer-Net SCa-A 13.65 4.66 83.7

Cancer-Net SCa-B 0.80 0.43 84.4
Cancer-Net SCa-C 1.19 0.40 83.9

Table 2  Sensitivity, positive predictive value (PPV), and negative 
predictive value (NPV) comparison on the ISIC dataset

Best results highlighted in bold

Architecture Sensitivity (%) PPV (%) NPV (%)

ResNet-50 [38] 78.7 78.0 78.5

Inception V3 [18] 76.9 89.9 79.8

DenseNet-121 [57] 80.5 86.4 81.8

MobileNetV2 [45] 84.6 83.5 84.4

Cancer-Net SCa-A 92.8 78.5 91.2
Cancer-Net SCa-B 91.4 80.2 90.0

Cancer-Net SCa-C 90.0 80.2 88.7



Page 7 of 12Lee et al. BMC Medical Imaging          (2022) 22:143 	

The visual attention condensers that are used in the 
Cancer-Net design are efficient self-attention mecha-
nisms that produce condensed embeddings characteriz-
ing joint local and cross-channel activation relationships, 
and perform selective attention accordingly to improve 
representational capability. The utilization of attention 
condensers enable greater attentional performance and 
efficiency within the deep neural network architecture 
without the typical increase in computational overhead 
imposed by other previously proposed self-attention 
mechanisms for visual perception  [54, 55]. The VAC 
module consists of a down-mixing layer, condensation 
layer, an embedding structure, an expansion layer, a 
selective attention mechanism, and an up-mixing layer, in 
that order [15]. The initial down-mixing layer and con-
densation layers learn and project the input activations 
to a reduced dimensionality with an emphasis on strong 
activation proximity, in order to maintain powerful fea-
ture extraction despite having a more condensed repre-
sentation. The output is embedded using the embedding 
structure, then projected to an increased dimensionality 
via the expansion layer, thus producing self-attention val-
ues that well represent the relevant regions of interest. 
Next, the input, the self attention values, and the self-
attention mechanisms are multiplied and the product is 
projected back to the original channel dimensionality for 
the final output. The addition of the learned mixing lay-
ers into the attention condenser design enables a better 
balance between joint spatial-channel embedding dimen-
sionality and selective attention performance, which we 
leverage to create the highly efficient Cancer-Net SCa 
designs. The leveraging of lightweight design patterns is 
important as it better facilitates for real-time diagnosis, 
potentially on digital dermoscopy scanners. The unique 
designs of Cancer-Net SCa thus illustrate the benefits of 
leveraging machine-driven design exploration to create 
deep neural network architectures tailored to skin cancer 
detection.

Explainability‑driven performance validation
To audit Cancer-Net SCa in a responsible and transpar-
ent manner, we take inspiration from [25] and conducted 
an explainability-driven performance validation by lev-
eraging GSInquire  [56], an explainability method that 
has been shown to provide state-of-the-art quantitative 
interpretability performance in a way that reflects the 
decision-making process of the underlying deep neural 
network. The leveraging of explainability for performance 
validation serves several important purposes.

Behavioural validation
The transparency gained through explainability allows us 
to ensure that decisions made by Cancer-Net SCa are not 

based on erroneous visual cues, but on clinically relevant 
visual indicators as captured in the dermoscopy image. 
Any abnormal behaviour in the decision-making process 
of the deep neural networks, such as gaps and biases as 
well as ’right decision, wrong reason’ scenarios can then 
be identified during this performance validation process 
and corrected in the appropriate way.

Insight discovery
The ability to understand the visual indicators used in 
the decision-making process of Cancer-Net SCa when 
predicting whether a skin lesion is cancerous or not can 
enable dermatologists and research scientists to gain bet-
ter insight into what visual cues may be important for 
detecting skin cancer. The discovery of such potentially 
valuable visual indicators may be interesting and shed 
new light on improved clinical screening strategies based 
on such visual indicators.

Building clinical trust
Given that the ultimate purpose of the proposed Cancer-
Net SCa deep neural network architectures is to facili-
tate for computer-aided clinical decision support, it is 
crucial for the widespread adoption of such deep neural 
networks to provide explainability and interpretability 
to dermatologists. This improves the level of trust they 
can place on the additional information provided by the 
neural network, and augments their own knowledge and 
experience with the model.

Results and discussion
In this section, we will present the experimental results 
to evaluate the efficacy of the proposed Cancer-Net SCa 
deep neural network architectures for skin cancer detec-
tion from dermoscopy images. We conduct two forms of 
analysis for a more comprehensive understanding of the 
proposed networks. First, we conduct empirical evalu-
ation using the ISIC dataset and evaluate the proposed 
deep neural network architectures using a suite of quan-
titative performance metrics, and compare them against 
three other popular network architectures seen in lit-
erature. Next, we conduct a qualitative analysis using an 
explainability-driven performance validation to better 
understand the decision-making behaviour and validate 
the relevance of the imaging features learned from the 
ISIC dataset. The details and discussion of each experi-
ment is presented below.

Quantitative results
We evaluate the performance of the proposed Cancer-
Net SCa deep neural network designs using the test 
set of dermoscopy images described in “Data prepara-
tion” section. Furthermore, for evaluation purposes, we 
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compare it with the 50-layer residual deep convolutional 
neural network architecture  [17], which was leveraged 
by Budhiman et al.  [19] to achieve the best quantitative 
results in their experiments. In addition, an Inception 
V3 [18] network was used for comparison, which was 
leveraged in several studies [20, 21] for strong quantita-
tive results in their experiments. These commonly used 
ResNet-50 and Inception architectures were chosen due 
to the fact that they actually demonstrated superior, 
state-of-the-art performance on this dataset when com-
pared to more complex architectures [19–21]. For addi-
tional comparisons against commonly used architectures, 
as well as to compare against more lightweight designs, 
we also evaluated the performance against DenseNet-121 
[57], which was leveraged by Hassan et al. [58] to achieve 
strong performances in the skin lesion classification 
domain, and MobileNetV2 [45], which was used by Ech-
Cherif et al. [59] to develop a mobile application for skin 
cancer classification on edge devices.

The performance metrics leveraged in this study are 
accuracy, sensitivity, positive predictive value (PPV), 
and negative predictive value (NPV). Construction and 
evaluation are conducted using TensorFlow  [60], with 
tested architectures trained using Adam optimizer, with 
LR=0.0001, epochs=80, momentum=0.9, and batch 
rebalancing. The usage of batch rebalancing helps allevi-
ate the major imbalances in the training and validation 
datasets.

The results are shown in Tables 1, 2 and 3. A number of 
observations can be made. First, it can be observed that 
the proposed Cancer-Net SCa designs achieved compa-
rable accuracy when compared to the four traditionally 
used network architectures while achieving significantly 
reduced architectural and computational complexity. 
For example, Cancer-Net SCa-B achieved 0.7% higher 
accuracy when compared to the ResNet-50 network 
architecture while possessing 29.5× fewer parameters 
and requiring ∼ 18× fewer FLOPs. This illustrates the 
benefits of leveraging a machine-driven design explora-
tion strategy for designing a deep neural network archi-
tecture that finds a strong balance between efficiency 
and accuracy. When compared against the Inception 
V3 network architecture, the Cancer-Net SCa-B design 
attains comparable accuracy while having significantly 

lower computational complexity (by one or two orders of 
magnitude), with Cancer-Net SCa variants A and C also 
having orders of magnitude lower architectural complex-
ity while maintaining comparable accuracy. Further lit-
erature can also be compared against, such as [61] also 
suggesting lightweight architectures for similar use cases, 
proposing small and efficient networks with just 4.8M 
parameters, but Cancer-Net SCa-C is still just a quarter 
of the size while maintaining competitive accuracy. As 
such, this makes the Cancer-Net SCa designs much more 
well-suited for on-device skin cancer screening when 
compared to other tested network architectures.

Second, it can be observed that all proposed Cancer-
Net SCa designs achieved higher sensitivity and nega-
tive predictive value (PPV) than that achieved with the 
other tested deep neural network architectures used for 
comparison. For example, Cancer-Net SCa-A achieved 
14.1% higher sensitivity and 10.8% higher NPV when 
compared to the ResNet-50 network architecture. Com-
pared to the most sensitive deep neural network tested 
(MobileNetV2), Cancer-Net SCa A, B, and C achieved 
9.6%, 8.0% and 6.4% higher sensitivity, respectively. This 
further illustrates the benefits of leveraging a machine-
driven design exploration strategy for designing a highly 
customized deep neural network architecture tailored 
specifically for skin cancer detection. Although the 
Cancer-Net SCa networks achieved lower PPV than the 
architectures tested, the significantly higher sensitivity 
values are generally more valuable in the clinical work-
flow for skin cancer screening, where false negatives 
should be avoided as much as possible.

Observing the CancerNet variants alone, we can learn 
that the Cancer-Net SCa designs have different per-
formance-efficiency tradeoffs, with Cancer-Net SCa-A 
providing the highest sensitivity and NPV, Cancer-Net 
SCa-B having the lowest architectural complexity, high-
est accuracy and highest PPV between all Cancer-Nets, 
and Cancer-Net SCa-C having the lowest computational 
complexity. This illustrates how a machine-driven design 
exploration strategy can allow for greater flexibility to 
meet the requirements of the use case (e.g., on-device 
examination vs. cloud-driven examination).

Qualitative results
Visual comparisons of the images themselves are also 
useful when analysing model performance, to try and 
gain insights on which images were classified correctly 
and incorrectly. Figure 3 shows two sample images from 
the ISIC dataset, which are relatively similar in appear-
ance. All seven tested model architectures correctly iden-
tified image (a) as malignant, while the DenseNet-121 and 
InceptionV3 architectures incorrectly classified image 
(b) as benign. All three Cancer-Net SCa models had a 

Table 3  Confusion matrix breakdown for Cancer-Net SCa-A

Higher is better, indicated in bold

Predicted

Benign (%) Malignant (%)

Label

Benign 74.66 25.34

Malignant 7.24 92.76
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correct classification of malignant for both images. How-
ever, to fully understand the differences between models, 
a purely metric based analysis is insufficient when under-
standing the reasons behind superior performance.

In order to better understand how Cancer-Net SCa 
makes detection decisions based on dermoscopy images, 
we leveraged GSInquire [56] for explainability-driven 
performance validation and insight discovery to audit 
the decision-making process. Examples of dermoscopy 
images of malignant cases and benign cases and the asso-
ciated imaging features identified by GSInquire to be 
relevant to the decision-making process of Cancer-Net 
SCa-A are shown in Figs. 4 and 5.

A number of observations can be seen based on the 
identified imaging features that provide key insights into 
the decision-making behaviour of Cancer-Net SCa-A. 
First of all, it can be observed that Cancer-Net SCa-A 
leverages the color heterogeneities within a skin lesion to 
aid in the differentiation between benign and malignant 
skin lesions (as exemplified in both Fig. 4a, b). Second, it 
can also be observed that the textural heterogeneity in a 
skin lesion aids in the differentiation between benign and 
malignant skin lesions (as exemplified in Fig. 4b). Third, 
it can be further observed that morphological irregulari-
ties exhibited by skin lesions is leveraged by Cancer-Net 
SCa-A to differentiate between benign and malignant 

Fig. 3  Sample images from the ISIC Dataset that the trained models were tested on. All seven tested model architectures correctly identified image 
a as malignant. However, the DenseNet and Inception architectures incorrectly classified image b as benign, while all three Cancer-Net SCa models 
had a correct classification of malignant

Fig. 4  Example dermoscopy images of malignant cases from the ISIC dataset and their associated diagnostically relevant imaging features as 
identified by GSInquire [56], using Cancer-Net SCa-A. The bright regions indicate the imaging features identified to be relevant
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skin lesions (as exemplified in both Fig. 4a). Fourth, it can 
be also observed from Fig. 5 that, in the case of benign 
lesions the morphological symmetry and relative homo-
geneous textural characteristics of the entire skin lesion 
and surrounding skin area are leveraged by Cancer-Net 
SCa-A to identify that these are benign cases. There-
fore, these types of diagnostically relevant imaging fea-
tures that Cancer-Net SCa-A leverages indicate that the 
deep neural network is exhibiting valid decision-making 
behaviour.

As such, it can be clearly seen that an explainability-
driven performance validation helps screen for errone-
ous decision-making behaviour that rely on irrelevant 
visual indicators and imaging artifacts. This emphasizes 
the importance of auditing deep neural networks when 
designing for clinical applications as it can increase the 
trust that practitioners have towards deep learning.

Discussion and broader impact
Skin cancer continues to be a prominent problem for the 
health and well-being of society, with millions of new 
cases and thousands of deaths annually costing billions 
of dollars in the United States alone. Not only are most 
biopsies unnecessary (only 1 in 36 biopsies yield a case 
of melanoma [62]), the cost of misdiagnoses and unnec-
essary biopsies can quickly accumulate. This adds an 
expensive and needless burden to both the patient and 
the system, while taking up precious time which could be 
allocated to treating additional patients.

The benefits of computer-aided strategies such as 
Cancer-Net SCa are twofold. Not only do they provide 
dermatologists with valuable second opinions during 
diagnosis, they also save time by acting as pre-screen-
ing tools in the diagnostic process. The goal of Cancer-
Net SCa is not to replace dermatologists, but instead to 
aid professionals in their decision-making processes as 
well as act as a basis for others to improve upon and 
accelerate advances in this area. When correctly lev-
eraged with professional knowledge, Cancer-Net SCa 
will hopefully impact the field of dermatology in a posi-
tive manner. The fact that Cancer-Net SCa underwent 
explainability-driven auditing will hopefully allow for 
greater trust as well as better understanding of its deci-
sion-making behaviour. As one of the major deterrents 
of deep learning in the medical field is the “black-box” 
nature of these systems, granting additional insight on 
how network decisions are reached can result in more 
trust towards the systems - a crucial first step towards 
the widespread adoption of artificial intelligence for 
health and safety.

To reiterate, these Cancer-Net SCa designs were tai-
lor made for rapid computer-aided clinical decision 
support on edge and embedded devices (such as port-
able digital dermoscopy systems or low-cost mobile 
smartphones), or other resource-limited environments 
(such as dermoscopes attached to low-cost, low-power 
tablets and laptops).

Fig. 5  Example dermoscopy images of benign cases from the ISIC dataset and their associated diagnostically relevant imaging features as 
identified by GSInquire [56], using Cancer-Net SCa-A. The bright regions indicate the imaging features identified to be relevant
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Conclusion
In this study, we introduced Cancer-Net SCa, a suite 
of deep neural network designs tailored for the detec-
tion of skin cancer from dermoscopy images, each 
with a different balance in performance and efficiency. 
Designed via a machine-driven design exploration 
strategy, Cancer-Net SCa is available open source and 
available to the general public. Experimental results 
using the ISIC dataset show that the proposed Cancer-
Net SCa designs can achieve strong skin cancer detec-
tion performance while providing a strong balance 
between computational and architectural efficiency 
and accuracy. An explainability-driven audit of Cancer-
Net SCa is also conducted, showing that prediction is 
performed by leveraging relevant abnormalities found 
within skin lesion images, rather than random visual 
indicators and imaging artifacts.

Given the promise of leveraging a machine-driven 
design exploration strategy for creating highly custom-
ized deep neural network architectures for skin can-
cer detection, we aim to explore and expand upon this 
strategy by creating deep neural networks tailored to 
other forms of cancer such as lung cancer, breast can-
cer, and prostate cancer. The strategy can also extend 
to different clinical decision support tasks such as risk 
stratification, treatment planning, and therapy response 
prediction for improved personalized patient care. Fur-
thermore, we aim to continue making these tailored 
deep neural networks along with associated scripts and 
curated benchmark datasets publicly available in open 
source and open access form for researchers, clinicians, 
and citizen data scientists alike to leverage and build 
upon them to advance research and adoption in this 
area.
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