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SUMMARY

Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative 

transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with 

expression levels negatively or positively correlated with species’ maximum lifespan (Neg- or 

Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. 

Pos-MLS genes show enrichment in DNA repair, microtubule organization and RNA transport. 

Expression of Neg- and Pos-MLS genes is modulated by interventions including mTOR and 

PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian 

regulation possibly to avoid persistent high expression, while Pos-MLS genes are targets of 

master pluripotency regulators OCT4 and NANOG, and are upregulated during somatic cell 

reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly 

downregulated after birth. This work provides targets for antiaging interventions by defining 

pathways correlating with longevity across mammals and uncovering circadian and pluripotency 

networks as central regulators of longevity.
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Lu et al. conducted comparative transcriptomics and identified genes with expression negatively 

or positively correlated with species’ maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS 

genes are enriched in energy metabolism and inflammation, and controlled by circadian factors. 

Pos-MLS genes are enriched in DNA repair and controlled by the pluripotency network.

Graphical Abstract

Keywords

Aging; longevity; comparative transcriptomics; epigenetic reprogramming; pluripotency; circadian 
clock; functional genomics

INTRODUCTION

Aging is characterized by a progressive loss of physiological capacity, making aging a major 

risk factor for multiple diseases (Lopez-Otin et al., 2016). Many aging theories have been 

proposed, and important longevity pathways have been discovered, with the help of model 

organisms including yeasts, nematodes, fruit flies, mice (Miller et al., 2020; Mitchell et 

al., 2015). However, lifespan extension experimentally achieved in model organisms using 

genetic or pharmacological manipulations pales in comparison with interspecies differences 

in lifespan. Natural selection has produced mammals with dramatically diverse aging rates 

that provide the opportunity to identify the underlying mechanisms of large changes in 

lifespan through comparative biology (Gorbunova et al., 2014; Zhao et al., 2021).

Lu et al. Page 2

Cell Metab. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Previous studies have investigated the genomic features of mammals with extreme longevity 

such as naked mole-rats (Kim et al., 2011), beavers (Zhou et al., 2020), bowhead whales 

(Keane et al., 2015), elephants (Sulak et al., 2016) and bats (Foley et al., 2018). Long-lived 

rodents, like the naked mole-rats and beaver show enhanced resistance to DNA damage and 

cellular stress, which can be partially explained by enhanced activity of the Sirt6 gene (Tian 

et al., 2019). Hpgd, a tumor suppressor gene, is uniquely duplicated in the beaver among 

rodents (Zhang et al., 2021). Similarly, an increase in Tp53 copy number has been linked to 

increased cancer resistance enabling a longer lifespan in the elephants (Sulak et al., 2016). 

Sequencing of the bowhead whale genome revealed species-specific changes in DNA repair 

and cell cycle genes (Keane et al., 2015). Genomic analysis of 88 rockfish species identified 

a positive selection in DNA repair pathways in long-lived taxa (Kolora et al., 2021). In 

contrast, a comparative study of 45 killifish species revealed that genes involved in DNA 

repair and nutrient-sensing pathways are under relaxed selection in short-lived killifish (Cui 

et al., 2019).

Changes in gene expression and gene regulatory networks also play an important role 

in aging and the regulation of lifespan (Tabula Muris, 2020). African killifish tend to 

live longer when genes involved in cellular energy production are less active at a young 

age (Baumgart et al., 2016). Transcriptomic profiling of long- and short-lived mutant 

mice implicates a role of mitochondrial metabolism in aging (Fuentealba et al., 2021). 

Gene expression signatures of mammalian life histories have been examined in brain, 

kidney and liver (Fushan et al., 2015), but the species in this dataset were highly diverse 

phylogenetically. Hence, a large-scale comparative transcriptomic analysis of mammals that 

are closely related phylogenetically, but highly diverse in their MLS would have more power 

at identifying the signatures of longevity. Despite these initial findings of transcriptomic 

features correlating with longevity, the regulation of lifespan-associated genes remained to 

be determined.

Here, by performing extensive comparative transcriptomics analysis, we revealed common 

paths to longevity and uncovered molecular and transcriptional networks regulating the 

MLS-associated genes. Notably, we found that MLS-associated genes are controlled by 

circadian and pluripotency factors, suggesting that these two regulatory networks are tuned 

by evolutionary processes to give rise to striking differences in MLS between species.

RESULTS

Identification of genes associated with MLS by comparative transcriptomics

To systematically characterize transcriptomic signatures of longevity, we collected six 

tissues including brain, heart, kidney, liver, lung and skin from 141 individuals covering 

26 species that belong to the orders Rodentia and Eutlipotyphyla. The MLS of these species 

ranged from 3 years to 37 years (Figure 1A; Figure S1A). We deep-sequenced ~13.1 trillion 

base pairs of RNA from 557 samples (78.5 ± 17.6 s.d. million reads per sample) using 

Illumina RNA-sequencing (RNA-Seq). Some tissues were not available for some of the 

individuals. Most of the raw reads (99.2%) showed high quality (Phred quality score > 20). 

On average, 92.6% of clean reads were successfully mapped to the corresponding reference 

genomes, 77.4% of which had unique mapping coordinates (Table S1).
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Because 14 of the 26 genomes in this study lack gene annotations in the Refseq database 

(Pruitt et al., 2012), we developed a comprehensive pipeline (Figure S1B, also see Methods) 

to de novo assemble, annotate, and quantify the full-length transcripts from RNA-Seq 

samples. We used the mouse and guinea pig as examples to evaluate the performance of our 

pipeline. The gene expression levels calculated by our pipeline are highly consistent with 

the results from well-annotated Gencode annotation for the mouse (Figure S1C, R-square = 

0.87) (Frankish et al., 2019). For guinea pig, whose genome is less completely assembled 

and annotated, high consistency of gene expression between our pipeline and Refseq 

annotation was also observed (Figure S1C, R-square = 0.92). To conduct inter-species 

comparisons of gene expression, different methods were used to normalize the expression 

levels of homologous genes across species. The results are highly consistent (Figure S1D 

and see Methods). As expected, the expression of tissue-specific marker genes was restricted 

to the corresponding tissues (Figure S2A). Hierarchical clustering of RNA-seq data revealed 

that samples were clustered by tissues instead of species (Figure S2B). These results suggest 

a high quality of sample integrity, RNA library preparation, transcriptome assembly and 

gene expression quantification in this study.

To reduce background variability, 16,021 homologous genes that have been annotated 

in at least 10 species were kept for the following analysis (Figure S2C). We computed 

Spearman’s rank correlation coefficient for every gene based on the expression and MLS 

with all the tissues merged and within each tissue across species. ~1,000–1,500 genes 

are negatively or positively correlated with MLS (Neg-MLS or Pos-MLS genes) in each 

tissue (Spearman |ρ| > 0.4, adj. p < 0.05) (Figures 1B–D and S2D; Table S2), suggesting 

a universal association between gene expression and lifespan of species across tissues. 

We next analyzed the overlap of MLS-associated genes between tissues. Compared to the 

expected distribution (Lex et al., 2014), MLS-associated genes tended to be tissue-specific 

or shared by multiple tissues (Figures S2E–F). Heatmap analysis revealed that most MLS-

associated genes show a consistent positive or negative correlation with MLS, yet the 

strength of the correlation can differ by tissue (Figure 1E). These results suggest that both 

tissue-specific and global mechanisms are involved in longevity regulation. Previous studies 

showed that adult body mass (BM) correlates with MLS —with larger animals living, on 

average, longer than smaller ones (Magalhães et al., 2007). We confirmed this trend among 

the species used in this study (Figure S2G). As expected, genes that correlate with BM 

(Table S3) show significant overlap with Neg- and Pos-MLS genes (Figures 1C–D).

Interestingly, 46 of 136 mouse genes curated in the GenAge database (Tacutu et al., 2018) 

show a significant correlation with MLS (Figure 1B). Among these genes, AKT serine/

threonine kinase 2 (Akt2) and Glutathione S-Transferase alpha 4 (Gsta4) were identified as 

Neg-MLS genes in most tissues, suggesting they may generally serve as negative regulators 

of longevity (Figures 1F and S2H). Indeed, disruption of Akt2 and Gsta4 in mice has been 

shown to extend the average lifespan by 9.1% and 13%, respectively (Ren et al., 2017; 

Singh et al., 2010). In contrast, the expression levels of DNA mismatch repair family gene 

MutS Homolog 2 (Msh2) and its paralog Msh6 tend to be positively correlated with MLS 

of species (Figures 1G and S2I). Intriguingly, previous studies revealed that about 50% of 

Msh2 knockout mice die by 8 months of age and all animals were dead by 12 months of 

age (Wei et al., 2003). Similarly, 40% of Msh6 knockout mice died at 9 months after birth 
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(Edelmann et al., 1997). Depletion of Msh6 in Saccharomyces cerevisiae leads to a 50% 

decrease of the mean chronological lifespan (Laschober et al., 2010). Taken together, our 

results suggest that Neg-MLS and Pos-MLS genes are prevalent across tissues and may have 

functional roles in regulating lifespan.

Functional enrichment of genes negatively correlated with MLS

To identify a pan-tissue transcriptomic signature that correlates with MLS, we ranked 

all the genes by their Spearman correlation coefficient with MLS, with six tissues 

merged across species, and performed Gene Set Enrichment Analysis (GSEA). Neg-MLS 

genes showed strong enrichment in Gene Ontology (GO) and KEGG pathways including 

respirasome, oxidative phosphorylation, fatty acid catabolism, metabolism of ribonucleotide 

and glutathione, cytochrome complex and mitochondria (Figures 2A–B and S3A; Table 

S4A). These enriched terms are highly interconnected, supporting the notion that cellular 

energy metabolism is regulated in a coordinated manner. For example, the expression of 

Uqcrfs1, a respiratory chain gene, shows strong negative correlations with MLS across 

all six tissues (Figures 2C). Another module enriched with Neg-MLS genes contained 

inflammation-related functions, including leukocyte, lymphocyte, cytokine, chemokine, and 

cytosolic DNA sensing-related pathways. This is consistent with the causal role of chronic 

inflammation in aging-related diseases (Rea et al., 2018).

Cellular respirasome is a major intracellular source of reactive oxygen species (ROS), 

which can trigger oxidative stress and inflammation (Mittal et al., 2014). We next 

asked whether the enrichment of Neg-MLS genes in cellular energy metabolism and 

inflammation are interdependent. The cellular respirasome-related metabolic pathways 

were further divided into oxidative phosphorylation, NADH dehydrogenase, citrate cycle 

and fatty acid metabolism. We found that the expression of energy metabolism genes is 

highly intercorrelated and shows negative correlations with the MLS of species (Figure 

S3B). Interestingly, the expression of energy metabolism genes showed a strong positive 

correlation with the expression of inflammation genes (Figure S3B). In addition, the 

expression of both energy metabolism and inflammation genes showed a weak positive 

correlation with the expression of genes that respond to ROS and oxidative stress. These 

results suggest that the enrichment of Neg-MLS genes in the inflammation pathway may be 

interdependent with energy metabolism pathways.

To identify genes associated with MLS, independent of BM, we built a linear model using 

BM to predict the MLS (Figure S2G) and used the residuals as BM-corrected MLS (Table 

S4). Similar to Neg-MLS genes, we found genes showing a negative correlation with 

BM-corrected MLS were overrepresented for respirasome and oxidative phosphorylation-

related pathways, but the enrichment level decreased by ~50% compared to the Neg-MLS 

genes (Figure S3A). This result suggests that the metabolism enriched pathways of Neg-

MLS genes can be partially explained by BM. In contrast, BM-corrected Neg-MLS genes 

showed even stronger enrichment in inflammation-related terms (Figure S3A), indicating 

that inflammation shows a stronger negative correlation with MLS than BM.

We next explored tissue-specific functional enrichments of Neg-MLS genes (Figure 2D). In 

the brain and heart, the expression of genes involved in voltage-gated potassium channel 
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shows specific negative correlations with MLS (Figure 2E), which were exemplified by 

potassium voltage-gated channel subfamily genes Kcna7 and Kcnb1 in the heart (Figure 2F; 

ρ = −0.69 and −0.65, respectively). Interestingly, the potassium channel has a pivotal role 

in maintaining the rhythmicity of the heartbeat (Grandi et al., 2017), which is negatively 

correlated with MLS (Figure S3C) (Boudoulas et al., 2015). The inverse correlation 

of potassium channel genes with MLS might provide a molecular explanation of how 

heartbeat rate negatively correlates with MLS. In addition, the expression of genes related 

to cardiolipin metabolism (Figure 2D) also shows strong a negative correlation with MLS 

in the heart. Cardiolipin is a major membrane phospholipid in the mitochondria, which 

is essential for oxidative phosphorylation (Mejia et al., 2014). This result suggests that 

tissue-specific energy metabolism also contributes to lifespan regulation.

In the lung, we observed specific enrichments of Neg-MLS genes in immune-related 

functions including neutrophil activation, inflammatory response and NF-Kappa B pathway 

(Figure 2G). This may be due to the lung serving as a critical immune interface for airborne 

pathogens (Hartl et al., 2018). For instance, the lung expression of two master regulatory 

genes Nfkb1 and Kras in the NF-Kappa B pathway shows a strong negative correlation with 

MLS (Figure 2H, ρ = −0.73 and −0.67, respectively). The expression of genes involved 

in the collagen catabolic process also shows a specific negative correlation with MLS in 

the lung, which is consistent with the role collagen homeostasis plays in lung diseases 

like pulmonary fibrosis (Tsukui et al., 2020). In the kidney, gene expression of glucose 

transmembrane transporter shows specific negative correlation with MLS. In fact, the kidney 

is responsible for up to 20% of all glucose production and new anti-hyperglycemic drugs 

that inhibit glucose reabsorption protect the kidneys and heart from failing (Mather and 

Pollock, 2011). One of these drugs, canagliflozin, extends mouse lifespan, though only in 

males (Miller et al., 2020). In addition, the negative correlation of MLS and expression 

of genes involved in the long-chain fatty acid-CoA ligase activity, muscle cell apoptotic 

process, and myosin filament were specifically observed in the skin (Figure 2D), suggesting 

that proliferation and energy metabolism of skin cells may affect the lifespan of the 

organism.

We next tested whether the functional enrichments that negatively correlate with MLS 

result from the evolutionary history of species. We performed phylogenetically independent 

contrasts (PIC) of gene expression according to the phylogeny of the species in our study 

(Figure S1A). We found that respirasome and inflammation-related terms are still the most 

enriched terms (Figure S3D), suggesting that phylogenetic factors are not responsible for 

their negative correlation with MLS. Together, these results suggest higher expression 

of genes involved in energy metabolism and inflammation-related functions negatively 

correlates with species longevity.

Functional enrichments of genes positively correlated with MLS

The functions of Pos-MLS genes are dramatically different from those of Neg-MLS 

genes. Pos-MLS genes showed strong enrichment in three modules including DNA repair, 

organization of cilium and microtubule, RNA transport and localization (Figure 3A; 

Table S4B). In the DNA repair module, most DNA repair types are enriched, including 
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base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), 

homologous recombination (HR), and non-homologous end joining (NHEJ). Notably, 

enrichments of Pos-MLS gens in DNA repair were retained after correction with BM, albeit 

to a decreased level (Figure S3A). After correction for BM, pathways involved in cilium and 

microtubule also showed similarly decreased enrichment, but an increased enrichment was 

observed in the RNA export pathway (Figure S3A).

Notably, Pos-MLS genes showed stronger enrichments in the DNA Double-Stranded Break 

(DSB) repair and MMR than in the BER and NER (Figures 3B and S4A; Normalized 

Enrichment Score [NES] = 2.4 (HR) versus 1.6 (NER)), which is consistent with our 

previous finding that more robust DNA DSB repair coevolves with longevity (Tian et al., 

2019). For example, the expression of DNA mismatch repair family gene Pms1 shows a 

consistent positive correlation with MLS (average ρ = 0.68) in all six tissues (Figure 3C). 

Aprataxin and PNKP like factor (Aplf) is a component of the cellular response to DNA 

single- and double-strand breaks. Checkpoint kinase 1 (Chek1) is required for checkpoint 

mediated cell cycle arrest and activation of DNA repair. Protection of telomeres 1A (Pot1a) 

is involved in telomere maintenance (Lee et al., 2014). The expression of all these genes 

shows a strong positive correlation with MLS across multiple tissues (Table S2).

Besides canonical DNA repair genes, genes that encode the central component of centrioles 

spindle, assembly abnormal protein 6 (Sass6), Fanconi anemia (FA) core complex, and 

centromere protein S (Cenps) also show strong positive correlations with MLS across 

multiple tissues (Table S2). This might be partly due to the important role of centrioles 

and the FA complex in cell division, DNA damage response and prevention of chromosomal 

breakage (Duxin and Walter, 2015; Nigg and Holland, 2018; Ryu and Kim, 2019). The 

general enrichment of RNA transport and localization, exemplified by phosphorylated 

adaptor for RNA export (Phax, Table S2), across tissues suggests RNA homeostasis as 

an emerging regulator of longevity (Dominick et al., 2015; Park et al., 2017).

We also observed tissue-specific functional enrichment of Pos-MLS genes. The expression 

of genes involved L-Glutamate transmembrane transport, glial cell migration and 

extracellular matrix structure show a positive correlation with MLS in the brain (Figure 

S4B). As an example, extracellular matrix protein 2 (Ecm2) gene shows higher expression 

in the species with long lifespans (Figure S4C). Myelin basic protein (Mbp) shows a strong 

positive correlation with MLS in the liver (Figure S4D). Interestingly, the expression of 

myelin significantly decreases with age in the mouse brain (Ahn et al., 2017), while its role 

in the liver remains largely unknown. We also observed several functional terms including 

DNA replication, long-chain fatty acid biosynthesis, and keratinization that are specifically 

correlated with MLS in the skin (Figure S4B), indicating a role of normal skin function in 

longevity.

Similar to Neg-MLS genes, we also found that the positive correlation of these functions 

with MLS is sustained after PIC of gene expression (Figure S3D). Collectively, these data 

indicate that the high expression of genes involved in DNA repair and centriole assembly-

related pathways constitute the transcriptomic signature of long MLS.
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Expression of Neg- and Pos-MLS genes during aging

To determine how aging affects the expression of MLS-associated genes, we reanalyzed 

the published mouse gene expression data during aging (Schaum et al., 2020). Spearman 

correlation coefficients of gene expression with age were calculated. Interestingly, we found 

that Neg- and Pos-MLS genes can be both upregulated and downregulated during mouse 

aging, which is dependent on the enriched function (Figure 3D). Specifically, Neg-MLS 

genes involved in energy metabolism are downregulated in 14 out of 17 tissues during 

mouse aging (shown as negative correlations with age). In contrast, Neg-MLS genes 

involved in inflammation are upregulated in all17 tissues except the limb and subcutaneous 

adipose tissue (SCAT). As for Pos-MLS genes, we found that genes involved in DNA repair, 

RNA export and processing, spindle microtube and centriole assembly related pathways 

show moderate but consistent downregulation in most of the tissues except pancreas, marrow 

and skin, where there is a trend towards upregulation. Finally, Pos-MLS genes involved in 

the cilium pathway tend to be upregulated during mouse aging.

To test whether the observations in mice are conserved in other species, we reanalyzed the 

human gene expression data during aging (Ferraro et al., 2020). Human samples are more 

heterogeneous and biased towards older individuals (Figures S4E–F). Consistently with the 

mouse results, we found that in human Neg-MLS genes involved in energy metabolism show 

an overall downregulation in 40 out of 45 tissues or regions during human aging (Figure 

S4G). Furthermore, Neg-MLS involved in inflammation are globally upregulated in 31 of 45 

tissues or regions during human aging. For Pos-MLS genes, we observed that genes involved 

in DNA repair, RNA export and processing, and spindle microtube tend to be downregulated 

in ~50% of all the tissues or regions. Pos-MLS genes involved in centriole assembly and 

cilium pathways tend to be upregulated during human aging.

These results suggest that MLS-associated genes are under dynamic regulation during 

human and mouse aging in a function- and tissue-specific manner. The different trajectories 

of MLS-associated gene expression during aging suggest that age-related expression 

changes of MLS-associated genes can be both harmful (inflammation, DNA repair), 

and adaptive (energy metabolism), though there is an alternative possibility that the 

downregulation of energy metabolism genes is a result of impaired mitochondrial function 

during aging (Sun et al., 2016).

Interventions regulating MLS-associated genes

We next identified potential interventions that regulate MLS-associated genes. We 

analyzed transcriptome profiling data after perturbations from Connectivity Map (CMap) 

(Subramanian et al., 2017) and other published datasets with aging-associated interventions.

CMap’s perturbations were classified as compound treatment (CP) and gene manipulation 
(Gene) (Table S5). We found that compounds activating protein kinase C, glucocorticoid 

receptor and progesterone receptor can downregulate the expression of Pos-MLS genes 

in all six tissues (Figure 4A. Similarly, compounds that inhibit ATPase, tubulin, heat 

shock protein, proteasome, purine synthesis and histone deacetylases (HDAC) can also 

downregulate Pos-MLS genes. Intriguingly, we found that inhibition of Beta-Amyloid (Aβ), 
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a major risk factor for Alzheimer’s Disease (AD) and holding therapeutic promise (Wang 

et al., 2017), can upregulate the Pos-MLS genes. This striking link might provide novel 

insight into the neurotoxicity of Aβ. Manipulation of specific genes could also lead to 

the expression change of MLS-associated genes (Figure 4B). For example, overexpression 

of genes in mitogen-activated protein kinase (MAPK), mTOR pathways, and depletion of 

genes in the proteasome, mitotic regulation pathways including PTC1 and Polo-like kinase 

(PLK) can downregulate the overall expression of Pos-MLS genes (Table S5).

Pos-MLS gene expression can be positively regulated by the inhibition of phosphoinositide 

3-kinase (PI3K), cyclin dependent kinase (CDK), mammalian target of rapamycin (mTOR), 

RAF and protein synthesis (Figure 4A). Overexpression of genes involved in the Wnt 

signaling pathway, activator protein 1 (AP-1) and liver kinase B1 (LKB1), which directly 

phosphorylates and activates the AMP-activated protein kinase (AMPK) pathway, can 

upregulate the expression of Pos-MLS genes. Depletion of ribosomal 40S Subunit can also 

upregulate the expression of Pos-MLS genes (Figure 4B).

We also observed that several compounds and genes could regulate the expression of Neg-

MLS genes. For example, inhibition of BCL, PI3K/AKT, EGFR, DNA polymerase and 

MAPK pathway can downregulate the expression of Neg-MLS in all six tissues (Figure 4C). 

Inhibitors of mTOR, RAF and phospholipase can downregulate the expression of Neg-MLS 

genes in all the tissues except the lung. Compounds that inhibit proteasome, topoisomerase, 

glucocorticoid receptor, ATPase and HDAC can lead to an upregulation of Neg-MLS genes. 

Overexpression of genes involved in ERBB1, HER2 and EGFR pathways and depletion of 

genes involved in the lysosome, cytokines, CD40 and RB1 pathways can downregulate Neg-

MLS genes (Figure 4D). In contrast, depletion of genes that regulate proteasome, double-

strand break repair, DNA replication and Notch pathways can upregulate the expression of 

Neg-MLS genes (Figure 4D).

Because gene profiling data from CMap were obtained from cell lines, we reanalyzed 

published datasets on mouse hepatic gene expression in response to 10 in vivo interventions 

including Rapamycin, 17-alpha-estradiol, Pit1 KO (Snell dwarf), growth hormone receptor 

(Ghr)-KO, Acarbose, Protandim, etc. (Figure 4E) (Tyshkovskiy et al., 2019). In agreement 

with CMap results, we found that mouse livers following 2 months treatment with 

rapamycin downregulated the expression of Neg-MLS genes compared to the WT B6 

control mice. Similar to rapamycin, 17-alpha-estradiol treatment also showed a repressive 

role in the expression of Neg-MLS genes (Figure 4F). Accordingly, both rapamycin and 

17-alpha-estradiol treatments tended to upregulate the expression of Pos-MLS genes. Other 

treatments like PIT1-KO, GHR-KO, Rilmenidine and Ascorbyl-palmitate also showed 

similar trends to those seen for rapamycin and 17-alpha-estradiol, but the p-values did not 

reach a statistical significance, which might be due to relatively small sample sizes (n=6) for 

the in vivo study. Interestingly, calorie restriction (CR) tended to upregulate both Neg-MLS 

and Pos-MLS genes, which is possibly related to the complex output of CR and its mimetics 

on healthy lifespan (Espada et al., 2020; Lee et al., 2021; Liao et al., 2010; Tang et al., 

2016). Development of treatments that separate the “beneficial” effects from “deleterious” 

effects of CR may further improve the CR effect on lifespan.
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Paradoxically, acarbose, methionine restriction and Protandim stimulated Neg-MLs genes 

and inhibited Pos-MLS genes, although the effects did not reach statistical significance. 

Acarbose and methionine restriction are believed to extend lifespan via a hormesis 

mechanism by inducing metabolic stress (Gems and Partridge, 2008). Protandim was 

proposed to activate the Nrf2 (Nfe2l2) antioxidant pathway (Abusarah et al., 2017; Reuland 

et al., 2013). While we observed a positive correlation of Nfe2l2 gene expression with MLS 

across species (average ρ = 0.45) (Table S2), the gene expression levels of Nfe2l2 were not 

upregulated in the mice treated with Protandim (Figure S4H). It is also possible, that while 

these interventions may affect an individual’s lifespan in mice, these pathways seem not to 

be involved in the evolution of longevity.

Together, these results provide new mechanistic and evolutionary insights into how 

longevity interventions affect the aging process at the molecular level. In addition, we also 

demonstrate that the transcriptomic signatures of species with long and short MLS could be 

applied to evaluate the performance of anti-aging interventions at the gene expression level.

Neg-MLS genes are regulated in a circadian manner

We next evaluated upstream transcriptional regulators (TRs) of MLS-associated genes 

through public data on chromatin accessibility and chromatin immunoprecipitation (ChIP)-

seq (Qin et al., 2020). TR network analysis of Neg-MLS genes identified the core subunit of 

RNA Polymerase II (RNA Pol II) POLR2B and general transcriptional factors GTF2B and 

PRDM16 (Figure 5A and Table S6). One plausible explanation is that Neg-MLS genes are 

enriched in housekeeping functions like respirasome and oxidative phosphorylation (Figure 

2A). Immune regulators including recombination-activating gene (RAG), RELA (NF-kB 

Subunit), signal transducer and activator of transcription (STAT) and interferon-regulatory 

factors (IRFs) were specifically observed in the TRs of lung Neg-MLS genes, which is 

consistent with the function of Neg-MLS genes in the lung (Figure 2D). Notably, we found 

that several hormone receptors including retinoid X receptor alpha (RXRA) and retinoic acid 

receptor alpha (RARA), as well as circadian regulator CLOCK were among the top-ranked 

TR list of Neg-MLS genes (Figure 5B). We next asked whether genes involved in energy 

metabolism and/or inflammation, are regulated by circadian regulators. We reanalyzed 

ChIP-seq data for CLOCK in the mouse liver and found that CLOCK shows significantly 

higher binding affinity to the promoter regions of Neg-MLS genes involved in energy 

metabolism compared to inflammation genes and Pos-MLS genes (Figures 5C–D and 

S5A). This is consistent with previous studies showing that circadian system orchestrates 

the expression of energy metabolism genes (Poggiogalle et al., 2018). To investigate the 

potential regulatory differences between energy metabolism genes, we divided them into two 

groups according to the correlations of gene expression with MLS. We found that metabolic 

genes that negatively correlate with MLS (ρ < −0.4) show ~2-fold higher binding signal for 

CLOCK compared to the metabolic genes that do not correlate with MLS (−0.1 < ρ < 0.1) 

(Figure S5A). These results confirm that Neg-MLS genes involved in energy metabolism are 

the specific targets of CLOCK.

To further investigate how circadian TRs regulate the expression of Neg-MLS genes, we 

reanalyzed the ChIP-seq data of 7 master circadian TRs including BMAL1, CLOCK, 
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NPAS2, PER1, PER2, CRY1, and CRY2 in the mouse liver at different circadian time 

courses (Koike et al., 2012). Metagene analysis revealed that the transcriptional activator 

BMAL1 binds to the transcription start site (TSS) region of Neg-MLS genes in a circadian 

manner between circadian time (CT) 0 and 12 with peak binding phases occurring at CT4 

to 8 and then suffers a sharp decrease (Figure 5E). The heterodimeric partners of BMAL1, 

CLOCK and NPAS2, also bind in a time-dependent manner similar to BMAL1 (Figures 

5E and S5B). In contrast, the transcriptional repressors PER1, PER2, and CRY2 then 

show rhythmic binding to Neg-MLS genes between CT12 and 20. CRY1 exhibits maximal 

binding at CT0 and 4, when BMAL1, CLOCK, and NPAS2 occupancy increases again at 

CT0. The co-occupation of activators and repressors indicates that the Neg-MLS genes are 

in a transcriptional poised phase at the beginning of the next cycle (Figure 5E).

We also analyzed the TSS occupancy of Neg-MLS genes by RNA Pol II as a function of 

the circadian cycle (Figure 5F). The initiation form of RNA Pol II phosphorylated on Ser5 

peaks at CT0–4 (Figure 5F), which is consistent with the transcriptional poised phase in 

CT0–4 circadian window. The binding of unphosphorylated RNA Pol II (8WG16) peaks 

at CT12–16. Coordinately, active promoter histone modification markers H3K4me3 and 

H3K9ac also show peaks at CT12–16 and become decreased after CT16. As a control, 

we did not observe obvious changes in active histone modification marks H3K27ac and 

transcription elongation histone modification marks H3K36me3 and H3K79me2 (Figures 5F 

and S5B). Coinciding with TF binding, the transcription of Neg-MLS genes, but not genes 

with low binding of circadian regulators, shows a circadian cyclicity and peaks at CT12–16 

in the mouse liver (Figure 5G and S5C). For example, insulin like growth factor 1 (Igf1), 

for which expression negatively correlates with MLS in the liver (ρ = −0.62) (Figure 5H), 

shows a circadian expression pattern and peaks at CT12 and CT36 in the 48h circadian 

time windows (Figure 5I). Other Neg-MLS genes that show similar oscillatory transcription 

include hypoxia inducible factor 1 subunit alpha (Hif1a), Ak2, which regulate cellular 

energy homeostasis and nucleotide metabolism, and Fbp1, which acts as a rate-limiting 

enzyme in gluconeogenesis. The expression of these genes in the liver shows consistently 

negative correlations with MLS (ρ = −0.47 ~ −0.64) (Figure S5D). Their expression levels 

usually peak at CT12 and become downregulated during the CT12–24 (Figures S5E and 

F). In conclusion, these results suggest that Neg-MLS genes in the liver are under circadian 

transcriptional control rather than maintaining consistently high expression.

Pos-MLS genes are upregulated by the master pluripotency factors

Transcriptional regulatory network analysis of Pos-MLS genes revealed TRs distinct from 

those of Neg-MLS genes (Figure 6A and Table S6). Epigenetic regulators including 

polycomb repressive complex 2 (PRC2) core components including SUZ12 and EZH2 and 

PRC1 component KDM2B were found to be TRs of Pos-MLS genes. The PRC2 contains 

methyltransferase activity generating the di-/trimethylated form of lysine 27 on histone 

H3 (H3K27me2/3) (van Mierlo et al., 2019), which might contribute to transcriptional 

repression of Pos-MLS genes. In support of this notion, the expression of PRC2 subunits 

Suz12, Eed and Ezh2 show consistently negative correlations with MLS (Figure S6A and 

Table S2). At the DNA level, key regulators of DNA demethylation, TET1 and TDG, were 

found to be TRs of Pos-MLS genes. We did not see a significant correlation between 
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expression TET1 and TDG and MLS (Table S2). However, we found that gene expression of 

DNA methyltransferase 1 (Dnmt1) is negatively correlated with MLS (Figure S6B). These 

results suggest that the repression of Pos-MLS genes might be mediated by epigenetic 

mechanisms such as histone modification and DNA methylation.

Notably, we also observed that master pluripotency regulators including OCT4 (encoded by 

Pou5f1), NANOG, SOX2 and KLF4 are among the top-ranked regulators for Pos-MLS 

genes (Figures 6A–B and S6C). OCT4, SOX2, KLF4 and MYC (OSKM) are known 

as Yamanaka factors for somatic cell reprogramming (Takahashi and Yamanaka, 2006). 

We next explored the binding pattern of pluripotency regulators during somatic cell 

reprogramming. We examined the binding pattern of OCT4 (Chen et al., 2016) to the genes 

that showed Pos-MLS association in at least one tissue. A heatmap revealed that exogenous 

OCT4 begins to bind to Pos-MLS genes as early as day 1 during the reprogramming process 

(Figure 6C). According to the binding strength of OCT4, the Pos-MLS genes were divided 

into two clusters. The first cluster containing 1,395 genes shows a high binding occupancy 

of OCT4. GO analysis of genes in the first cluster showed that they are mainly enriched 

in DNA repair, ribosome biogenesis and RNA methylation-related functions (Figure 6D). 

The other cluster shows relatively lower OCT4 binding during reprogramming, which is 

enriched in functional terms like organic hydroxy compound metabolism, protein secretion, 

and cilium organization (Figure S6D). During the reprogramming process, both exogenous 

OCT4 and total OCT4 begin to occupy the TSS regions of Pos-MLS genes at day 1 and peak 

at days 7–11. RNA Pol II also shows an increased biding to the TSS regions of Pos-MLS at 

day 3. Accordingly, we observed a significant increase in the expression of Pos-MLS genes 

with high OCT4 binding (Figures 6F–G). For example, FA complementation group I (Fanci) 
was upregulated ~3-fold at day 1 during reprogramming (Figure S6E) and expression of 

Fanci shows significant positive correlations with MLS (average ρ= 0.60) (Figure S6F). 

Suppressor of variegation 3–9 homolog 2 (Suv39h2), a histone methyltransferase for 

Lysine 9 of histone H3 (H3K9me3), showed ~4-fold upregulation at day 1, suggesting 

an involvement of heterochromatin (Figure S6E). In contrast, we observed an overall 

downregulation of Neg-MLS genes involved in inflammation but not cellular respirasome-

based energy metabolism during the MEF reprogramming (Figure S6G). For example, 

Neg-MLS genes involved in inflammation including Nfkb1, Rela, Bmp2m, Tgfb1, Cxcl12, 
Il1rn, Stat1 and Ccl4 are downregulated during reprogramming (Figure 6G). In addition, 

Neg-MLS genes involved in nutrient sensing like insulin signaling pathway (Igf1, Irs1), 

Akt pathway (Akt1 and Akt2), and growth hormone receptor (Ghr) are also downregulated 

during reprogramming (Figure 6G). As controls, Pos-MLS genes with lower OCT4 binding 

and random genes did not show obvious changes in expression levels during reprogramming 

(Figure S6G).

We also examined the expression of Pou5f1 in adult tissues (Schaum et al., 2020). Low 

levels of Pou5f1 transcripts can be ubiquitously detected in all tissues used in this study 

(Figure S7A). The expression of Pou5f1 and other pluripotency factors shows no obvious 

downregulation or upregulation during aging in most tissues (Figure S7B). Based on our 

reanalysis of published gene expression data (Arjona et al., 2022; Booker et al., 2021; Ji et 

al., 2021; Luo et al., 2021; McCauley et al., 2021; Rinaldi et al., 2017; Sun et al., 2019), we 

note that the expression of Pou5f1 is low in adult stem cells, with the exception of female 
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germline and spermatogonial stem cells (Figure S7C). In addition, stem cells comprise less 

than 1% of total cells in adult tissues (Bhartiya, 2021). These observations suggest that 

a signal from tissue stem cells did not contribute to the expression levels of pluripotency 

factors and their targets detected by bulk RNA-seq of the tissues. Rather the differences 

between short- and long-lived species originate from the bulk of differentiated cells.

We next explored the expression of Pos-MLS genes during embryonic stem cell (ESC) 

differentiation. In this process, we did not observe an overall expression change of Pos-

MLS genes, suggesting that the expression of Pos-MLS genes can be sustained during 

the transition from naïve to primed pluripotency (Figure 7A). However, the expression of 

Pos-MLS genes was significantly downregulated in the trophectoderm (TE) (Figure 7A). 

TE formation and separation from inner cell mass represent the first lineage specification 

event during embryogenesis. Before the zygote formation, we observed a high expression 

of Pos-MLS genes during oocyte maturation (Figure 7A), which is consistent with a high 

expression of pluripotent gene Pou5f1 in female germline stem cells (Figure S7C). After 

fertilization, Pos-MLS genes can be detected in the zygote (Figure 7A), suggesting that 

Pos-MLS genes comprise a component of maternal RNAs. The abundance of Pos-MLS 

genes is further decreased in the early 2-cell stage and becomes upregulated at the late 

2-cell stage embryos. Treatment of the zygotes with transcriptional inhibitor α-amanitin 

blocked the upregulation of Pos-MLS genes, suggesting that Pos-MLS genes are actively 

transcribed in zygotic genome activation. To make a direct comparison within tissues, we 

examined the expression of Pos-MLS genes in six tissues including brain, kidney, heart, 

lung, liver and limb (gene expression data for skin during embryogenesis is not available) 

at embryonic and postnatal stages (Davis et al., 2017; Dunham et al., 2012). Compared 

to the embryonic stages ranging from E10.5 to E15.5, expression of Pos-MLS genes 

shows dramatic downregulation in the tissues of 4-weeks old mice (Figure 7B and S7D–I). 

In contrast, there is no obvious change in overall expression levels for Neg-MLS genes 

between embryonic and postnatal stages (Figure S7D–I).

Cumulatively, these results suggest that Pos-MLS genes, especially those genes involved 

in DNA repair, are upregulated by the master pluripotency factors during somatic 

reprogramming. Pos-MLS genes are also actively and dynamically transcribed during early 

embryonic development, when extensive reprogramming takes place.

DISCUSSION

Mammals differ over 100-fold in maximum lifespan (Tacutu et al., 2013), and this diversity 

makes comparative biology a fruitful avenue for exploring the mechanisms of aging and 

lifespan control (Gorbunova et al., 2014). Here we present comparative transcriptomics of 

141 young adult animals covering 26 mammalian species with diverse MLSs. All samples 

were processed and sequenced in-house, reducing batch effects and sample processing 

variation.

We identified gene expression signatures both negatively and positively associated with 

MLS. We integrated our transcriptomic analysis with published transcriptome data from 

different aging-associated interventions and found interventions that have a negative or 
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positive effect on the expression of MLS-associated genes. Furthermore, the analysis of 

gene regulatory networks revealed new connections between MLS-associated genes and 

emerging longevity and aging control pathways, such as circadian rhythms and somatic cell 

reprogramming (Figure 7C). Taken together, our study provides novel resources and insights 

relevant to the regulation of longevity across, and potentially within, species.

Neg-MLS genes were enriched for genes involved in apoptosis, mitochondria metabolism, 

fatty acid catabolism, oxidative phosphorylation and metabolism of ribonucleotides and 

glutathione. Indeed, excessive apoptosis is associated with accelerated aging and stem cell 

depletion (Tyner et al., 2002) and longevity may co-evolve with more stringent control of 

apoptosis. Although, functional mitochondria are required for viability, mild reduction in 

mitochondrial respiration has been associated with lifespan extension in model organisms 

including C. elegans (Dillin et al., 2002; Lee et al., 2003), Drosophila (Copeland et al., 

2009) and mice (Dell’agnello et al., 2007; Liu et al., 2005). This is generally consistent 

with the “rate of living” theory proposing that a slower metabolic rate is associated 

with longevity. However, the relationship between mitochondrial activity and longevity is 

complex, as longer lifespans may be uncoupled from slow metabolism (Hwang et al., 2012).

The second group of Neg-MLS genes is related to immunity, inflammation, and cytosolic 

DNA sensing. Sterile, age-related “inflammaging” has emerged as a driving force 

underlying multiple age-related diseases (Franceschi et al., 2018). Hence, the evolution 

of longer lifespans may be associated with downregulation and more stringent control of 

inflammation. Consistent with our findings, comparative genomics analysis of 88 rockfish 

species showed expansion of negative regulators of inflammation in long-lived taxa (Kolora 

et al., 2021). Bats, a clade that is characterized by extreme longevity, especially when taking 

into account small body mass, evolved multiple mechanisms controlling inflammation. 

Strikingly, all bat species examined to date, have lost the entire PYHIN gene family 

responsible for cytoplasmic DNA sensing, which has been linked to sterile inflammation 

associated with aging (Ahn et al., 2016; Gorbunova et al., 2020). While our current study 

was limited to rodents and Eulipotyphla, we also observed downregulation of cytoplasmic 

DNA sensing, suggesting that downregulation of these pro-inflammatory pathways is a 

conserved signature of long-lived mammals. This finding may guide the future development 

of pharmacological inhibitors of cytoplasmic DNA sensors to improve human healthspan.

Pos-MLS genes were enriched for processes related to DNA repair. It has been proposed that 

DNA damage plays a causal role in aging via the induction of genomic instability, cellular 

senescence, and disruption of epigenetic landscapes (Korotkov et al., 2021; Schumacher et 

al., 2021; Yousefzadeh et al., 2021). Comparative genomics studies found that DNA repair 

genes are under positive selection or undergo duplications in the longest-lived mammal, the 

bowhead whale (Keane et al., 2015), in long-lived rockfishes (Kolora et al., 2021), and in 

bats (Huang et al., 2019; Koh et al., 2019). Our previous functional study demonstrated that 

DNA DSB repair positively correlates with MLS across rodent species (Tian et al., 2019). 

In this study, we reveal that genes involved in DNA repair coevolve with longevity at the 

transcriptional level.
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DNA damage in circulating leukocytes measured with the comet assay was predictive of 

the risk of death in humans (Bonassi et al., 2021). Germline mutation rates in young 

adults were predictive of their longevity (Cawthon et al., 2020). Human genome-wide 

association studies (GWAS) also revealed that DNA damage response is one of the primary 

biological pathways regulating ovarian aging (Stolk et al., 2012). A study of 200,000 women 

reported that common alleles of DNA damage and repair genes were shaping the age of 

natural menopause. Higher expression of Chek1 was associated with a longer reproductive 

lifespan in women (Ruth et al., 2021). In our study, the expression of Chek1 shows a strong 

positive correlation with MLS, suggesting a conserved mechanism of longevity regulation 

in humans. Taken together, these studies indicate that interventions aimed to enhance DNA 

repair are a promising strategy to extend human healthspan.

Centrioles are structures that form the centrosome and the poles of the mitotic spindles 

(Breslow and Holland, 2019). Centrosome dysfunction contributes to chromosome 

instability and chromoanagenesis (Pihan, 2013). Moreover, DNA damage was found to 

induce centrosome amplification (Bourke et al., 2007), suggesting a functional role of 

the centrosome in DNA repair (Mullee and Morrison, 2016). Cilia are microtubule-based 

sensory organelles that extend from the surface of mammalian cells (Fliegauf et al., 2007). 

Changes in the primary cilium are frequently detected in hippocampal neurons of aged mice 

and in neurodegenerative disorders (Alvarez-Satta et al., 2019). It has been suggested that 

cilia safeguard cortical neurons in the mouse forebrain from environmental stress-induced 

dendritic degeneration (Ishii et al., 2021). The positive correlation in gene expression that 

was observed in this study further suggests that the cilium and microtubules are emerging 

regulators of longevity.

Nuclear transport of mRNAs, transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) is 

essential for transcription and translation. Whether RNA export plays a crucial role in 

regulating aging and longevity has remained largely elusive (Dominick et al., 2017; Park 

et al., 2017). Our study provides new links between RNA homeostasis and longevity 

regulation.

Circadian rhythms are part of the body’s internal clock and carry out essential functions to 

regulate physiological processes during a 24-hour period. A systematic decline of circadian 

control was reported during the aging process (Hood and Amir, 2017). Mice deficient in 

BMAL1 and CLOCK, two core components of the circadian clock, show a premature 

aging phenotype (Dubrovsky et al., 2010; Kondratov et al., 2006). The expression levels of 

Neg-MLS genes, are by definition, negatively correlated with MLS, suggesting a deleterious 

effect of their high-level expression on longevity. The Neg-MLS genes are enriched in 

housekeeping functions (Figure 2). Therefore, Neg-MLS genes seem to function as a 

double-edged sword where they are required for organismal function, but overactivation 

of these genes counteracts longevity. In this study, we found that core components of the 

circadian clock prevalently bind to the promoter regions of Neg-MLS gene, suggesting a 

direct regulatory role rather than a secondary effect. The activators and repressors in the 

circadian clock pathway show a dynamic yet coordinated time-course binding pattern to 

Neg-MLS genes, leading to their oscillated expression. We propose that circadian control 

sets time limits on the activation of many genes related to metabolic processes, limiting their 
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lifespan shortening effects. Based on this hypothesis, long-lived species might have a more 

robust circadian regulation system than short-lived species like mice, which show increased 

mortality when subjected to jet-lag (Davidson et al., 2006).

Our study also suggests that a high level of nutrient metabolism, protein synthesis, DNA 

replication, and cell proliferation tend to downregulate the Pos-MLS genes and upregulate 

Neg-MLS genes. These observations are consistent with the aging life-history trade-off 

theory, which posits that investment in growth and reproduction at an early age reduces 

late-life fitness and shortens lifespan (Stearns, 1989). Interventions targeting PI3K, mTOR, 

tubulin, and HDAC related pathways could regulate the expression of both Neg-MLS 

and Pos-MLS genes, suggesting an intrinsic interconnection of Neg-MLS and Pos-MLS 

genes. In addition, the circadian control of Neg-MLS genes suggests that the design of pro-

longevity lifestyle and pharmacological interventions must consider the circadian rhythm 

(Acosta-Rodriguez et al., 2021). In support of this notion, a recent study reported that time-

restricted feeding extended fly lifespan and delayed the onset of aging markers (Ulgherait 

et al., 2021). Intermittent and time-controlled feeding regimens are being applied to mice 

and to humans offering a more tolerable alternative to calorie restriction (Chaix et al., 2014; 

Longo et al., 2021).

Recently, in vivo expression of somatic cell reprogramming factors (Yamanaka factors) was 

found to extend mouse lifespan and rescue certain age-related pathologies (Chen et al., 

2021; Lapasset et al., 2011; Lu et al., 2020; Ocampo et al., 2016; Zhang et al., 2020). 

We found that Pos-MLS genes tend to be directly bound by pluripotency factors OCT4, 

NANOG, and are upregulated during cell reprogramming. We propose that the upregulation 

of Pos-MLS genes might, at least partially, contribute to the rejuvenation induced by 

reprogramming.

There are challenges on the path of employing somatic cell reprogramming for rejuvenation. 

During reprogramming, cells are losing identity and normal physiological function 

(Takahashi and Yamanaka, 2006). Expression of the Yamanaka factors in vivo can cause 

cancer or teratoma formation (Abad et al., 2013; Ohnishi et al., 2014). To avoid these 

caveats, new strategies including partial reprogramming by short-term expression of the 

Yamanaka factors or exclusion of the oncogenic MYC were proposed (Lu et al., 2020; 

Ocampo et al., 2016). To what degree these strategies can preserve somatic cell identities 

or repress tumor formation remains to be determined (Roux et al., 2021; Senis et al., 2018). 

Our study provides an alternative strategy to specifically target the downstream Pos-MLS 

genes instead of inducing somatic cell reprogramming.

Living organisms, experience DNA damage throughout their life, which results in the 

accumulation of mutations and epigenetic changes. After fertilization, the terminally 

differentiated gametes are converted into a totipotent zygote and a new life begins with 

a clean biological slate. Hence, the germ line is rejuvenated during development (Kerepesi 

et al., 2021). Interestingly, we observed that Pos-MLS genes are highly expressed in the 

oocyte, which might be related to the rejuvenation process as well as the reprogramming 

of a somatic nucleus during the somatic cell nuclear transfer (SCNT). Indeed, oocytes 

efficiently repair severe DNA double-strand breaks via homologous recombination to restore 
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genetic integrity (Stringer et al., 2020) indicating that DNA repair is a key quality control 

mechanism in the female germ line. These results support the idea that direct modulation of 

Pos-MLS genes may be a promising strategy to induce efficient and safe rejuvenation.

In conclusion, our work identifies transcriptomic features that evolved in long-lived animal 

species and reveals their regulatory networks. These results further disentangle the molecular 

mechanism of aging and longevity regulation. Our study not only provides novel resources 

for identification of targets for rejuvenation therapies, but also builds broad connections 

to other emerging aspects in the aging field and provides evolutionary insights about the 

evolutionary strategies shaping lifespan control. Targeting the lifespan genes and their 

regulatory networks will facilitate the development of interventions to increase lifespan and 

healthspan, and may provide new insights into age-related diseases.

Limitations of Study

Since most of the species used in this study were caught in the wild, it is difficult to 

evaluate the precise age of these individuals. We presume that the samples used in this 

study were from young adults. We excluded juveniles based on size and appearance. Most 

individuals in wild rodent populations die before they reach advanced age due to predation 

and pathogens. Consistently, age structure analysis of wild rodents and shrews revealed that 

<5% of individuals survive for more than 1 year (Bishop and Hartley, 1976; Blair, 1953). 

Therefore, we believe, that the samples used in this study were from young adult individuals, 

at a comparable physiological stage across the species. We aimed to make a comprehensive 

investigation of compounds that can affect gene signatures (Cmap, published studies). 

However, it should be noted that the interventions predicted by Cmap were performed in 
vitro using tumor-derived and genetically manipulated immortalized cell lines, which may 

respond to interventions differently compared to normal tissues. The candidate interventions 

should be further validated using in vivo models.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Vera Gorbunova 

(vera.gorbunova@rochester.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• Raw sequencing reads are available in the NCBI Gene Expression Omnibus 

(GEO) and Sequence Read Archive (SRA) under accession numbers 

GSE190756.

• Original data for creating all graphs in the paper are provided in Data S1.

• This study does not generate any new codes.
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• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mammalian Species Sample Collection—All experiments were performed according 

to procedures approved by the University of Rochester Committee on Animal Resources 

(UCAR).

C57BL/6 mice were purchased from the Jackson Laboratory. Norway rats and golden 

hamsters were purchased from Charles River Laboratories. Capybaras were obtained from 

Bio Fau Assesoria e Comercio (São Paulo, Brazil). Pacas were from the animal facility at 

São Paulo State University. Outbred multicolored guinea pigs were purchased from Elm 

Hill Labs. Chinchillas were purchased from Moulton Chinchilla Ranch. Beavers, deer mice, 

muskrats, woodchucks, chipmunks, eastern mole, wild type mice, star-nosed mole, red, 

and gray squirrels were trapped in New York State by licensed hunters. Nutria samples 

were obtained through USDA Nutria Eradication Program, MD. Blind mole rats were 

caught in Upper Galilee Mountains in Israel. Bushy tail rats were purchased from Cascade 

Biological Supply, WA. Naked mole rats and Damaraland mole rats were from the colonies 

at University of Rochester. African spiny mice were from Texas Exotic animals. Octodon 

degus was from Dr. Nattan Insel, University of Montana. Chinese hamster was obtained 

from Dr. Sarelius Lab, University of Rochester. Ellobius lutescens were obtained from Dr. 

Goskun lab, Turkey; Short-tailed shrews were wild caught in Auburn, AL. Since most of 

the species used in this study were caught in the wild, it is difficult to evaluate the precise 

age of these individuals. We presume that the samples used in this study were from young 

adults since the age structure analysis of wild rodents and shrews revealed that <5% of 

individuals survive for more than 1 year (Bishop and Hartley, 1976; Blair, 1953). Care 

and maintenance were standard for the mice and rats. Naked mole rats were maintained as 

described previously (Tian et al., 2019). Damaraland mole rats are maintained in a similar 

way to naked mole rats but at 25 oC. The sex information of the subjects can be found in the 

Table S1.

METHOD DETAILS

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA library preparation—Frozen tissues were pulverized using a Cell Crusher piston 

chilled with liquid nitrogen to produce uniform powdered tissue. Approximately 30 mg of 

frozen tissue powder was used for Trizol RNA extraction. Contaminating DNA was removed 

from RNA samples using Purelink DNase kit along with Purelink RNA columns. Purified 

RNA quality was checked using agarose gel examination for rRNA integrity and Qubit 

analysis. The RNA samples were processed with the Illumina TruSeq stranded total RNA 

RiboZero Gold kit and then subjected to Illumina HiSeq 4000 paired-end 150-bp sequencing 

at the New York University Genome Technology Center.

RNA-seq based transcriptome assembly and annotation—The RNA-seq reads 

were first processed with Trim_Galore (version 0.6.6), which trimmed both adapter 
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sequences and low-quality base calls (threshold: Phred quality score < 20). The clean 

reads were aligned to corresponding reference genome (see Table S1 for detail) by HISAT2 

(v2.2.1) with the specific parameters “--dta --very-sensitive” (Kim et al., 2019). For those 

species without reference genomes, clean RNA-seq reads were aligned to the reference 

genome of neighboring species (see Table S1 for detail). For each RNA-seq sample, de 
novo transcriptome assembly was conducted by StringTie (v2.1) (Kovaka et al., 2019). The 

reference-based assemblies from all the samples in each species were merged by command 

“stringtie --merge” with the parameter “gap between transcripts to merge together” set to 50 

bp. The transcripts with low expression levels were filtered by the parameter threshold of 

“TPM >0.5”. The redundant transcripts of the merged transcriptome assembly were removed 

using CD-HIT (v4.8.1) with a sequence identity threshold of 95% (-c 0.95) (Fu et al., 2012). 

To annotate the de novo transcriptome assembly, the transcript sequences of each species 

were blasted to the Gencode mouse gene annotation (Frankish et al., 2019) by Nucleotide 

BLAST (v2.10.1) (Camacho et al., 2009) with the parameters “- qcov_hsp_perc 10; -evalue 

1e-30”. If a transcript sequence could be blasted to multiple transcript sequences in the 

Gencode database, only the one with the highest “bit score” was kept for the annotation of 

the transcript.

Gene expression analyses of tissues across species—The RNA-seq reads were 

first processed using Trim_Galore (version 0.6.6). The clean RNA-seq reads were used to 

quantify the gene expression with Salmon (version 1.4.0) (Patro et al., 2017). Transcript 

fasta files of species were got from the method section “RNA-seq based transcriptome 
assembly and annotation”. Transcript fasta files were indexed with the command “Salmon 

index” by default parameters. Clean RNA-seq reads were aligned to the indexed transcript 

by the specific parameters (--useVBOpt --seqBias --gcBias), which were set for sequence-

specific bias correction and fragment GC bias correction. The reads counts of genes from 

Salmon were further normalized by trimmed mean of M-values (TMM) (Robinson et al., 

2010) and median of ratios method (Love et al., 2014). The RNA-seq sample clustering was 

performed by the R package “pheatmap” (v1.0.12).

Phylogenetically independent contrasts—The normalized read counts obtained from 

Salmon were used as input for phylogenetically independent contrasts (PIC). The PIC was 

performed by the function “pic” in the R package APE (Analyses of Phylogenetics and 

Evolution) (Paradis and Schliep, 2019). The phylogenetic tree of species used in this study 

was generated by VertLife (Upham et al., 2019) and phyloT (https://phylot.biobyte.de/). The 

same phylogenetic trees were obtained from these two methods.

Gene Set Enrichment Analysis—Gene set enrichment analysis (GSEA) (Subramanian 

et al., 2005) was performed to detect the functional enriched set (version 4.1.0). All genes 

were preranked by the values of Spearman’s rank correlation coefficient of gene expression 

and the maximum lifespan or body mass of corresponding species. Normalization mode in 

GSEA was set to “meandiv”. The gene sets of Kyoto Encyclopedia of Genes and Genomes 

(KEGG) were downloaded from https://www.genome.jp/kegg/ (2020.11). The gene sets of 

Gene Ontology (GO) were downloaded from http://geneontology.org/ (2021.02). Only those 

gene sets with a size of more than 15 genes and less than 800 genes were kept for further 
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analysis. Network visualization and clustering groups with similar pathways were performed 

by the EnrichmentMap (Reimand et al., 2019). In each network, GO terms and pathways 

were shown as circles (nodes) that are connected with lines (edges) if the pathways share 

many genes. Only those GO terms or pathways with FDR < 0.1 were shown in the network 

plots.

Identification of interventions for Neg-MLS and Pos-MLS genes—Connectivity 

Map (CMap) database, containing the transcriptomic response of various human cells 

to thousands of chemical compounds and gene manipulations, was used to find the 

interventions that regulate Neg-MLS and Pos-MLS genes. Analysis was performed with 

the online “query” tool in https://clue.io/query. The query was run against the dataset 

released on (Dec 17, 2020). In each query, 150 genes with the lowest or highest Spearman’s 

rank correlation coefficient of gene expression and maximum lifespan of corresponding 

species were used as the input. FDR < 0.01 was used as the threshold to select statistically 

significant functions.

The in vivo (liver) RNA-seq data were obtained from gene expression omnibus (GEO) 

with accession number: GSE131901 (see key resource table). The adapter sequences and 

low-quality sequences of raw RNA-seq were trimmed by Trim_Galore (version 0.6.6). The 

clean RNA-seq reads were used to quantify the gene expression with Salmon (version 1.4.0). 

Gencode (Frankish et al., 2019) (version M25) was used for the genome-wide annotation 

of the gene in the mouse genome. The reads counts for gene levels were used as the input 

for differential expression analysis by DESeq2 (Anders and Huber, 2010). Low-expression 

genes with reads counts less than 10 were excluded from differential expression analysis. 

For each intervention, GSEA (Subramanian et al., 2005) was performed (version 4.1.0). All 

genes were preranked by the values of –log10 (adjusted p value)*(fold change)/abs(fold 

change), where abs(fold change) indicates the absolute value of fold change. Adjusted p 

value and fold change for each gene was obtained from DEseq2. 500 genes with lowest or 

highest Spearman’s rank correlation coefficient of gene expression and MLS in the liver 

were used as the gene sets for GSEA.

ChIP-seq analysis—The accession numbers of ChIP-seq data analyzed in this study 

are indicated in the KEY RESOURCES TABLE. The raw ChIP-seq reads were first 

processed using Trim_Galore (version 0.6.6). The clean reads were aligned to corresponding 

reference genome (mm10) by HISAT2 (v2.2.1) with the parameters “--no-spliced-alignment; 

--very-sensitive” (Kim et al., 2019). The heatmap and genome coverage signal of ChIP-seq 

were generated by deeptools (v 3.5.0) (Ramírez et al., 2014) and shown in the Integrative 

Genomics Viewer (IGV) (Robinson et al., 2011).

Gene expression analyses of circadian RNA-seq data—Circadian RNA-seq data 

were obtained from GEO with accession number: GSE39860.The adapter sequences and 

low-quality sequences of raw RNA-seq were trimmed by Trim_Galore (version 0.6.6). The 

clean RNA-seq reads were used to quantify the gene expression with Salmon (version 1.4.0). 

Gencode (Frankish et al., 2019) (version M25) was used for the genome-wide annotation of 

the gene in the mouse. To quantify the relative transcriptional activity of genes across the 

genome, we calculated the RNA-seq reads coverage in reads per kilobase per million reads 
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(RPKM) of the intron regions for each gene. The intron signal serves as a representation of 

pre-mRNA expression or nascent transcription.

Gene Ontology analysis—GO analysis were performed by R package clusterProfiler 

(Release version 3.14) (Wu et al., 2021). GO comprises of three orthogonal ontologies, i.e. 

molecular function (MF), biological process (BP), and cellular component (CC). Fisher’s 

exact test was performed for each GO term and corresponding p value was calculated. All 

the p-values got from Fisher’s exact test were adjusted for multiple testing with Benjamini 

–Hochberg (BH) correction.

Transcriptional regulator (TR) prediction—TR prediction was performed with 

Landscape In Silico deletion Analysis (LISA v2.2.5) (Qin et al., 2020). 500 genes with 

lowest or highest Spearman’s rank correlation coefficient of gene expression and MLS in 

each tissue were used as the input for LISA. Corresponding network visualizations were 

conducted by Cytoscape (V3.8.2).

Upset plot—Upset plots shown in Figure S2 were generated with online tools: https://

vdl.sci.utah.edu/upset2/ (Lex et al., 2014).

All of the statistical details of experiments can be found in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neg-MLS genes are involved in energy metabolism and inflammation

• Pos-MLS genes are involved in DNA repair, microtubule organization and 

RNA transport

• Neg-MLS genes are controlled by circadian network

• Pos-MLS genes are controlled by pluripotency genes and upregulated during 

reprogramming
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Figure 1. Comparative transcriptomics of 26 mammalian species
(A) Schematic workflow showing the comparative transcriptomics of 26 species with 

distinct MLS.

(B) Network plot showing the Neg-MLS and Pos-MLS genes overlapped with GenAge 

database. The node size (count) indicates the number of tissues in which the genes 

were significantly correlated with MLS. The color of connecting lines corresponds to the 

Spearman correlation coefficient. Orange circles showing representative Pos-MLS genes. 

Blue circles showing representative Neg-MLS genes.
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(C-D) Barplots showing the number of genes for which expression levels positively (C) or 

negatively (D) correlate with MLS, body mass or both.

(E) Heatmap showing the Spearman correlation coefficient of Neg-MLS and Pos-MLS 

genes across tissues.

(F-G) Scatter plots showing the relative gene expression levels of Akt2 (F) and Msh2 (G) in 

six tissues across species. Spearman correlation coefficients (ρ) of gene expression and MLS 

are shown in the plots. Correlation coefficients for phylogenetically corrected (PIC) data are 

shown in parenthesis. P values were shown for the Spearman correlation coefficients. All the 

P values were adjusted for multiple tests with BH method.

See also Figures S1–2 and Table S1
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Figure 2. Functional enrichments of genes negatively correlated with MLS
(A) The enrichment map networks visualization of genes that negatively correlate with MLS 

across six tissues. Each dot represents a Gene Ontology (GO) or KEGG functional term. 

Two functional terms are connected in the enrichment map network if they have a high 

overlap of genes. Groups of inter-related functional terms tend to cluster together. The dot 

sizes indicate the number of genes in a specific term.
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(B) GSEA showing global enrichment of GO terms including Respirasome (upper panel) 

and Interferon-Alpha production (lower panel) in Neg-MLS genes. Normalized enrichment 

scores (NES) and false discovery rate (FDR) values are shown.

(C) Scatter plots showing the relative expression levels of a respiratory chain gene Uqcrfs1 
in six tissues across species. Spearman correlation coefficients (ρ) of gene expression and 

MLS are shown in the plots. ρ calculated with gene expression after phylogenetically 

independent contrasts are shown in parenthesis.

(D) The heatmap showing the tissues-specific functional enrichments of Neg-MLS genes. 

Colors indicate NES values from GSEA in each tissue. Functional terms enriched across all 

tissues (A) are not shown here to avoid redundancy.

(E) GSEA showing specific enrichment of voltage-gated potassium channel in the Neg-MLS 

genes in the heart. NES and FDR values are shown.

(F) Scatter plots showing the relative expression level of potassium voltage-gated channel 

subfamily genes Kcna7 and Kcnb1 in the heart across species.

(G) GSEA showing specific enrichment of NF-Kappa B pathway in the Neg-MLS genes in 

the lung. NES and FDR values are shown.

(H) Scatter plots showing the relative expression levels of key regulators in NF-Kappa B 

pathway including Nfkb1and Kras in the lung across species.

See also Figure S3 and Table S2–4
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Figure 3. Functional enrichments of genes positively correlated with MLS
(A) The enrichment map networks visualization of genes that are positively correlated 

with MLS across six tissues. Each dot represents a GO and KEGG functional term. Two 

functional terms are connected in the enrichment map network if they have a high overlap 

of genes. Groups of inter-related functional terms tend to cluster together. The dot size 

indicates the number of genes in a specific term.

(B) GSEA plots showing global enrichment of representative GO terms including mismatch 

repair and DNA DSB Repair. NES and FDR values are shown.
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(C) Scatter plots showing the relative expression levels of a DNA mismatch repair gene 

Pms1 in six tissues across species. Spearman correlation coefficients (ρ) of gene expression 

and MLS are shown. Phylogenetically corrected values for ρ are shown in parenthesis.

(D) The heatmap showing NES of MLS-associated pathways based on the correlation of 

gene expression with MLS (left) and age (right). Negative NES values shown as Blue 

indicate expression of genes involved in this pathway tends to negatively correlate with 

MLS or/and age, i.e. downregulated during mouse aging. Positive NES values shown as Red 

indicate expression of genes involved in this pathway tends to positively correlate with MLS 

or/and age, i.e. upregulated during mouse aging.

See also Figure S4 and Table S2–4
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Figure 4. Interventions that regulate genes correlated with MLS
(A-B) Heatmaps showing the perturbations including (A) compounds and (B) gene 

manipulations that regulate Pos-MLS genes. Compounds include both activators and 

inhibitors. Gene manipulation includes overexpression and loss of function induced by 

shRNA or CRISPR. The colors in the heatmap indicate the normalized connectivity score 

that was calculated by the CMap query. A positive or negative connectivity score indicates 

that the perturbation upregulates or downregulates the Pos-MLS genes, respectively. Only 
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those terms with FDR < 0.01 in at least one tissue are shown in the heatmap. See Methods 

for details.

(C-D) Heatmaps showing the perturbations including compounds (C) and gene 

manipulations (D) that regulate Neg-MLS genes.

(E) GSEA of Neg-MLS and Pos-MLS genes in the liver RNA-seq data treated with different 

interventions. Barplot showing the NES values. * indicates FDR < 0.05. RNA-seq data is 

from (Tyshkovskiy et al., 2019)

(F) GSEA plots showing the Neg-MLS genes are downregulated in the liver treated with 

Rapamycin (upper panel) and 17-alpha-estradiol (lower panel) compared to the livers of 

control BL6 mice.

See also Table S5
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Figure 5. Neg-MLS genes are regulated in a circadian manner
(A) Regulatory network visualizing potential TRs of Neg-MLS genes. The connection 

between tissue and TR indicates that the TR shows a significantly higher binding preference 

to Neg-MLS genes identified in this tissue compared to random genes. The node size (count) 

indicates the number of tissues in which the genes were identified as top-ranked (30 proteins 

with lowest p values) regulators. TRs were classified into different functional categories 

highlighted with different colors. TRs positively or negatively regulating gene expression are 

shown in red and blue font, respectively. See Methods for details.
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(B) Scatter plots showing the TR rank in the liver (left) and heart (right). Y-axis indicates the 

p values that were calculated using the Wilcoxon rank test comparison of the Neg-MLS 

genes and random gene background. The top regulators with the lowest p values are 

highlighted in red.

(C) Metagene analysis showing differential binding activities of circadian regulator CLOCK 

at Neg-MLS and Pos-MLS genes in mouse liver. Five kb around the TSS regions are shown. 

Liver ChIP-seq data is from (Annayev et al., 2014)

(D) Heatmaps showing differential binding activities of circadian regulator CLOCK at 

Neg-MLS, Pos-MLS and random genes in mouse liver.

(E) Metagene analysis showing dynamic binding activities of circadian regulators at Neg-

MLS genes during the circadian cycle. Arrows indicate the direction of change in gene 

expression.

(F) Metagene analysis showing dynamic binding activities of RNA Pol II and histone 

modifications including H3K9ac and H3K27ac at Neg-MLS genes during the circadian 

cycle. Ser5P Pol II is an initiation form of Pol II. 8WG16 targets hypophosphorylated Pol II.

(G) Boxplots showing the dynamic transcriptional activity of Neg-MLS genes in two 

circadian cycles. CT, circadian time.

(H) Scatter plot showing the relative expression levels of Igf1 gene in the liver across 

species. Spearman correlation coefficients (ρ) of gene expression and MLS is shown.

(I) The barplot showing the dynamic transcription of the Igf1 gene in the liver.

Circadian ChIP-, RNA-seq data are from (Koike et al., 2012)

See also Figure S5 and Table S6
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Figure 6. Pos-MLS genes are targets of master pluripotency regulators and are upregulated 
during somatic cell reprogramming
(A) Regulatory network visualizing potential TRs of Pos-MLS genes. The connection 

between tissue and TR indicates that TR shows a significantly higher binding preference 

to Pos-MLS genes identified in this tissue compared to random genes. The node size 

(count) indicates the number of tissues in which the genes were identified as top-ranked 

(30 with lowest p values) regulators. TRs were classified into different functional categories 

highlighted with different colors. TRs positively or negatively regulating gene expression are 

shown in red and blue font, respectively. See Methods for details.
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(B) Scatter plots showing the TR rank in the heart (left) and liver (right). Y-axis indicates the 

p values that are calculated using the Wilcoxon rank test comparison of the pos-MLS genes 

and background. Top regulators with the lowest p values are labeled in red.

(C) Heatmaps showing differential binding activities of pluripotent regulator OCT4 at Pos-

MLS genes during somatic reprogramming. Two clusters of genes, Pos-MLS-low (2125 

genes) and Pos-MLS-high (1395 genes), were identified by kmeans method according to the 

low and high binding affinity of OCT4.

(D) The dot plot showing the GO enrichment of genes in the Pos-MLS-high cluster. The 

colors indicate the BH-adjusted p values. The dot sizes indicate the number of genes.

(E) Metagene analysis showing dynamic binding activities of pluripotent regulator OCT4 

and RNA Pol II during the OSKM-induced somatic reprogramming. ChIP-seq data are from 

(Chen et al., 2016). Arrows indicate the direction of change in ChIP-seq signal.

(F) Boxplot showing the upregulation of Pos-MLS-high genes during the OSKM-induced 

somatic cell reprogramming. p values were calculated using two-tailed Student’s t-test. 

Microarray data are from (Chen et al., 2016).

(G) Heatmap showing the expression change of representative Pos- and Neg-MLS genes 

during the OSKM-induced somatic reprogramming. Each row represents a gene and its 

expression levels at different times during reprogramming were normalized by Z-score. 

Microarray data are from (Chen et al., 2016).

See also Figure S6 and Table S6
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Figure 7. Conserved genes and pathways controlling lifespan across mammalian species
(A) Boxplot showing the dynamic expression of Pos-MLS genes identified in all tissues 

during preimplantation development and gastrulation. Gene expression of Pos-MLS 

genes shows significant downregulation in TE compared to E3.5ICM during embryonic 

development. p values were calculated using a two-tailed Student’s t-test. RNA-seq data of 

gastrulation are from (Zhang et al., 2018). RNA-seq data of preimplantation development 

are from (Wu et al., 2016). ICM: inner cell mass. TE: trophectoderm. Epi: epiblasts. VE: 

visceral endoderm. Ect: ectoderm. PS: primitive streak. Mes: mesoderm. End: endoderm.

(B) Boxplot showing the expression of Pos-MLS genes identified in the heart. Gene 

expression of the fetal heart is shown as light blue. Gene expression of the postnatal heart 

(4-weeks old) is shown as orange. p values were calculated using a two-tailed Student’s 

t-test.

(C) Across species, gene expression is differentially regulated and highly correlated with 

MLS. Genes involved in respirasome, mitochondria, and fatty acid catabolism-related 
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functions show higher expression in short-lived mammals. In comparison, genes involved 

in DNA damage response (DDR), DSB repair, mismatch repair, homologous recombination 

and centriole and microtubule-related functions tend to be upregulated in long-lived species. 

Neg-MLS and Pos-MLS also show distinct responses to interventions and are regulated 

by distinct transcriptional regulatory networks. Neg-MLS are regulated by circadian 

transcription factors while Pos-MLS genes are regulated by pluripotency factors.

See also Figure S7
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq of mice and Blind mole rats Gene Expression Omnibus GSE181413

RNA-seq with different interventions in 
mouse liver

Gene Expression Omnibus GSE131901

Circadian RNA-seq data in mouse liver Gene Expression Omnibus GSE39860

Circadian ChIP-seq data in mouse liver Gene Expression Omnibus GSE39977

CLOCK ChIP-seq data in mouse liver Gene Expression Omnibus GSE53828

OCT4 binding and Histone modification 
profiling during OSKM-mediated 
reprogramming

Gene Expression Omnibus GSE67520

ArrayExpress of OSKM-mediated 
reprogramming cells and the corresponding 
iPS cell line

Gene Expression Omnibus GSE67462

RNA-seq of mouse pre-implantation 
embryos

Gene Expression Omnibus GSE66390

RNA-seq of gastrulation in mouse Gene Expression Omnibus GSE76505

RNA-seq of mouse tissues during aging Gene Expression Omnibus GSE132040

RNA-seq of fetal mouse tissues encodeproject.org Heart, Limb, Liver, Lung and 
Kidney tissues: Barbara Wold, 
Caltech; Whole Brain: Bing Ren, 
UCSD

RNA-seq of human tissues during aging The Genotype-Tissue Expression (GTEx) project GTEx_Analysis_2017–06-05_v8_

RNA-seq used for MLS gene identification This study GSE190756

RNA-seq of Interfollicular Epidermal Stem 
Cells

Gene Expression Omnibus GSE92423

RNA-seq of Hair Follicle Stem Cells Gene Expression Omnibus GSE92423

RNA-seq of mesenchymal stem cells Gene Expression Omnibus GSE156174

RNA-seq of skeletal stem cells Gene Expression Omnibus GSE156174

RNA-seq of neural stem cells Gene Expression Omnibus GSE156407

RNA-seq of hematopoietic stem cells Gene Expression Omnibus GSE164284

RNA-seq of adipose derived stem cells Gene Expression Omnibus GSE171946

RNA-seq of skeletal muscle stem cells Gene Expression Omnibus GSE178070

RNA-seq of melanocyte stem cells Gene Expression Omnibus GSE96966

RNA-seq of Spermatogonial stem cells and 
Female germline stem cells

Gene Expression Omnibus GSE134640

Experimental models: Organisms/strains

Norway rats Charles River Laboratories N/A

Golden hamsters Charles River Laboratories N/A

Capybaras Bio Fau Assesoria e Comercio N/A

Pacas São Paulo State University N/A

Guinea pigs Elm Hill Labs

Beavers Wild caught in New York State N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chinchillas Moulton Chinchilla Ranch N/A

Deer mice Wild caught in New York State N/A

Muskrats Wild caught in New York State N/A

Woodchucks Wild caught in New York State N/A

Chipmunks Wild caught in New York State N/A

Eastern mole Wild caught in New York State N/A

Wild mice Wild caught in New York State N/A

Star-nosed mole Wild caught in New York State N/A

Red squirrels Wild caught in New York State N/A

Gray squirrels Wild caught in New York State N/A

Nutria USDA Nutria Eradication Program N/A

Blind mole rats Wild caught in Upper Galilee Mountains in Israel N/A

Bushy tail rats Cascade Biological Supply N/A

Naked mole rats University of Rochester N/A

African spiny mice Texas Exotic animals N/A

Octodon degus Gift from Dr. Nattan Insel, University of Montana N/A

Chinese hamster Gift from Dr. Sarelius Lab, University of Rochester N/A

Damara mole-rat University of Rochester N/A

Ellobius lutescens Dr. Goskun lab, Turkey N/A

Short-tailed Shrew Wild caught in Auburn, AL N/A

Software and algorithms

Trim_Galore Babraham Bioinformatics version 0.6.6

HISAT2 Kim Lab at UT Southwestern Medical Center, (Kim et 
al., 2019)

v2.2.1

StringTie The Center for Computational Biology, Johns Hopkins 
University, (Kovaka et al., 2019)

v2.1

CD-HIT Godzik’s Lab at the Burnham Institute, (Fu et al., 
2012)

v4.8.1

Gencode The GENCODE Project, (Frankish et al., 2019) mV25

Nucleotide BLAST National Center for Biotechnology Information, 
(Camacho et al., 2009)

v2.10.1

Salmon Dr.Rob Patro, Stony Brook University, (Patro et al., 
2017)

v1.4.0

pheatmap Raivo Kolde, University of Tartu v1.0.12

R The R Project for Statistical Computing V4.03

APE http://ape-package.ird.fr/ (Paradis and Schliep, 2019) V5.5

phyloT https://phylot.biobyte.de/ V2

VertLife https://vertlife.org/ (Upham et al., 2019) N/A

GSEA UC San Diego and Broad Institute V4.1

EnrichmentMap https://www.baderlab.org/Software/EnrichmentMap 
(Reimand et al., 2019)

V3.3

DESeq2 (Anders and Huber, 2010) V1.34.0
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REAGENT or RESOURCE SOURCE IDENTIFIER

edgeR (Robinson et al., 2010) V3.14

Integrative Genomics Viewer Broad Institute V2.9.2

UpSet2 https://vdl.sci.utah.edu/upset2/ (Lex et al., 2014) Last updated on December 22, 2021

ClusterProfiler (Wu et al., 2021) V3.14

LISA (Qin et al., 2020) LISA v2.2.5

Cytoscape https://cytoscape.org/ V3.8.2
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