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Myocardialinfarctionis aleading cause of death worldwide'. Although advances have
been madeinacute treatment, anincomplete understanding of remodelling
processes has limited the effectiveness of therapies to reduce late-stage mortality?.
Here we generate an integrative high-resolution map of human cardiac remodelling
after myocardial infarction using single-cell gene expression, chromatin accessibility
and spatial transcriptomic profiling of multiple physiological zones at distinct time
pointsin myocardium from patients with myocardial infarction and controls.
Multi-modal dataintegration enabled us to evaluate cardiac cell-type compositions at
increased resolution, yielding insights into changes of the cardiac transcriptome and
epigenome through the identification of distinct tissue structures of injury, repair and
remodelling. We identified and validated disease-specific cardiac cell states of major
celltypes and analysed them in their spatial context, evaluating their dependency on
other cell types. Our data elucidate the molecular principles of human myocardial
tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum
followingischaemicinjury.Insum, our study provides anintegrative molecular map
of human myocardial infarction, represents an essential reference for the field and
paves the way for advanced mechanistic and therapeutic studies of cardiac disease.

Coronary heart disease driving acute myocardial infarction is the larg-
est contributor to cardiovascular mortality, whichinturnis the leading
cause of death worldwide'. Substantial progress hasbeen madein the
acute therapy of myocardial infarction, focusing primarily on percu-
taneous coronary interventionresultingin decreased acute mortality.
However, the morbidity and mortality caused by left ventricular cardiac
remodelling after myocardial infarction remain unacceptably high?.

Cardiac remodelling after myocardial infarction involvesimmune cell
recruitment and demarcation of the infarcted area followed by resorp-
tion of necrotic tissue, phagocytosis, myofibroblast activation, scar
formation and neovascularization®. Understanding the exact cellular
and molecular mechanisms of cardiac remodelling processes from the
acute ischaemic event to the chronic cardiac scar formation in their
spatial context will be key to developing novel therapeutics.
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Here we used a combination of single-cell gene expression, chro-
matin accessibility and spatially resolved transcriptomics to study
the events of cardiac tissue reorganization and to characterize the
cell-type-specific changesingene regulation, providing anintegrated
spatial multi-omic map of cardiac remodelling after myocardial infarc-
tion. Our multi-omic data-drivenapproach, including spatial context,
enables us to understand how a given cell state changes based on the
cells’neighbourhood and how this relates to transcriptional and regu-
latory variations. By deconvoluting spatial transcriptomics spotsinto
cell-type abundances, we characterized cell niches occurringin differ-
entstages following acute myocardial infarction. We identified differ-
ent cell states of cardiomyocytes, endothelial cells, myeloid cells and
fibroblasts that are associated with disease progression on the basis
of the integrated single-cell multi-omics data. Moreover, we inferred
the gene-regulatory networks differentiating these cell states and pro-
jected this information onto specific tissue locations, thus mapping
putative regulators controlling gene expression on specific myocardial
tissue zones and disease stages. This enabled us to gain novel insights
intothegene-regulatory programmes drivinginjury of cardiomyocytes,
activated phagocytic macrophages and their relation to myofibroblast
differentiation in cardiac tissue remodelling. Our results provide a
comprehensive spatially resolved characterization of gene regulation
of the human heart in homeostasis and after myocardial infarction.
We have released our spatial multi-omics data through publicly avail-
able platforms to enable users tointeractively explore the dataset. We
anticipate that this data will be a reference map for future studies and
ultimately for the development of novel therapeutics.

Multi-omic map of myocardial infarction

We applied an integrative single-cell genomics strategy with single-
nucleus RNA sequencing (snRNA-seq) and single-nucleus assay
for transposase-accessible chromatin sequencing (snATAC-seq)
together with spatial transcriptomics from the same tissue mapping
human cardiac cells in homeostasis and after myocardial infarction
at unprecedented spatial and molecular resolution (Fig. 1a-c and
Supplementary Table 1). We profiled a total of 31 samples from 23
individuals, including four non-transplanted donor hearts as con-
trols, and samples from tissues with necrotic areas (ischaemic zone
and border zone) and the unaffected left ventricular myocardium
(remote zone) of patients with acute myocardial infarction (Fig. 1a).
These acute myocardial infarction specimens were collected from
heart tissues obtained at different time points after the onset of clini-
cal symptoms (chest pain), before the patients received an artificial
heart or aleft-ventricular assist device because of cardiogenic shock
and as abridge to transplantation (Supplementary Fig.1a-c). We also
analysed nine human heart specimens at later stages after myocardial
infarction (fibrotic zone; Fig. 1b) that exhibited ischaemic heart disease
and were available from heart transplantation recipients at the time
of orthotopic heart transplantation.

For each cardiac sample, we obtained 10-um cryo-sections and
isolated nuclei from the remaining tissue directly adjacent to the
cryo-section with subsequent fluorescence-activated nuclei sorting
(FANS) for snRNA-seq and snATAC-seq (Fig. 1c). After filtering out
low-quality nuclei, we obtained atotal 0f 191,795 nuclei from all samples
for snRNA-seq, with an average of 2,020 genes per nucleus, together
with chromatin accessibility data from 46,086 nuclei overall with an
average of 28,066 fragments per nucleus (Supplementary Fig. 2a,b
and Supplementary Tables 2-5). After controlling for data quality,
the spatial transcriptomics datasets contained a total of 91,517 spots
(average of 3,389 spots per specimen and 2,001 genes per spot) (Sup-
plementary Figs. 2c,e-gand 3a,b). Quantification based on histology
revealed an average of four nuclei per spatial transcriptomic spot from
all slides (Supplementary Fig. 2c and Supplementary Table 6). Sam-
ples fromtheischaemic zone had the lowest abundance of nuclei and

an enriched expression of genes associated with cell death and the
regulated necrosis pathway, suggesting increased necrotic cell death
(Supplementary Fig. 2d). This integrated dataset represents, to our
knowledge, the largest and most comprehensive multi-modal profil-
ing of human myocardial infarction tissue including spatial informa-
tion and samples at distinct disease progression stages. We devised
anintegrative data analysis approach spanning all three modalities of
our single-cell experiments to study cardiac cell-specificinformation
and cell-specific interactions in their spatial and disease progression
context (Extended Data Fig. 1a).

We established a map of major human heart cell types using the
snRNA-seq and snATAC-seq datasets independently. First, we clustered
cellsonthebasis of theintegrated snRNA-seq datafrom all samples after
batch correction (Extended DataFig. 1b). Clusters were annotated with
curated marker genes fromthe literature* and ten major cardiac cell
types were identified (Fig. 1d,e). We also found an additional cluster
with enriched expression of the cell-cycle marker gene MKI67, which
showed a high score of cell-cycle G2/M and S phases and was mainly
recovered in ischaemic zone samples (Extended Data Fig. 1c,d). To
validate the annotations, we compared the datawitharecentstudy on
healthy human hearts*and anindependent novel dataset of ischaemic
heartsamples (n =3, generated during this study) and observed a high
agreementand correlation in terms of molecular profiles and cellular
composition (Extended Data Fig. 1e-g). Of note, the cycling cells were
also captured in the independent ischaemic dataset (Extended Data
Fig. 1f).

We nextintegrated and clustered the snATAC-seq data from all sam-
ples (Extended Data Fig. 2a). These clusters were annotated on the
basis of gene chromatin accessibility with the same markers as for
snRNA-seq. This approachidentified eight major cell types, matching
all cell types from snRNA-seq data with the exception of two rare cell
types (thatis, mast cellsand adipocytes) (Fig. 1f,g). Label transfer from
snRNA-seq tosnATAC-seqindicated that the annotations between these
two modalities were consistent (Extended Data Fig. 2b,c). This was fur-
ther supported by a high correlation of cellular composition between
snRNA-seqand snATAC-seqand the presence of the same eight cell types
inthe majority of samples (Extended DataFig. 2d,e). Toexplore regula-
tory information provided by the snATAC-seq, we performed transcrip-
tion factor footprinting analysis using cell-type-specific pseudo-bulk
ATAC-seq profiles. This revealed footprinting-based binding activity of
known transcription factors suchas MEF2C (ref.”) in cardiomyocytes,
CEBPD)%inmyeloid cells, FOS-JUNB’ in fibroblasts and SRF'®in vascular
smooth muscle cells (vSMCs), which correlated with the expression of
their predicted target genesin snRNA-seq data (Extended Data Fig. 2f).
Together, our integrative analysis of transcriptomic and chromatin
accessibility data defined a robust catalogue of cell types in the adult
human heart across multiple modalities and samples.

Molecular mapping of cell typesinspace

Using these data, we first identified overrepresented biological pro-
cesses for eachmajor histomorphological region (control, remote zone,
border zone, ischaemic zone and fibrotic zone) using spatially variable
genes (Supplementary Table 7). We identified cardiac muscle contrac-
tion in remote zones and controls, with adaptive immune system in
the border and ischaemic zones and with matrisome processes in the
fibrotic zones (Extended Data Fig. 2g). Overall, this analysis confirmed
that the spatial data clearly reflect typical zones of biological processes
following acute human myocardial infarction.

Since each spatial transcriptomics spot captured a group of cells,
we increased its resolution by estimating the cell-type compositions
ofeachspot. To thisend, we deconvoluted each spot on the basis of the
annotated snRNA-seq data from the same sample (Fig.1h, Supplemen-
tary Figs.2e-gand3a,b, Supplementary Tables 8 and 9 and Methods).
The estimated cell-type compositions from spatial transcriptomics of
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Fig.1|Spatial multi-omic profiling of human myocardial infarction.

a, Study schematic.RZ, remote zone; BZ, border zone; 1Z, ischaemic zone; FZ,
fibrotic zone. b, Sampling time points. Pindicates patient number. Asterisks
indicate snRNA-seq samples that were used for validation only (P21-P23).

¢, Datamodalities. GEX, gene expression.d, UMAP of snRNA-seq data from all
samples (n=191,795). vCMs, ventricular cardiomyocytes. vSMCs, vascular
smooth muscle cells. e, Average marker gene expression after z-score
transformation. Colours along the bottom correspond to the cell typesind.

each patient generally agreed with their respective observed composi-
tionsinthe snRNA-seq and snATAC-seq data (Extended Data Fig. 2h). We
then estimated signalling pathway activities with PROGENy (Methods)
foreachspot fromthespatial gene expression data. The comparison of
spatially localized pathway activities with the estimated cellular abun-
dance per spot enabled us to link the information on spatial cell com-
position to cellular function for each slide. For example, in areas with
an abundance of fibroblasts, we detected increased TGFf signalling

768 | Nature | Vol 608 | 25 August 2022

Min . Max

f, Uniform manifold approximation and projection (UMAP) of snATAC-seq data
forallsamples (n=46,068).g, Chromatin accessibility of marker genes after
z-score transformation. Colours along the bottom correspond to the cell types
ind.h-j, Characterization of spatial transcriptomics data using cell-type
deconvolution (h), pathway activity (i) and transcription factor (TF) binding
activity (j) for control (Ctrl), border zone, ischaemic zone and fibrotic tissue
samples. Max, maximum; min, minimum.

activity, and in ischaemic regions, increased myeloid cell abundance
occurred in areas of higher NFkB signalling activity (Fig. 1h,i).
Mapping the information obtained from the snATAC-seq data to
space resulted in spatially resolved footprinting-based transcription
factor bindingactivity, as exemplified by the previously described tran-
scription factors associated with cardiomyocytes (for example, MEF2C;
ref.”), myeloid cells (for example, CEBPD® and ATF1Y), fibroblasts (for
example, FOS-JUNB’) and vSMCs (for example, SRF') (Fig. 1j). To test



theassociation of genetic variants with cell types, we performed enrich-
ment analysis based on cell-type-specific pseudo-bulk ATAC-seq pro-
files and cardiomyopathy-related single nucleotide polymorphisms
(SNPs) obtained from genome-wide association studies'> (GWAS). We
focussed on SNPsrelevant to left ventricular function, since we hypoth-
esized that these might provide the most biologically relevant infor-
mation for the cellular composition of myocardial tissue. This analysis
revealed that SNPs associated with stroke volume and left ventricular
end-diastolic volume were enriched in endothelial cells (Extended Data
Fig.2i), consistent with the role of the endothelial cellsin cardiac relaxa-
tion and dilation®. SNPs associated with left ventricular end-systolic
volume and left ventricular ejection fraction were enriched in cardio-
myocytes, supporting the relationship between contractionand these
left ventricular measures. We also visualized the spatial distribution of
GWAS signals by mapping SNPs associated with left ventricular ejec-
tionfractionto each spot fromspatial transcriptomics (Extended Data
Fig. 2j). Insummary, our integrated spatial atlas enabled us to map
cell-type abundance, signalling pathway activities, transcription factor
binding activity and GWAS signals across the complete spectrum of
cardiac tissue zonations, providing anin-depth view at tissue remodel-
ling processes following myocardial infarction in humans.

Spatial organization of myocardial tissue

To explore the spatial organization of the myocardial tissue, we lever-
aged the spatial transcriptomics data. Unsupervised clustering of spots
from all samples onthe basis of their cell-type compositionsidentified
nine clusters, which we defined as major cell-type niches (Fig. 2a and
Extended DataFig.3a-d). We hypothesized that these niches represent
potential structural building blocks that are shared between different
slides and could facilitate comparisons between subjects. Visualization
ofthesenichesin space revealed that some niches aligned closely with
the underlying sample condition; for example, cell-type niche 8 was
equally distributed across a control slide, whereas cell-type niche 5
localized to distinct regions on the ischaemic slide (Fig. 2b). We then
tested the overrepresentation of the annotated cell types derived from
snRNA-seq in the cell-type niches. We observed 4 myogenic cell-type
niches (1, 7, 8 and 9), which were enriched with cardiomyocytes,
endothelial cells, and pericytes (Fig. 2c); an inflammatory cell-type
niche (niche 5); and afibrotic cell-type niche (niche 4) containing fibro-
blasts, myeloid and lymphoid cells. The fibrotic cell-type niche (4)
contained a higher proportion of fibroblasts, whereas the inflammatory
cell-type niche (5) contained more myeloid and lymphoid cells (Fig. 2c).
Finally, we observed niches associated with rare cell types of the myo-
cardium, such as vSMCs (cell-type niches 3and 6), adipocytes, lymphoid
and cycling cells (cell-type niche 2) (Fig. 2c and Extended Data Fig. 3d).
Ourintegrated results provide acomprehensive description of cellular
colocalization events, enabling downstream molecular comparisons
within this atlas across all tissue zonations. We next tested whether
the abundances of major cell types within spots could be predicted by
their spatial context described by the cell-type compositions of their
neighbourhood. We evaluated three different neighbourhood areasizes
using MISTy: (1) theimportance of cell-type abundances within aspot
(colocalization) (Fig. 2d), (2) in the local neighbourhood (radius of 1
spot), and (3) inan extended neighbourhood that expanded to aradius
of15spots. We observed that endothelial cells were the most predictive
oftheabundance of vSMCs, pericytes, adipocytes and cardiomyocytes
within all spots, probably reflecting dependencies between cell types
of the vasculature (Fig. 2d). Lymphoid and myeloid cells showed strong
dependencies witheach otherinline with zones ofimmune cell infiltra-
tion and inflammation—similarly captured by cell-type niche 5 (Fig. 2d).
Notably, we observed strong dependencies between myeloid cells and
fibroblasts, which were strongly co-enriched in niche 4 (Fig. 2d and
Extended Data Fig. 3e), in line with a known key role of macrophages
in fibroblast activation and fibroblasts in macrophage attraction®.
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Fig.2|Characterization of tissue organization using spatial
transcriptomics data. a, Schematic of cell-type niche definitionand UMAP
of spatial transcriptomics spots based on cell-type compositions. b, Mapping
of cell-type nichesinacontroland anischaemic zone sample. Arrows show
niche 8 (left) and niche 4 (right). ¢, Scaled median cell-type compositions
(comp.) within each niche. Asterisksindicate increased composition of acell
typeinaniche compared with other niches (one-sided Wilcoxonrank sumtest,
adjusted (adj.) P < 0.05). Bold asterisks and outlines show the tissue modules
discussedinthe maintext. d, Medianimportance of cell-type abundance in
the prediction ofabundances of other cell types withinaspot. e, UMAP of all
patientsamples from spatial transcriptomics and visualization of abundance
ofthe major cell types in myogenic (control, remote zone and border zone),
ischaemicandfibroticgroups.f, Top left,importance of vYSMC abundancein
theimmediate neighbourhood for prediction of fibroblast (Fib) abundancein
myogenic, ischaemic and fibrotic groups (adj. P-value using a two-sided
Wilcoxon rank-sum testis shown).In allbox plotsin this Article, the centreline
correspondsto the median, the bottom and top hinges delineate the first and
third quartiles, respectively, the top whisker extends from the hinge to the
largest value no further than1.5x the inter-quartile range (IQR) from the

hinge and the bottom whisker extends from the hinge to the smallest value at
most 1.5% IQR from the hinge; databeyond the end of the whiskers are outlying
points and are plotted individually. Myogenic group: n = 14,ischaemic group:
n=9,fibroticgroup:n=>5.Deconvoluted vSMCs and fibroblast abundance
inamyogenic sample (top right) and inanischaemic sample (bottom).

For details on visualization, statistics and reproducibility, see Methods.

NS, notsignificant. Adipo, adipocytes; CM, cardiomyocytes; PC, pericytes;
Endo, endothelial cells.

Betweenimmediate and extended neighbouring spots (Extended Data
Fig.3f-h), we observedstronger dependencies between cells associated
with the cardiac vasculature (vSMCs, endothelial cells, pericytes and
fibroblasts) indicating that the myocardial vascular network dominates
cardiac tissue structural organization.
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Tolink tissue organization to function, we analysed spatial dependen-
cies between signalling pathways and cell types. Modelled importance
of colocalized pathways captured relationships between PI3K and p53
signalling (Extended Data Fig. 4a-e), which showed a mutually exclu-
sive spatial distribution (Extended Data Fig. 4c). Both pathways were
related to the abundance of cardiomyocytes (Extended Data Fig. 4a).
PI3K signalling in cardiomyocytes controls the hypertrophic response
to preserve cardiac functions'®, whereas p53 is known to act as a mas-
ter regulator in cardiac homeostasis”. Spatial segregation of these
cardiomyocyte-related pathways points towards functional cardiomyo-
cyte heterogeneity. We observed colocalized and extended neighbour-
hood relationships of known key pathways in fibrosis including TGF3
and NFkB predicted by fibroblasts, and JAK-STAT and NFkB predicted
by immune cells (Extended Data Fig. 4a-e). Overall, cardiomyocytes
were the best predictor cell types of the activities of the estimated
pathways. Hypoxiaand WNT pathways showed a colocalization to car-
diomyocytesinischaemic specimens (Extended DataFig.4b-e), highly
consistent with the cardiomyocyte differentiation events occurring
after myocardial infarction'. Our results compiled principles of tissue
organization of the human heart that relate to coordinated cellular
processes and provide a basis for comparative analysis.

Structural variation of cardiac tissue

To identify general tissue differences during remodelling after
myocardial infarction, we compared the samples of distinct histo-
morphological regions, time points and individuals at the molecu-
lar and compositional level. We defined three major sample groups:
myogenic-enriched (including control, border zone and remote zone),
fibrotic-enriched (includingall fibrotic zone samples, except one) and
ischaemic-enriched (including all ischaemic zone samples) samples.
Hierarchical clustering of their pseudo-bulk spatial transcriptomics
supported this grouping and was displayed as a UMAP embedding
(Fig. 2e and Extended Data Fig. 4f). Co-clustering of control, border
zone and remote zone samples can be explained by the large abun-
dance of functional myocardial tissue within these specimens (Fig. 2e).
Since the pseudo-bulk profile of each spatial transcriptomic dataset
combines information of multiple cell types, we next tested how dif-
ferencesin cellular composition determined by all modalities (thatis,
snRNA-seq, snATAC-seq and spatial transcriptomics) are associated
with these three groups. Ischaemic-enriched samples showed alarger
proportion of myeloid, lymphoid and cycling cells, with the lowest
proportions of cardiomyocytes, representing cellular compositional
changes expected after myocardial infarction. By contrast, fibroblasts
and vSMCswere enrichedinfibrotic-enriched samples (Extended Data
Fig. 4g). These results indicate that the spatial transcriptomic data
align with major histomorphological sample annotation and capture
compositional hallmarks following myocardial infarction across our
datasets.

We then analysed whether the cell-type compositional changes
between sample groups were also reflected as changes in the spatial
dependencies between the major cell typesin spatial transcriptomics.
Tothisend, we contrasted theimportance, previously computed using
MISTy, of each major cell type in predicting the others in the three
different neighbourhood area sizes (colocalization, immediate and
extended neighbourhood) between the three different sample groups
(Extended DataFig.4h). We observed anincreased spatial dependency
intheimmediate neighbourhood between lymphoid and myeloid cells
inischaemic samples compared with myogenic-enriched samples,
reflecting the expected role thatimmune cell interactions havein car-
diac repair following myocardial infarction (Extended Data Fig. 4i).
Moreover, anincreased colocalization of cardiomyocytes and pericytes
in fibrotic-enriched samples revealed an exclusion of pericytes from
scar tissue areas (Extended Data Fig. 4j). Similarly, the distribution
of fibroblasts was better predicted by the presence of vSMCs in the
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immediate neighbourhood only in myogenic-enriched samples, where
fibroblasts surrounded the vasculature, in contrast to ischaemic and
fibrotic tissue specimens, where more extensive tissue scarring pro-
cesses were captured (Fig. 2f).

We next compared compositions of cell-type niches between groups
and observed differences in six out of nine cell-type niches (Extended
DataFig. 4k). Cell-type niches 8 and 9 (Extended Data Fig. 4k-1), mostly
representing cardiac muscle structures, were more presentin myogenic-
and fibrotic-enriched samples compared with ischaemic-enriched
samples, whereas cell-type niche 7, enriched in cardiomyocytes and
pericytes (Extended Data Fig. 4k), was reduced in fibrotic-enriched
samples. Niche 4, mainly associated with fibrotic structures (morefibro-
blasts than myeloid cells and thus termed fibrotic niche), was observed
in higher proportions in fibrotic-enriched samples, whereas niche 5
(more myeloid cells than fibroblasts and thus termed inflammatory
niche) was mainly present in ischaemic-enriched samples (Extended
DataFig. 4k). In summary, the major cell-type niches enabled us to
categorize and compare interindividual spatial differences. Overall,
this demonstrates the importance of cardiac vasculature indefining the
overall myocardial architecture and the unique spatial dependencies
of fibroblasts and myeloid cells, which facilitates gaining molecular
insights of disease-specific spatial tissue remodelling.

Molecular variation following infarction

To study the molecular differences between similar tissue structures
in an unbiased manner across samples, we generated a set of molec-
ular niches by clustering of spots on the basis of their gene expres-
sion (Fig. 3a,b and Extended Data Fig. 5a-d). We identified molecular
niches associated withinflammatory and fibrotic processes (molecular
niches 3, 6and9), vSMCs (molecular niche 11) and myogenic-enriched
regions (molecularniches1,2,4,5and12) (Fig.3c). Themolecular niches
enrichedin cardiomyocytes were depletedinischaemic-enriched sam-
ples, whereas the fibrotic- and inflammatory-enriched molecular niches
were depleted in myogenic-enriched samples (Fig. 3d and Extended
DataFig. 5e,f). The vSMC-enriched molecular niche 11 had a more dis-
tinct cell-type marker gene expression of vSMCs (MYH11) compared
with the cell-type defined niche 6 (Fig. 3b versus Extended DataFig. 3d).

Of note, we observed molecular niches that enabled us to differen-
tiate border zone, remote zone and control samples (Extended Data
Fig.5g), whichwereindistinguishable using the major cell-type niches
(Extended DataFig.4m). Molecular niche 3, enrichedin fibroblasts and
immune cells, was more present in remote zones and border zones
compared with control samples. Moreover, we observed differencesin
the proportions of the molecular niches1,2 and 4 amongborder zone,
remote zone and controls (Extended Data Fig. 5g). These three molecu-
lar niches were enriched mainly in cardiomyocytes (Fig. 3c), but witha
distinct molecular profile:amongthe top 5 upregulated genes of niche
2was XIRP1,which encodes anintercalated-discion-channel-interacting
protein and RRAD, which encodes a GTPase known to regulate L-type
Ca” channels and contractile functions of the heart’?; molecular niche
4 was enriched for SLC8AI (also known as NCX1), which encodes the
Na*/Ca® exchanger that is the major regulator of the Ca?* efflux in
cardiomyocytes and is critical to maintain Ca®* homeostasis during
excitation—contraction coupling®, and MPCI, which encodes mito-
chondrial pyruvate carrier, aknown mitochondrial metabolic regulator
of heart function” (Extended Data Fig. Sh). Overall, molecular niche
1was enriched in control and remote zone samples and niche 2 was
enrichedinthe damaged tissue areasinborder zone samples (Fig. 3e,f
and Extended Data Fig. 5g). We observed slight changes inenrichment
of molecular niches2and 4, and adepletion of nichelinborder zones
compared with controls (Extended DataFig. 5g,i,j), suggesting that dif-
ferencesin cardiomyocyte phenotypes might also be presentbetween
these groups. Insummary, the comparison of molecular niches pointed
towards subtle changes between the remote myocardium and controls,
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and expected differences between border zone and both controls and
remote zone that were not detectable in the cell-type niche comparison.
Overall, this suggested the existence of functional differences between
cardiomyocyte states in our data.

Disease-specific cardiomyocyte states

Tofurtherinvestigate distinct cardiomyocyte states, we aimed to under-
stand the molecular heterogeneity of cardiomyocytes after myocardial
infarction. We co-embedded the snRNA-seq and snATAC-seq data from
cardiomyocytesintoacommon low-dimensional space and clustered
the cells (Extended Data Fig. 6a). This uncovered five cell states of ven-
tricular cardiomyocytes (vCM1-5), spanning multiple samples and
modalities (Fig. 4a and Supplementary Table 10). Differential gene
expression analysis revealed a significant upregulation of ANKRDI in
both vCM2 and vCM3, whereas NPPB showed a distinct upregulation

and increased chromatin accessibility in vCM3 (Fig. 4b and Extended
Data Fig. 6b,c). We validated this upregulation by single-molecule
fluorescenceinsitu hybridization (smFISH) inanindependent patient
cohort (Fig.4cand Extended DataFig. 6d). Both NPPBand ANKRDI have
beenreported to be upregulated in the border zone after myocardial
infarction in mice”. vCM2 additionally showed enhanced expression
of MYH7 (Extended Data Fig. 6b), a cardiomyocyte-associated stress
gene that encodes the B-myosin heavy chain®. Thus, we annotated the
vCM2-state as ‘pre-stressed’. In addition, we observed a higher cor-
relation between ion-channel-related genes and vCM1 marker genes
compared with ‘stressed’ vCM3 marker genesin spatial transcriptom-
ics, which further highlights the functional differences between these
two cardiomyocyte states (Extended Data Fig. 6e). Accordingly, we
annotated the vCM3 state as stressed. Moreover, when comparing
the differential expression of individual genes belonging to these
ion-channel-related gene sets in snRNA-seq data, we observed mostly
upregulationsin vCM1compared with vCM3 (Extended Data Fig. 6f,g).
Cellular composition comparison between sample groups revealed
that vCM1was associated with myogenic-enriched samples and vCM3
was significantly associated with ischaemic-enriched samples. This
was validated in an independent cohort using in situ hybridization,
suggesting that these cardiomyocyte states represent distinct cellular
stress states within the acute myocardial infarction phase (thatis, vCM1,
‘non-stressed’; vVCM2, ‘pre-stressed’; and vCM3, ‘stressed’) (Fig. 4c,d
and Extended Data Fig. 6h,i).

Next, we checked vCM marker genes in spatial transcriptomics in
border zone samples, since spatial remodelling of this area is inextri-
cablylinked to therecovery of cardiac function. Interestingly, despite
homogenous H&E staining and unique molecular identifier (UMI) distri-
butionacross spots (Supplementary Fig. 2g), we observed extensively
heterogeneous spatial gene expression patterns of ANKRDI and NPPB
(Fig.4e). Pathway analysis of the spatial gene expression dataindicated
anincreased TGFf signalling activity within the injured area (lower
right), but a homogeneous distribution of hypoxia pathway activ-
ity (Fig. 4f). Mapping of cell states to space in a border zone sample
revealed that vCM1 were solely located in the top left uninjured cor-
ner, vCM2 were located in the middle-top area, serving as a transi-
tion zone from injured towards remote myocardium, and vCM3 were
primarily located below the transition zone within the injured area
(Fig.4g). Of note, such aspatially distributed pattern was also observed
inanother border zone sample, indicative of a similar remodelling
process (Extended Data Fig. 6j).

Variability of cardiomyocyte states

Toinfer anenhancer-based gene-regulatory network (¢GRN), we lever-
aged our multi-omics datato furtherinvestigate molecular mechanisms
differentiating the relevant cardiomyocyte states (thatis, vCM1-vCM3)
(Methods and Supplementary Table 11). To this end, we paired the cells
between snATAC-seq and snRNA-seq data and studied gene-regulatory
changes along the cellular continuum from vCM1 to vCM3 (Extended
DataFig.7a). Next, we estimated an enhancer-mediated transcription
factor-target network by considering transcription factor activity
(fromsnATAC-seq), expression of transcription factor and target genes
(fromsnRNA-seq), and motif-supported peak-to-gene links (Extended
DataFig.7b-d). Clustering of these transcription factors to the target
network revealed three major modules, with each correspondingtoa
distinct cardiomyocyte state (Extended Data Fig. 7e).

We next used network analysis to visualize and detect major tran-
scriptionfactors (Fig. 4h). We identified the mineralocorticoid receptor
(NR3C2),amajortarget of therapy for common heart failure, as amajor
regulator of the vCM1 state (Fig. 4h). Decreased NR3C2 expression
has been associated with the development of severe heart failure and
cardiac fibrosis?*, and we observed decreased transcription factor
binding activity and gene expression along the pseudotime of vCM1
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i, Transcription factor activity and expression over pseudotime.Norm.,

tovCM3 differentiation (Fig4i). Target genes of NR3C2include several
ionchannel genes (suchas SLC8AI), which also showed decreased gene
expression along the pseudotime axis (Fig. 4i). Notably, these target
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genes were also differentially expressed in cardiomyocyte-enriched
molecular niches (Fig. 3e,fand Extended Data Fig. 5h) and aligned spa-
tiallyin the border zone with the vCM1 state (Fig. 4j). Notably, we also



observed transcription factors (TBX3 and MEF2D) that were associated
with pre-stressed stages of cardiomyocyte differentiation (Fig. 4h). Our
analysis suggests that MEF2D, a cardiomyocyte factor controlling pace-
maker function®, regulates the expression of the sarcomere protein
MYBPC3 (Fig. 4i). MYBPC3, inturn, has beenreported to regulate car-
diomyocyte proliferation postnatally®. Of note, we identified MYBPC3
independently in our spatial dataas being enriched in molecular niche
1(Fig. 3e and Extended Data Fig. 5h).

We also identified ANKRDI1, a mediator of cardiomyocyte response
to stress?, as a target of MEF2D, suggesting a key regulatory role of
MEF2D in the transition from vCM1 to vCM3% (Extended Data Fig. 7).
For vCM3 (stressed cardiomyocytes), we identified ATF3 asaregulator
of the GTPase and Ca* regulator gene RRAD (Fig. 4h). We indepen-
dently identified RRAD in molecular niche 2 (Extended Data Fig. 5h),
which supportsits relevance as a spatially differentially expressed
gene of adistinct cardiomyocyte state, especiallyinborder zone sam-
ples (Fig. 4i). We additionally identified the transcriptional regulator
JDP2—which hasafunctionin preventing cardiomyocyte hypertrophy
and cell death?®—as animportant regulator of the vCM3 cardiomyocyte
state, with TGFB2 as one of its target genes (Extended Data Fig. 7g,h).
Insummary, our cardiomyocyte states and major transcription factor
regulatorsidentified from the integrated snRNA-seq and snATAC-seq
datareflect expression patterns associated with molecular niches sup-
porting spatial changes of cardiomyocyte states during remodelling.

We next estimated the cell dependencies of the stressed cardiomyo-
cyte state VCM3 with other cell types within each spatial spot and its
local neighbourhood (radius of five spots) between sample groups
(Fig. 4k-0). We observed that there was an increased importance of
vSMCs in predicting vCM3 within a spot in myogenic and ischaemic
samples (Fig. 4k), whereas fibroblasts and myeloid cells had a larger
roleinfibroticsamples (Fig. 4k). Thelocal neighbourhood modelling of
vCM3revealed that the abundance of fibroblasts better explained vCM3
inmyogenic-enriched samples compared with fibrotic samples (Fig. 41
and Extended Data Fig. 7i). To gain further insight, we visualized the
dependencies of vSMCs and fibroblasts on vCM3 in myogenic-enriched
samples and observed that their colocalization occurredin the perivas-
cular niches (Fig. 4n). Overall, this demonstrates that the stressed
cardiomyocyte state vVCM3 occurs in the perivascular niche of larger
blood vessels, highlighting the interaction of mesenchymal cells®
of the perivascular niche with stressed cardiomyocytes in this tissue
area. Furthermore, we noticed that when comparing remote zone
with control samples, stressed vCM3s are best predicted by myeloid
cells (Fig. 40). This underlines the importance of immune-cardio-
myocyte interactions that could additionally explain the increased
arrhythmia susceptibility in the remote regions of the post-infarct
heart, since it has been shown that cardiac macrophages influence
normal and aberrant cardiac conduction®. Our results showed that the
stressed-cardiomyocyte vCM3 can be found in distinct spatial cell-type
neighbourhoods enriched by different compositions of vSMCs, fibro-
blasts, adipocytes or myeloid cells.

Cardiac endothelial cell heterogeneity

Co-embedding of snRNA- and snATAC-seq data identified five sub-
types of endothelial cells from all major vascular beds, namely capillary
endothelial cells, arterial endothelial cells, venous endothelial cells,
lymphatic and endocardial endothelial cells (Fig. 5a, Extended Data
Fig.8a-d, and Supplementary Table 12). Subtype-based pseudo-bulk
ATAC-seq signals also revealed distinct chromatin accessibility of these
marker genes (Extended Data Fig. 8c). Our analysis suggested POSTN
as a characteristic marker for endocardial endothelial cells, which
we validated using smFISH (Extended Data Fig. 8e). Analysis of cell
proportions among the myogenic-enriched, ischaemic-enriched and
fibrotic-enriched samples revealed areduction of capillary endothelial
cellsin the ischaemic samples associated with a concordant increase
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in venous endothelial cells (Fig. 5b and Extended Data Fig. 8f,g). Fur-
thermore, we observed that lymphatic endothelial cells were overall
less abundant than the other populations, as expected, but were sig-
nificantly increased in the ischaemic zone, suggesting an increased
abundance of lymphatics modulating the immune response following
cardiacinjury® (Fig. 5b).

We modelled the association of the different endothelial cell sub-
types with the abundances of the other major celltypesinspatial tran-
scriptomics. We observed that the markers of arterial endothelial cells
were best predicted by vSMCs withina spot andin the local neighbour-
hood (radius of five spots) reflecting the anatomy of arteries and arte-
rioles in the heart (Fig. 5c,d and Extended Data Fig. 8h). Moreover,
the expression of markers of capillary endothelial cells were best
predicted by the presence of pericytes in the tissue, in line with the
known presence and role of pericytes in direct contact with capillary
endothelium® (Extended Data Fig. 8i). The other endothelial subtypes
were mainly predicted by the presence of fibroblasts within a spot
andinthelocal neighbourhood (Extended Data Fig. 8h). Additionally,
we observed that the abundance of myeloid cells correlated with the
expression of markers of lymphatic endothelial cells (Extended Data
Fig.8h). Focusing onmolecular niche 10, which contained the highest
cell proportion of endothelial cells and additionally pericytes and mast
cells (Extended Data Fig. 8j), we observed a significant enrichment of
capillary endothelial cells (Extended Data Fig. 8k). Pathway analysis
revealed a significantly higher hypoxia and TGFf3 signalling activity
inischaemic and in fibrotic samples, underlining the importance of
these processes in chronic fibrotic cardiac remodelling processes
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(Extended Data Fig. 81). Pathways important for endothelial signal-
ling in homeostasis such as PI3K and TRAIL showed areductionin the
fibrotic and ischaemic groups, respectively, highlighting further the
differential endothelial cell signalling changes. Gene set enrichment
analysis further revealed an altered metabolism (for example, fatty
acid metabolism and oxidative phosphorylation) of this endothelial
cell niche in diseased samples which was further associated with an
increased inflammatory response viathe TNF and NFkB pathways and
increased apoptosis signalling® (Extended Data Fig. 8m). In summary,
weresolved all major endothelial cells states, localized themin space
and described their spatial dependencies. Further, weidentified aspa-
tial niche enrichedin capillary endothelial cells with complex metabolic
and signalling changes.

Cardiac myofibroblast differentiation

To dissect molecular and cellular mechanisms of fibrogenesis in
the human heart, we clustered all fibroblasts using the integrated
snRNA-seq and snATAC-seq data and identified four sub-clusters
(Fib1-4) (Fig. 6a, Extended Data Fig. 9a and Supplementary Table 13).
Fibl was marked by SCARAS, whichwe recently reported as amarker for
myofibroblast progenitorsin the human kidney**. Fib2 was marked by
POSTN, COL1AIand FN1,which, together with the fact that this popula-
tion expresses most extracellular matrix (ECM)-related genes, suggests
that Fib2 indeed comprises terminally differentiated myofibroblasts
(Fig 6b and Extended Data Fig. 9a-c). Notably, Fib2 also exhibited an
upregulation of RUNXI, which we recently reported as beinginvolved
inkidney myofibroblast differentiation®. Overexpression of RUNXIin
humanheart PDGFRpB-expressing cells led toincreased myofibroblast
differentiation and matrix expression (Extended Data Fig. 9d). We
validated the presence of high SCARAS expression in fibroblasts by
co-staining with the pan-fibroblast and myofibroblast marker COL15A1
aswellas POSTNand COL1A1inhuman heart tissues, and demonstrated
that POSTN is significantly enriched in COLIAI" cells compared with
SCARAS' cells (Extended Data Fig. 9e). Visualization of these markers
in our spatial transcriptomics dataset suggested that Fibl and Fib2
were enriched in mutually exclusive regions of the heart following
injury (Fig. 6¢ and Extended Data Fig. 9f). Additionally, we observed
that Fibl comprised the highest proportion in myogenic-enriched
samples, whereas Fib2 (myofibroblasts) were significantly enriched
and Fib3 slightly reduced inischaemic samples (Fig. 6d and Extended
DataFig.9g,h).

To precisely understand differentiation trajectories of fibroblasts
and transfer this knowledge to the human data, we performed induc-
ible lineage tracing in mice using the pan-mesenchymal Cre driver
Pdgfrb-CreER (crossed to a R26-tdTomato reporter) combined with
scRNA-seq at different time points following myocardial infarction
(Extended Data Fig. 9i-1). We integrated and annotated the cells by
label transfer (Fib1-4) from human to mouse (Extended DataFig. 9m,n).
We observed an overall increase of the Fib2 population and collagens
and ECM genes over time, whereas the Fibl proportion was decreased,
pointing towards a differentiation trajectory from SCARAS" fibroblasts
(Fibl) to myofibroblasts (Fib2) in mice (Extended Data Fig. 90,p).
Based on these observations, we inferred a pseudotime trajectory
from Fibl (SCARAS") to Fib2 (myofibroblast) in the human samples,
which was further supported by anincreased enrichment of the ECM
score (Fig. 6e,f) and of ECM biological gene ontology processes con-
sistent with fibroblast-to-myofibroblast differentiation (Extended
DataFig.9q).

Tounderstand the regulatory mechanisms of these stromal cell dif-
ferentiation processes we inferred afibroblast eGRN (Fig. 6g, Extended
DataFig.10a,b and Supplementary Table 14). Clustering resolved two
eGRN modules that each corresponded to a distinct fibroblast state
(Extended Data Fig.10c) and identified potential regulators of myofi-
broblast differentiation (Fig. 6g). Among the transcription factors
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regulating the Fiblmodule was KLF4, which regulates diverse cellular
functionsincluding cellular growtharrest, and is also one of the original
reprogramming factors ofinduced pluripotent stem cells. Our network
analysis highlighted the role of KLF4 inregulating SCARAS and PCOLCE2
expressioninFibl, anditalsotargets MBLN1, animportant regulator of
cardiac wound healing®® and fibroblast-to-myofibroblast transition®.
Concordantly, we observed reduced KLF4 binding activity and reduced
SCARAS expressionin our pseudotime analysis (Fig. 6h), highlighting
therole of KLF4 as a putative inhibitor of fibroblast activation. Among
the transcription factors identified in the Fib2 module were TEAD3
(an effector of the Hippo pathway), GLI2 (in the hedgehog pathway)
and RUNX2, which have been previously identified as regulators of
myofibroblast differentiation® (Fig. 6h and Extended DataFig.10d,e).
Our network analysis revealed thatboth TEAD3 and GLI2 regulate bona
fide myofibroblast target genesincluding COLIA1, TGFBI and POSTN.
Additionally, our network analysis identified the key anti-angiogenic
regulator THBSI* asadirect target of TEAD3 and the recently identified
cardiac fibrosis regulator MEOX1 in human cardiac myofibroblasts*°.
We next visualized the expression of the KLF4 and TEAD3 target genes
in spatial transcriptomics slides and observed gradients and mutu-
ally exclusive spatial expression in defined cardiac regions of fibrotic
responses, highlighting their differential spatial activity in the human
heart (Fig. 6i and Extended Data Fig. 10d).

Fibro-myeloid spatial relations

Myeloid-derived cells have been reported to have key roles in cardiac
remodelling following myocardial infarction*’. To understand their
heterogeneity, we sub-clustered them using the multi-omic data and
identified five sub-clusters across all myocardial infarction samples
(Fig. 6j,k, Extended Data Fig. 11a-d and Supplementary Table 15). We
observed that two clusters showed expression of resident myeloid cell
markers*? (LYVE- and FOLR-expressing myeloid clusters), as well as a
CCL18- and SPPI-expressing macrophage cluster and amonocyte and
classical dendritic cell cluster (Fig. 6j and Extended Data Fig. 11b-d).
We used an independent snRNA-seq dataset of three acute human
myocardial infarction samples as reference for validation and found
high concordance interms of myeloid cell populations based on marker
gene expression (Extended Data Fig. 11e). Cell proportion analysis
revealed anincreased abundance of a macrophage population defined
by SPPI expressionintheischaemic sample group, whereas CCL18 mac-
rophages were increased in fibrotic samples (Extended Data Fig. 11f).
SPPI* macrophages have been described in pulmonary fibrosis and
COVID-19**, and recent work suggests a role of these cells in cardiac
tissue remodelling in zebrafish*. We observed an upregulation of CD36
inthe SPPI" myeloid population; CD36 encodes amacrophage receptor
knownto beimportant for macrophage phagocytosis, binding to apop-
toticand dead neutrophils and having a unique role in cardiac remodel-
ling following myocardial infarction*® (Extended Data Fig. 11b). Indeed,
smFISH staining of SPPI* macrophages suggests increased phago-
cyticactivity, since multiple intracellular vacuoles could be observed
(Extended DataFig.11g,h). Quantification of multiplex in situ hybridi-
zation of SPP1, TREM2 and CCR2in human myocardial infarction tissue
specimens revealed that approximately half of all TREM2-expressing
myeloid cells also express SPP1, whereas CCR2* myeloid cells where less
frequent (Extended Data Fig.11i). Cell-dependency analyses of myeloid
cellstatesrevealed a close interaction for two identified LYVE" resident
macrophage populations, whereas the disease-enriched SPPI* mac-
rophages predicted the presence of CCL18" macrophages (Extended
DataFig.11j,k).

Following acute myocardial infarction, aninflammatory responseis
triggered, resulting in tissue remodelling that can lead to heart failure®.
It has been demonstrated that SPP1 itself can activate fibroblasts
invitro*s, highlighting the fibro-myeloid signalling interactionas a cru-
cial driver of the cardiacremodelling process. To further gaininsights
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Fig. 6| Characterization of mesenchymal-myeloidinteraction.a, UMAP of
human cardiac fibroblasts (integrated snRNA-seq and snATAC-seq data).

b, Expression of SCARAS, COL1IA1,POSTNand FNI1.c, Visualization of the markers
inspatial transcriptomics data. d, Comparison of Fibland Fib2 compositions.
Wilcoxon rank-sumtest (unpaired, two-sided; myogenic: n=13;ischaemic:n=8,
fibrotic: n=>5).e, Diffusion map of Fibland Fib2 populations. Coloursrefer to
pseudotime points.f,Same as e, with colours referringto ECMscore.g,eGRN
analysis, including Fibland Fib2. Eachnoderepresentsatranscription factor
(regulator) or gene (target). Targets are coloured by clustering results and
regulatorsare coloured by pseudotime with maximum transcription factor
activity. Thesize of regulator nodes represents centrality. h, Transcription factor
activity and expression over pseudotime and their corresponding target gene over
pseudotime. i, Visualization of KLF4and TEAD3target genes and TGFf3 pathway

about the spatial dependencies of the myeloid and fibroblasts states,
we modelled their marker expression using the spatial transcriptom-
ics data. We observed that the presence of SPPI* macrophages better

activity inaremote zone (left) and ischaemic zone (right) sample. j, UMAP of
sub-clusters of human cardiac myeloid cells using theintegrated snRNA-seq and
snATAC-seq data.cDC, classical dendritic cell; MQ, macrophage. k, Gene
expressionof LYVEI, CCL18,ZBTB46 and SPPI.1,Medianimportance of myeloid cell
statesinthelocal neighbourhoodinthe prediction of fibroblast cell states.

m, Cell-state scores of myofibroblasts (Fib2) and SPPI' MQs inaremote zone
sample. Arrows point toregions where thereis an observed colocalization.

n, Insitustaining of CD163, POSTN and SPP1 on human cardiac myocardial
infarctiontissue. Arrowsindicate CD163+SPP1+ macrophages near myofibroblasts.
Scale:10 um. Quantification of SPPI+ macrophages relative to CD163+
macrophages fromtheinsitu hybridizationimages (adj. P-value from a two-sided
Wilcoxon rank-sumtest, n=8 control group,n=6 fibroticgroup,n=12ischaemic
group). For details onvisualization, statistics and reproducibility, see Methods.

predicted all fibroblasts states compared to other myeloid cell states,
with a higher importance for myofibroblasts within a spot and in the
local neighbourhood (Fig. 61 and Extended Data Fig.12a). Myofibroblast
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marker expression aligned with a gradient of expression of the mark-
ers of SPP1" macrophages (Fig. 6m). This pattern was also recovered
by our cell-type niche definition, in which the inflammatory niche 5
was surrounded by the fibrotic-rich niche 4 (Extended Data Fig. 12b),
which we could confirm by a higher expression of SPP1' macrophages
and myofibroblast marker genes in niche 5 compared with niche 4
(Extended Data Fig. 12c). As our data pointed towards a clear spatial
association of myeloid cells and fibroblasts, and spatially associated
cells are presumably more likely to communicate with each other, we
next used receptor-ligand interaction analysis to study their cellular
crosstalk. We observed an overall complex myeloid-fibroblastinterac-
tion (Extended Data Fig.12d), and detected distinct changesin crosstalk
between SPPI* macrophages and Fib2. Thisincluded increased PDGF-C,
PDGF-D and THBSI1 signalling in ischaemic versus myogenic samples
andincreased ADAMI7 and TGFBI in fibrotic versus myogenic samples
(Extended DataFig.12e). Of note, we observed enhanced TGFB1signal-
ling in ischaemic versus myogenic samples towards Fib3 (Extended
Data Fig.12f). To validate the spatial interaction of SPPI' macrophages
and Fib2, we performed RNA in situ hybridization on human cardiac
tissues following myocardial infarction and could confirm the spatial
interaction and enrichment of SPPI* macrophages in anindependent
tissue cohort (n =26 patients) using an orthogonal method (Fig. 6n
and Extended Data Fig. 12g).

Insummary, we have decoded cellular fibroblast and myeloid hetero-
geneity and spatial modelling of the fibro-myeloid cell states, revealing
aunique interaction of SPPI" macrophages with myofibroblasts across
the different stages of human cardiac tissue remodelling.

Discussion

Inmulticellular organs, such as the human heart, normal cellular func-
tionand tissue homeostasis depend on the interaction between neigh-
bouring individual cell types. Single-cell technologies can profile the
molecular heterogeneity of the different cell types and changes that
occur during disease. However, without spatial context itis unclear how
these different cell types interact in space to coordinate tissue func-
tions. Here we provide acomprehensive map of the human heart at early
and late stages after myocardial infarction compared to control hearts
(non-transplanted donor hearts) by integrating spatial transcriptomics
with single-nucleus gene expression and chromatin accessibility data.

Our computational analyses enabled anincreased resolution of spa-
tial transcriptomics by estimating cell-type compositions for eachloca-
tion and by estimating pathway activities, mapping transcription factor
binding activities, and projecting GWAS SNPs. These different layers
of biologicalinformation enabled us to link the organization in human
heart tissue specimens of different histomorphological regions, differ-
ent time points after myocardial infarction and different individuals
to cellular functions. Here we characterized inflammatory and fibrotic
remodelling events that differentiated functional myocardium from
ischaemicand chronically remodelled tissue. We explored the effects
that these remodelling events had on cardiac architecture, specifically
on the vasculature and the dependencies between fibroblasts and
myeloid cells. Furthermore, we identified spatial enrichment of dif-
ferent functional states of myogenic regions in control, remote and
border zones that were not captured by looking at cell-type composi-
tions or histology only.

Analysis of the integrated snRNA-seq and snATAC-seq dataidentified
different cell states and subtypes for cardiomyocytes, endothelial cells,
fibroblasts and myeloid cells. We observed distinct cardiomyocyte cell
states associated with spatial distribution, pathway activity and disease
condition. Leveraging our multi-omic data, we inferred an eGRN and
identified potential regulators of cardiomyocytes and fibroblasts,
which were also reflected in spatial transcriptomics data. Our data
revealed a distinct niche of the border zone surrounding the injured
myocardium, with a sharp border between injured and uninjured cell
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types and were marked by a gradient of ANKRDI and NPPB expression.
Late-stage remodelling after myocardial infarction was driven by fibro-
sis, with fibroblast-to-myofibroblast differentiation in distinct tissue
areas. Our data provide novel insights into myofibroblast differentia-
tion in human hearts after myocardial infarction, with distinct gene
expression and gene-regulatory programmes driving this process. In
addition, we decoded the fibroblast myeloid cellular heterogeneity
after human myocardial infarction and identified a distinct cellular
dependency between myofibroblasts and activated phagocytic mac-
rophages (SPP1'CD36"). The combination of spatial technologies with
single-cell data represented an opportunity to study how cardiac cell
states are influenced by their tissue microenvironment. The identified
interactions between cell types largely reflect the spatial organization
ofthetissue and, although many other factors areinvolved, these inter-
actions provide hypotheses for further analysis. Of note, we observed
high levels of cell death in the ischaemic samples, as expected, and
thus also higher levels of ambient RNA, which could introduce a bias
inthe analyses. Furthermore, we cannot exclude an overestimation of
cardiomyocytes in our cell-type proportion analysis, since about 25%
of adult human cardiomyocytes are binucleated*’, although multiple
nucleiinacell are reported to be transcriptionally homogenous®.

We envisionthat our publicly available atlas will serve as areference
for future studies integrating single-cell genomics and epigenomics
with spatial gene expression data of the human heart. Furthermore, we
believe that our data will facilitate the understanding of spatial gene
expression and gene-regulatory networks within the human myocar-
dium and will be aresource for future studies that aim to understand
the function of distinct cardiac cell types in cardiac homeostasis and
disease.
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Methods

Ethics

Thelocal ethics committee of the Ruhr University BochuminBad Oey-
nhausen, the RWTH Aachen University, Utrecht University and WUSTL
approved all human tissue protocols (no. 220-640, EK151/09, 12/387
and no. 201104172 respectively). Human myocardial tissue was col-
lected fromnon-transplanted donor hearts, patients after myocardial
infarction undergoing heart transplantation, implantation of a total
artificial heart or left ventricular assist device (LVAD) implantation.
The study met all criteria of the code of conduct for responsible use
of human tissue that is used in the Netherlands. The collection of the
human heart tissue was approved by the scientific advisory board of
the biobank of the University Medical Center Utrecht, The Netherlands
(protocolno.12/387). All patients provided informed consent and the
study was performed in accordance with the Declaration of Helsinki.
Writteninformed consent for collection and biobanking of tissue sam-
ples was obtained prior to LVAD implantation.

Human tissue processing and screening

Hearttissues were sampled by the surgeonandimmediately frozeninlig-
uid nitrogen. Tissues were homogenizedinliquid nitrogenand 7-10 mm?
pieces were embedded in OCT compound (Tissue-Tek) and frozen on
dry-ice. Ten-micrometre tissue cryosections were stained with H&E and
the appropriate tissue regions were selected for further processing. In
total 52 human tissue samples were screened this way and evaluated by
a cardiac pathologist. For RNA quality control we minced a3 x 3 mm?
heart tissue piece in liquid nitrogen and isolated the RNA using Qiagen
RNeasy Mini kit (Qiagen) using aproteinase K digestion step as suggested
inRNeasy Fibrous Tissue MiniKit (Qiagen, 74704). RNA integrity number
(RIN) analysis (Agilent) was performed using Bioanalyzer RNA 6000
Nano kits (Agilent, No. 5067). RIN ranged from >2 to a maximum of 8.8.

Spatial gene expression assay

Frozen heart samples were embedded in OCT (Tissue-Tek) and cryo-
sectioned (Thermo Cryostar). The 10-um section was placed on the
pre-chilled Optimization slides (Visium, 10X Genomics, PN-1000193)
and the optimal lysis time was determined. The tissues were treated
as recommended by 10X Genomics and the optimization procedure
showed an optimal permeabilization time of 12 or 18 min of digestion
andrelease of RNA fromthe tissue slide. Spatial gene expression slides
(Visium, 10X Genomics, PN-1000187) were used for spatial transcrip-
tomics following the Visium User Guides. Brightfield histological
images were taken using a 10X objective on the Nikon Eclipse TiE and
aleicaAperio Versa200 scanner. Stitching of the raw images was per-
formed using the NIS-Elements software. Next generation sequencing
libraries were prepared according to the Visium user guide. Libraries
were loaded at 300 pM and sequenced on a NovaSeq 6000 System
(Illlumina) as recommended by 10X Genomics.

Single-nucleiisolation of human hearts

Single-nucleiisolation was performed as previously described®. Briefly,
heart tissue was cut into small pieces (0.5 mm?) in a sterile petri dish
oniceand transferred toatissue homogenizer. Nucleiisolation buffer
0.5 ml (EZ lysis buffer, NUC101, Sigma-Aldrich) plus RNase inhibitor
(Protector RNase Inhibitor, Roche) were added to the tissue, and 10-15
strokes with pestle Awere applied followed by 10-15 strokes of pestle B.
Thenucleiwere stained with DAPland FANS sorted using a Sony SH800
toenrich the nuclei. Nucleiisolation from three acute myocardial infarc-
tionsamples from the WUSTL biobank was performed as described*.

scRNA-seq

Nuclei suspensions with a concentration ranging from 400-1000
nuclei per plwereloaded into the chromium controller (10X, Genomics,
PN-120223’) on a Single Cell B chip (10X Genomics, PN-120262) and

processed following the manufacturer’ original protocol to generate
single-cell gelbeadsin the emulsion. The sequencing library was gener-
ated using the Chromium Single cell 3’ reagent Kit v3 (10X, PN-1000092)
and Chromium i7 Multiplex Kit (10X Genomics, PN-120262). Quality
control for the constructed library was performed by Tape Station.
Libraries were sequenced on NovaSeq targeting 50,000 reads per cell
2 x 150 paired-end kits using the following read length: 28 bp Readl
for cell barcode and UMI, 8-bp I7 index for sample index, and 91-bp
Read2 for transcript.

sc-ATAC-seq

The remaining nuclei after processing for 3’ scRNA-seq assay were
centrifuged at 500g at 4 °C for 5 min and resuspended in 10 pl of
nuclei suspension buffer. After tagmentation the nuclei suspension
was loaded on the Chromium Chip E (10X Genomics, PN-1000082) in
the Chromium controller according to the manufacturer’s protocol.
Thelibrary was sequenced onanlllumina NovaSeq 6000 using the fol-
lowing read length: 50 bp Read1 for DNA fragments, 8 bp for i7 index
for sampleindex, 16 bp i5index for cell barcodes, and 50 bp Read2 for
DNA fragments.

RNA insitu hybridization and image quantification

In situ hybridization was performed using formalin-fixed paraffin
embedded tissue samples and the RNAscope Multiplex Detection KIT
V2 (RNAscope, cat. no. 323100) and RNAscope 4-Plex Ancillary Kit
(RNAscope, cat. no. 323120) following the manufacturer’s protocol
with minor modifications. The antigen retrieval was performed for 30
min at 99 °C in a water bath (VWR). Tissue pretreatment and washing
was performed as suggested by the RNAscope staining protocol. The
following probes were used for the RNAscope assay: Hs-CD163 cat. no.
417061-C1, Hs-CCR2 cat. no.438221-C1, Hs-ANKRD1 cat. no. 524241-C1,
Hs-POSTN cat. no.575941-C1, Hs-Col15al cat.no. 484001-C2, Hs-Collal
cat.no.401891-C2, Hs-PECAM1-02 cat.no.487381-C2, Hs-NPPB cat. no.
448511-C2, Hs-TREM2 cat. no. 420491-C2, Hs-SPP1 cat. no. 420101-C2,
Hs-NPR3 cat.no.431241-C3, Hs-POSTN cat. no. 409181-C3, Hs-SCARAS
cat. no. 574781-C3, Hs-TNNT2 cat. no. 518991-C3, Hs-SPP1 cat. no.
420101-C4 and Hs-NFE2L1 cat. no. 53850.

Nuclei quantification of H&E stained Visium slides

To quantify nuclei from the H&E staining, we used VistoSeg*, an auto-
mated MATLAB pipeline for image analysis. Using this pipeline, the
individual TIFF files were used for nuclei segmentation using k-means
colour-based segmentationin theimage processing toolbox. Next, the
binary images were refined with the refineVNS() function for accurate
detection of the nuclei. Then a CSV and JSON file was generated that
contained the metrics to reconstruct the spot grid to allow for nuclei
quantification per 10X Visium detection spot. Counting of nuclei was
performed with the countNuclei() function. The images were checked
individually with the spotspotcheck() function. Code is available at
http://research.libd.org/VistoSeg.

Animal model of myocardial infarction

Myocardial infarction was performed as previously described®. In
brief, 12-week-old male and female C57BI/6) Pdgfrb-creER;tdTomato
mice were subjected to chronic left anterior descending artery liga-
tion. The mice were anaesthetized using isoflurane (2-2.5%). The mice
wereinjected 30 min before surgery with metamizole (200 pg g body
weight) subcutaneously. Then they were intubated and ventilated
with oxygen using a mouse respirator (Harvard Apparatus). Before
incision, we injected bupivacaine (2.5 pg g body weight) subcutane-
ously and intercostally for local analgesia. Then a left thoracotomy
was performed, and myocardial infarction was induced by ligature of
the left anterior descending artery with 0/7 silk (Seraflex, 1005171Z).
The ribs, muscle layer and skin incision were closed. Metamizole was
administered for three days via drinking water (1.25 mg ml™, 1% sucrose)


http://research.libd.org/VistoSeg

post-surgery. All mice were housed under standardized conditions
in the Animal Facility of the University Hospital Aachen (Germany).
The operating procedure was in accordance with European legisla-
tion and approved by local German authorities (LANUV, reference
no. 81-02.04.2017.A410.). Mice were euthanized at different time
points (sham, 4 days, 7 days and 14 days). As control, hearts from
sham-operated, age-matched mice were taken (2 sham female and
2 sham male mice).

Inducible fate-tracing experiments

For inducible fate tracing, male and female Pdgfrb-creER;tdTomato
mice (8 weeks of age) received tamoxifen (3 mg intraperitoneally)
4 times followed by awashout period of 21 days and were then subjected
to myocardial infarction surgery or sham (12 weeks of age) as described
above and euthanized at 4 days, 7 days and 14 days after surgery.

Echocardiography

Left ventricular heart function was determined by echocardiogra-
phy performed on a small-animal ultrasound imager (Vevo 3100 and
MX550D transducer, FUJIFILM Visualsonics). Recordings of short and
long cardiac axis were taken in Bmode (2D real-time) using a 40 MHz
transducer (MX550D). During the procedure, mice were anaesthetized
with 1-2% isoflurane. Ejection fraction (EF) and global longitudinal
strain (GLS) were recorded and analysed with the VevoLab Software.
The Simpson method was used to assess EF. The GLS was measured in
the B-mode of the long axis.

smFISH spot quantification and nuclear segmentation

Images for smFISH were exported in native Nicon format (.nd2).
Images were split by channel using bfconvert™ for further process-
ing. RNA spots were quantified using the command line version of
Radial Symmetry-FISH (RS-FISH)*. The sigma parameter from RS-FISH,
determining spot size, was set to 2.9 for allimages. Threshold settings
in RS-FISH were manually determined for each channel and were set
to the following values for cardiomyocyte state analysis: channel 1
(TNNT2) =0.0107, channel 2 (ANKRDI) = 0.005, channel 3 (NPPB) =
0.0066. To remove spot counts resulting from low signal, high back-
groundimages, we removed spots with anintensity lower than the 25th
percentile of the channel intensity distribution across all images and
applied aminimum intensity threshold of 600. For the quantification
of CD163'SPP1* macrophages, while we were not able to perform full
cell segmentation, we performed nuclear segmentation using Mesmer>’
with pre-trained nuclear segmentation models to identify all detect-
able nuclei in each image based on DAPI staining. We subsequently
assigned spots to the closest nuclei based on euclidean distance and
classified cells as positive or negative for the different markers (POSTN,
CD163and SPPI). Cells with more than 2 spots for a given marker were
considered positive for that marker.

Masson trichrome staining

Masson’s trichrome staining was conducted using a ready-to-use kit
(Trichrome Stain (Masson) Kit, HT15, Sigma-Aldrich) as described by
the manufacturer.

Antibodies and immunofluorescence staining

Heart tissues were fixed in 4% formalin for 4 h at room temperature
and then embedded in paraffin. For staining slides were blocked
in 5% donkey serum followed by 1 h of incubation with the primary
antibody, washing 3 times for 5 min in PBS, and subsequent incuba-
tion of the secondary antibodies for 45 min. Following DAPI (4,6’-dia
midino-2-phenylindole) staining (Roche, 1:10.000) the slides were
mounted with ProLong Gold (Invitrogen, cat. no. P10144). The fol-
lowing antibodies were used: anti-ACTA2(aSMA)-Cy3 (C6198,1:250,
Sigma-Aldrich), anti-SEMA3G (HPA0O01761, 1:100, Sigma-Aldrich),
AF647 donkey anti-rabbit (1:200, Jackson Immuno Research).

Confocal imaging

Acquisition of images was performed using aNikon A1R confocal micro-
scope using 40x and 60x objectives (Nikon). Image processing was
performed using the Nikon Software or ImageJ*®.

Generation of ahuman PDGFRB’ cardiac cell line

PDGFRB’ cellswereisolated from a 69-year-old male patient, undergoing
left ventricular assist device surgery. To generate a single-cell suspension,
the tissue washomogenized inagentleMACS dissociator (Miltenyi) and
digested with liberase (200 pg ml™, Roche cat. no. 5401020001) and
DNase (60 U mlI™), for 30 minat 37 °C. After filtering the cell suspension
(70 pum mesh), cells were stained in two steps using a specific PDGFRB
antibody (R&D cat. no. MAB1263 antibody, dilution 1:100) followed by
Anti-Mouse IgG1-MicroBeads solution (Miltenyi, cat. no.130-047-102).
Following MACSisolation, cells were culturedin DMEM media (Thermo
Fisher cat. no. 31885) for 20 days and immortalized using SV40-LT and
HTERT. Retroviral particles were produced by transient transfection of
HEK293T cells using TransIT-LT (Mirus). Two types of amphotropic parti-
cleswere generated by co-transfection of plasmids pBABE-puro-SV40-LT
(Addgene #13970) or xlox-dNGFR-TERT (Addgene #69805) in combina-
tion with a packaging plasmid pUMVC (Addgene #8449) and a pseu-
dotyping plasmid pMD2.G (Addgene #12259). Retroviral particles
were 100x concentrated using Retro-X concentrator (Clontech) 48 h
post-transfection. Cell transduction was performed by incubating the
target cells with serial dilutions of the retroviral supernatants (1:1 mix
of concentrated particles containing SV40-LT or rather hTERT) for 48 h.
Subsequently at 72 h after transduction, the transduced PDGFRb" cells
were selected with 2 pg ml™ puromycin for 7 days.

Lentiviral overexpression of RUNX1

The human cDNA of RUNX1Iwas PCR amplified using the primer sequences
5’-atgcgtatccccgtagatgee —3’and 5'- tcagtagggcectccacacgg —3’. Restric-
tionsitesand N-terminal 1XHA-Tag were introduced into the PCR product
using the primer 5’- cactcgaggccaccatgtacccatacgatgttccagattacgetcg-
tatccccgtagatgec -3’ and 5’- acggaattctcagtagggectccacac —3’. Subse-
quently, the PCR product was digested with Xhol and EcoRl and cloned
into pMIG (pMIG was a gift from W. Hahn) (Addgene plasmid #9044 ;
http://n2t.net/addgene:9044; RRID:Addgene_9044). Retroviral particles
were produced by transient transfectionin combination with packaging
plasmid pUMVC (pUMVC was a gift from B. Weinberg (Addgene plasmid
#8449)) and pseudotyping plasmid pMD2.G (pMD2.G was a gift from
D. Trono (Addgene plasmid #12259 ; http://n2t.net/addgene:12259;
RRID:Addgene_12259)) using TransIT-LT (Mirus). Viral supernatants
were collected at48-72 h post-transfection, clarified by centrifugation,
supplemented with 10% FCS and Polybrene (Sigma-Aldrich, final con-
centration of 8 ug ml™) and filtered with a 0.45-pm PES filter membrane
(Millipore; SLHPO33RS). Cell transduction was performed by incubating
the PDGFB’ cells with viral supernatants for 48 h.eGFP-expressing single
cells were sorted with a SH800 Cell Sorter.

Quantitative PCR with reverse transcription

Cell pellets were collected and washed with PBS followed by RNA extrac-
tionusing the RNeasy Mini Kit (Qiagen) according to the manufacturer's
instructions. Two-hundred nanograms total RNA was reverse tran-
scribed with High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) and quantitative PCR with reverse transcription was car-
ried out as described” Data were analysed using the 2C, method. The
primers used are listed in Supplementary Table 18.

Preprocessing of snRNA-seq, sSnATAC-seq and spatial
transcriptome data

For snRNA-seq data, CellRanger software (v6.0.2) was used to perform
the alignment with default options. Since the input consists of nuclei,
we enabled the option ‘~include-introns’ toincludeintronicreads. For
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snATAC-seq data, the CellRanger ATAC pipeline (v2.2.0) was used with
the default settings. For spatial transcriptome data, the SpaceRanger
software (v1.3.2) was used to pre-process the sequencing data. The
option ‘-reorient-images’ was enabled to allow for automatic image
alignment. hg38 was used as the reference genome for human data
alignment.

snRNA-seq data processing

Toidentify the major lineages representative of all of our specimens, we
created asingle-nuclei atlas analysing and integrating each snRNA-seq
dataset using Seurat® (v4.0.1).

Each dataset went throughidentical quality control processing. We
discarded nuclei (1) in the top 1% in terms of the number of genes, (2)
with less than 300 genes and less than 500 UMIs, (3) with more than
5% of mitochondrial gene expression, and (4) doublets as estimated
using scDblFinder (v1.4.0)°° with default parameters. Count matrices
were log-normalized for downstream analyses using a scaling factor of
10,000. We calculated adissociationscore for each cell using Seurat’s
modulescore functions withagene set provided by O’Flanagan et. al.*!
and discarded the nuclei that belonged to the top 1%. To generate an
integrated atlas of all samples, log-normalized expression matrices
were merged and dimensionality reduction was performed on the
collection of the top 3,000 most variable genes that were shared with
most of the samples using principal component analysis (PCA). To
select the collection of shared variable genes between samples, first
we estimated the top 3,000 most variable genes per sample and then
selected the top 3,000 most-recurrent genes from them across all
samples. PCA correction was performed with harmony® (v1.0) using
as covariates the patient, sample, and batch labels. A shared nearest
neighbour (SNN) graph was built with the first 30 principal compo-
nents using Seurat’s FindNeighbors, and the cells were clustered witha
Louvain algorithm with FindClusters. A high resolution (1) was selected
togenerate alarge collection of nuclei clusters to capture representa-
tive major cell lineages, even if present in low proportions. Cluster
markers wereidentified with Wilcoxon tests asimplementedin Seurat’s
FindAlIMarkers function. Final assignment of cells to major cell lineages
was based on literature marker genes. We filtered out small clusters
(median number of nucleiacrossfiltered clusters =269) with low gene
count distributions (median counts across filtered clusters = 756) or
feature recovery (median number of genes across filtered clusters =
695), with marker genes that could not be assigned to known cell types
ofthe heart. To visualize all nucleiin atwo-dimensional embedding, a
UMAP was created with Seurat’s RunUMAP function using the first 30
principal components of harmony’s PCA correction embedding. Major
cell-type markers were estimated by performing differential expres-
sion analysis of cell-type and patient-specific pseudo-bulk profiles.
Pseudo-bulk profiles were calculated by summing up the counts of all
cellsbelonging to the same cell type and patient. Profiles coming from
less than10 cells or profiles from which the maximum gene expression
was of less than 1,000 counts per library were discarded. Differen-
tially expressed genes were calculated by fitting a quasi-likelihood
negative binomial generalized log-linear model as implemented in
edgeR (v3.32.1)% (false discovery rate (FDR) < 0.15). Each cell type was
compared against the rest.

Comparison withindependent healthy and ischaemic human
heart cell atlases

We compared our generated atlas with another reference human
single-nuclei RNA-seq atlas* at the molecular and compositional level.
The counts matrix was downloaded directly from https://www.heart-
cellatlas.org and we selected the data coming from single-nuclei and
left ventricle samples. Nuclei with fewer than 200 genes, and genes
expressedinlessthan3 nuclei were excluded. Log normalization with
ascaling factor of 10,000 was performed with scanpy’s®* (v1.7.0) nor-
malize_total function.

To evaluate our major cell-type annotation, we calculated the enrich-
ment of the top 200 marker genes based onlog fold change of each cell
type definedinthereference atlasin the list of the top 200 marker genes
of each of our defined cell types with hypergeometric tests. Marker
genes of the reference atlas were calculated with Wilcoxon tests as
implemented in scanpy’s ¢* (v1.7.0) rank_genes_groups (adj. P < 0.01).
Each cell type was compared against the rest. To evaluate the compo-
sitional stability of our control samples, we calculated the Pearson cor-
relation between the median proportion of each shared cell type of the
reference atlasand our control, border zone, and remote zone samples.
Similarly, we compared our atlas to anindependent collection of human
heart nuclei derived from three ischaemic specimens. First, we ana-
lysed and integrated the smaller collection of samples using identical
proceduresastheonesusedinour providedatlas. After nucleiclustering,
we assigned each cluster to a cell type using literature markers. Cell-
type markers were calculated with Wilcoxon tests (adj. P<0.01) and the
top 200 genes based onlogfold change were selected. Marker overlap
and compositional stability comparison with ischaemic specimens
fromour atlas were performed as described previously.

SnATAC-seq data processing

To control the data quality, the fragment files were used as input for the
package ArchR (v1.0.1)%, and low-quality cells were filtered out based
on transcription start site (TSS) enrichment (> 4) and the number of
unique fragments (>3,000 and <100,000). Doublets were identified
and removed by using the functions addDoubletScores and filterDou-
blets from ArchR with default settings. Next, peaks were identified
by using the function addReproduciblePeakSet for each sample. All
peaks were merged to create a union peak set of which each peak was
annotated as distal, promoter, exonic and intronic. A count matrix
was constructed with the function addPeakMatrix. For dimensional-
ity reduction, the method scOpen (v1.0.0)* was used to generate a
low-dimensional matrix of the cells. The algorithm Harmony® was
applied to correct the batch effects and integrate the dataand UMAP
was used to generate a2D embedding for visualization. Cells were clus-
tered using the Leiden algorithm with aresolution of 1. To annotate the
clusters, a gene activity score matrix was created using the function
addGeneScoreMatrix and marker genes were detected for each clus-
ter using the function getMarkerFeatures. The same markers from
snRNA-seq data were used to annotate the clusters.

Comparison between snRNA-seq and snATAC-seq data

The Seurat® label-transferring approach was used to compare the
annotation of snRNA-seq and snATAC-seq. To do so, the snRNA-seq
data were used as reference and the function FindTransferAnchors
was applied to identify a set of anchors using gene expression from
snRNA-seq and gene activity score from snATAC-seq. Next, the cell
labels from snRNA-seq were transferred to snATAC-seq by running
the function TransferData. An adjusted rand index was calculated to
evaluate the agreement between annotated and predicted cell labels
for snATAC-seq data.

Cell-type-specific transcription factor binding and regulon
activity

To estimate transcription factor binding activity for each major cell
type identified from snATAC-seq data, we first aggregated the reads
within each celltype and created a pseudo-bulk profile. Next, we used
MACS2 (v2.2.7)¥ to perform peak calling and removed the peaks from
chrY, mitochondrial and unassembled ‘random’ contigs. We then pre-
dicted the transcription factor binding sites and estimated transcrip-
tion factor binding activity using HINT-ATAC (v0.13.2)*® based on the
JASPAR2020 database®. We linked the transcription factor binding sites
tothe nearest genesto create a cell-type-specific transcription factor—
geneinteraction. Thenumber of ATAC-seq readsin the region with100
bp up-stream and downstream of the the transcription factor binding
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site were used to indicate how strong the interaction was: each tran-
scription factor-gene interaction was weighted as the ratio between
the number of ATAC-seq reads around the transcription factor bind-
ing site associated with that gene and the maximum number of reads
observedinany binding site of the transcription factor. Allinteractions
with aweight larger than 0.3 were considered in downstream analysis.
This generated weighted and filtered cell-type-specific regulons. To
infer a transcription factor regulon activity score, we estimated the
mean expression of the target genesin each cell-type-specificregulon.
Cell-type pseudo-bulk profiles were filtered to contain only genes with
atleast10 countsin 5% of the samples, before the estimation of normal-
ized weighted means using decoupleR’s” (v1.1.0) wmean function with
1,000 permutations. Regulon activities were standardized and corre-
lated with transcription factor binding activities using Spearman cor-
relations. The minimum correlation of 0.5 was used as threshold and the
top Stranscription factors per cell type were selected for visualization.

Cell-type-specific GWAS signal enrichment

GWAS summary statistics for 4 MRIbased left ventricle function param-
eters”were downloaded from the Cardiovascular Disease Knowledge
Portal (https://cvd.hugeamp.org/). For each phenotype, GWAS sum-
mary statistics were clumped with Plink (v1.9)" to identify index SNPs
(clump-p1=0.0001, clump-kb =250, clump-r2 = 0.5) using the European
samples from 1000 Genomes as a reference population.

Next, we lifted over the coordinates of index SNPs from hgl9 to hg38
using the LiftOver tools. For each major cell type, we generated an aver-
age chromatin accessibility profile by using snATAC-seq data from all
cells. The cell-type-specific GWAS signal enrichment was performed
using gchromVAR (v0.3.2)”? and enrichment scores were normalized
to z-scores. P-values were calculated based on the z-scores and were
corrected by the Benjamini-Hochberg method.

Cell-type-specificintegration of snATAC-seq and snRNA-seq

data and sub-clustering

For each major cell type that was recovered by both snATAC-seq and

snRNA-seq, we aimed to identify sub-clusters spanning multiple sam-

ples and modalities. To do so, we devised a multi-step approach to
integrate and cluster the data by controlling quality from sample-,
cell-type- and modality-specific aspects.

(1) To minimize the sample-specific effects, we only considered samples
witha minimum number of cellsinboth snATAC-seq and snRNA-seq:
for cardiomyocytes and endothelial cells (n_cells_ATAC >300 and
n_cells RNA>400); for fibroblasts (n_cells ATAC>100and n_cells_
RNA>400);andformyeloid (n_cells_ATAC>50andn_cells. RNA>200).
This step controls for samples with low recovery of cells in a par-
ticular modality.

(2) Tofurtherfilter cell-type-specific low-quality cells from snRNA-seq
and snATAC-seqdata, weintegrated the samples as selected in step
1using Harmony to correct batch effects from patients and regions
based on PCA space (30 dimensions) for snRNA-seq and LSl space
(30 dimensions) for snATAC-seq data. We then clustered the cells
using Seurat (resolution = 0.4) for each modality independently. We
next excluded the clusters that were (i) enriched inasingle sample;
(ii) showed alower data quality; (iii) showed a higher doublet score
compared with others. Specifically, for cardiomyocytes, we removed
3clustersfromsnATAC-seq data: 2 clusters (481 cells) were enriched
inasinglesampleandanother cluster (171 cells) showed alow number
of unique fragments (average =8,102). For fibroblasts, we removed 1
cluster (49 cells) from snATAC-seq (98% of cells from asingle sample)
and 1 cluster (1,172 cells) from snRNA-seq (average doublet score
of 0.12). This step controls for cell type and modality-specific low-
quality cells.

(3) We nextintegrated the cells from snATAC-seq and snRNA-seq data.
To this end, we used the gene activity score matrix of snATAC-seq
estimated by ArchR and the gene expression data from snRNA-seq

data as input for canonical component analysis by Seurat. The in-
tegrated data were projected into a PCA space (30 dimensions) and
Harmony was used to correct the batch effects from samples and
modalities. This step generated aco-embedded and batch-corrected
dataset composed of cells from snRNA-seq and snATAC-seq samples.
(4) For each major cell type, we defined the sub-clusters based on the
co-embedded data using the Seurat (resolution=0.9 or1). Marker
genes were identified by using the function FindAlIMarkers. We
next filtered clusters that were mainly driven by a single sample
or modality. Finally, we merged and annotated the clusters based
on the markers. The final statistics of the sub-clustering results
for each major cell type were provided in Supplementary Table 16.

Analysis of snRNA-seq data from mouse fibroblasts

Cellranger mkfastq and count functions (version v6.0.2) with default
parameters were used for demultiplexing and aligning the reads,
respectively. Reads were aligned to the mouse reference transcrip-
tome (mm10, Version=2020-A). Prior to alignment, reads for tdTomato
were added to thereference. Quantified counts fromeach sample were
aggregated and cells with counts <1,500 and >20,000 were filtered out.
Further, cells with >5% reads mapped to mitochondrial genes, as well
as cells with <500 genes were removed. Scrublet” was used to detect
potential doublets and only the resulting 40,495 cells with <0.2 scrublet
score were kept for further analyses. The highly_variable_genes() func-
tion with seurat_v3 flavour implemented in Scanpy (version1.8.1) was
used to obtainthe top 2,000 most highly variable genes. Count datawas
log-normalized using sc.pp.normalize_total(target_sum=1e4) followed
by sc.pp.loglp(). The data was subset to the 2,000 genes, unwanted
sources of variation from n_umi and mito_fraction were regressed out
using sc.pp.regress_out(), and the top 30 principal components were
estimated using sc.tl.pca(). Harmony was then used to account for large
differences across samples using ‘sample’ as the batch indicator. Net-
work neighbourhood graph was constructed using the function sc.pp.
neighbors() with 30 adjusted principal components, cosine distance
and n_neighbors =10. Leiden clustering with resolution 1.0 was used
to clusterthecellsinto17 clusters. Marker genes were identified using
the Wilcoxon testimplemented insc.tl.rank_genes_groups() function
inScanpy. Clusters were manually annotated using the marker genes.
We next cleaned up the data by removing clusters with low data qual-
ity and re-clustered the data with resolution of 0.2. To annotate the
cells, we used the label transfer approach from Seurat based on the
sub-clustering results from human fibroblasts.

Gene-regulatory network inference for cardiomyocytes and

fibroblasts

We inferred an eGRN for cardiomyocytes and fibroblasts using a

multi-step approach including modality pairing, transcription fac-

tors and genes selection, and network construction.

(1) Wefirst paired the cells between snATAC-seq and snRNA-seq based
on the previously described co-embedding space using an opti-
mal matching approach”™. This method returns a matching of a
SsnATAC-seq cell to a unique cell in snRNA-seq. Next, we produced
adiffusion map” and created trajectories in this space using the
functionaddTrajectory from ArchR (v1.0.1)®. For cardiomyocytes,
weinferredatrajectory fromclusters vCM1, vCM2 and vCM3, where
vCMlwere considered asroots and vCM3 as the terminal state. For
fibroblasts, we built a trajectory with SCARAS" fibroblasts as root
and myofibroblasts as terminal state.

(2) Next, we predicted a single-cell-specific transcription factor bind-
ing activity score using the R package chromVAR (v1.16)” from the
SnATAC-seq databased on motif from the JASPAR2020 database®.
In contrast to HINT-ATAC, chromVAR provides transcription factor
activity scores at single-cell level. We next selected transcription
factorsthat display concordant binding activity (snATAC-seq) and
its gene expression (snRNA-seq) (Pearson correlation > 0.1). This
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analysis identified 65 transcription factors for cardiomyocytes
and 44 transcription factors for fibroblasts. We considered these
transcription factors to be potential regulators. We sorted the
transcription factors along the trajectory as defined in step 1and
assigned a pseudotime label to each transcription factor. Next, we
selected highly variable genes using the snRNA-seq data along the
trajectories as described®. We kept the top 10% variable genes and
considered them as potential transcription factor targets.

(3) To associate regulators with targets (that is, transcription fac-
torswith genes), we explored the correlation of peak accessibility
and gene expression to identify peak-to-gene links. Specifically,
for each gene, we consider peaks that are within 125 kb on either
side of the transcription start sites, while excluding the promoter
regions. This analysis generated a list of enhancer-to-promoter
links. We only considered significantly correlated links (FDR <
0.0001) with a positive correlation as before®. Finally, we associ-
ated atranscription factor with atarget gene if this gene was linked
to anenhancer and this enhancer was predicted to be found by this
transcription factor.

(4) To build a quantitative transcription factor-gene-regulatory
network, we estimated the correlation of the transcription fac-
tor binding activity from snATAC-seq and target gene expression
from snRNA-seq data and only considered those interactions with
Pearson correlation >0.4. We visualized the network based on a
force-layout, which places transcription factors (or target genes)
with similarinteractions close together. We coloured transcription
factor nodesinthe networks using the assigned pseudotime labels
asinferredinstep 2. To characterize theimportance of transcription
factors, we computed two measures: node betweenness (denoted
by b)”” and pagerank (denoted by p)™®. A finalimportance score for
transcription factor i was calculated as:

Importancei= Aj(b,- - min(b))*+ (p,— min(p))*

(5) Finally, to map the inferred GRN into spatial transcriptomics data,
we used the target genes for each transcription factor and calcu-
lated amodule score by using the function AddModuleScore from
Seurat (v4.1.0).

Characterization of spatial transcriptomics datasets
Single-slide processing. Filtered feature-barcode expression matri-
cesfrom SpaceRanger (v1.3.2) were used as initial input for the spatial
transcriptomics analysis using Seurat (v4.0.1). Spots with less than 300
measured genes and less than 500 UMIs were filtered out. Ribosomal
and mitochondrial genes were excluded from this analysis. Individual
count matrices were normalized with sctransform’, and additional
log-normalized (size factor=10,000) and scaled matrices were calcu-
lated for comparative analyses using default settings.

Cell-type compositions were calculated for each spot using cell2lo-
cation®® (v0.05). Reference expression signatures of major cell types
were estimated using regularized negative binomial regressions and
our integrated snRNA-seq atlas. We fitted a model in six downsampled
iterations of our snRNA-seq atlas (30%) and generated a final reference
matrix by taking the mean estimation. Each slide waslater deconvoluted
using hierarchical bayesianmodels asimplemented inrun_cell2location.
We provided the following hyperparameters: 8 cells per spot, 4 factors
per spot, and 2 combinations per spot. Additionally, for each spot we
calculated cell-type proportions using the cell-type-specificabundance
estimations. Cell-type compositions of the complete slide were calcu-
lated adding the estimated number of cells of each type across all spots.
To compare the stability of estimated cell compositions between our
different datamodalities, we calculated Spearman correlations between
the estimated cell type proportions of each slide and the observed cell
type proportions in its corresponding snRNA-seq and snATAC-seq
dataset.

Estimation of functional information from spatial data. For each
spot, we estimated signalling pathway activities with PROGENy’s®"%2
(v1.12.0) model matrix using the top 1,000 genes of each transcrip-
tional footprint and the sctransform normalized data. Spatially vari-
able genes were calculated with SPARKX® (v1.1.1) using log-normalized
data (FDR < 0.001). To obtain overrepresented biological processes
fromeachlist of spatially variable genes, we performed hypergeomet-
ric tests using the set of canonical pathways provided by MSigDB%*
(FDR<0.05).

Estimation of cell death molecular footprints from spatial data. To
associate the differences in nuclei capture in snRNA-seq between the
different samples to cell death processes, we leveraged the informa-
tion from spatial transcriptomics to estimate the general expression of
genes associated to cell death for each sample. For each unfiltered slide
we estimated per spot the normalized gene expression of BioCarta’s®
‘death pathway’ and Reactome’s® ‘regulated necrosis pathway’ using
the decoupleR (v1.1.0) wmean method and the sctransform normalized
data. To have afinal pathway score per slide, we calculated for each slide
the mean ‘pathway expression’ across all spots.

Mapping transcription factor binding activity and GWAS enrich-
ment to spatial data. To visualize the transcription factor binding ac-
tivity estimated from snATAC-seq datain space, we used the estimated
celltype proportion calculated from cell2location scores for mapping.
Specifically, for each spotiand transcription factorj, we calculated the
transcription factor binding activity as follows:

K
ACT; = zk:I Proportion, x ACTy;,

where Proportion is the estimated proportion of cell type k, K is the
number of cell types, and ACT’;is the binding activity of transcription
factorjin cell type k from snATAC-seq data. An equivalent approach
was used to map GWAS scores into space.

Cell-state spatial mapping. To map the functional states of each cell
type into spatial locations, we leveraged the deconvolution results of
eachslide and the set of differentially expressed genes of each recov-
ered cell state. Given the continuous nature of cell states, we assumed
that the collection of up and downregulated genes of a cell state rep-
resented its transcriptional fingerprint and could be summarized in
a continuous score in locations where we could reliably identify the
major cell type from which the state was derived. For a given major
celltype ofinterest k, we identified spots whereitsinferred abundance
was of at least 10%. To estimate state scores associated with cell type k,
we used decoupleR’s (v1.1.0) normalized weighted mean method
(wmean) and the set of the upregulated genes of each state defined
with snRNA-seq and snATAC-seq (log fold change > 0; Wilcoxon tests,
FDR<0.05). Thelog fold change of each selected gene was used as the
weightin the wmean function.

Analysis of ion channel-related genes. We related the expression of
ion channel-related gene sets to the different cardiomyocyte cell states
andtheir locationinspatial transcriptomics. First we selected two dif-
ferent gene sets containing ion channel-related genes: (1) Reactome’s®
‘ion channel transport’ and a curated list of transmural ion channels
from Grant et al.’®. Gene sets are provided in Supplementary Table 17.
First, we calculated gene set scores for each spatial transcriptomics
spot using decoupleR’s wmean function. Then we correlated these
gene set scores to the spatial mapping of cardiomyocyte cell states
inregions where we observed at least 10% of cardiomyocytes. Addi-
tionally, we evaluated if any of the genes belonging to these gene sets
were differentially expressed between the vCM1 and stressed vCM3



population using Wilcoxon tests as implemented in scran’s (v1.18.5)
findMarkers function (area under the curve (AUC) < 0.4, AUC > 0.6,
FDR <0.05).

Spatial map of cell dependencies. We used MISTy’s® implementation
inmistyR (v1.2.1) to estimate the importance of the abundance of each
major cell type in explaining the abundance of the other major cell
types. Cell-type cell2location estimations of all slides were modelled in
amulti-view model using three different spatial contexts: (1) anintrinsic
view that measures the relationships between the deconvolution esti-
mationswithinaspot, (2) ajuxtaview that sums the observed deconvo-
lution estimations of immediate neighbours (largest distance threshold
=5),and (3) aparaview that weights the deconvolution estimations of
more distant neighbours of each cell type (effective radius =15 spots).
Theaggregated estimated standardized importances (median) of each
view of all slides were interpreted as cell-type dependencies in different
spatial contexts, such as colocalization or mutual exclusion. Neverthe-
less, thereported interactions did notimply any causal relation. Before
aggregation, we excluded the importances of all predictors of target
cell types whose R? was less than 10% for each slide.

Toassociate tissue structures with tissue functions, we fitted aMISTy
model to explain the distribution of PROGENYy’s pathway activities
standardized scores. The multi-view model consisted of the following
predictors: (1) an intrinsic view to model pathway crosstalk within a
spot, (2) ajuxtaview to model pathway crosstalk between neighbour-
ing spots (largest distance threshold =5), (3) a para view estimating
pathwayrelationsin larger tissue structures (effective radius =15), (4)
anintrinsic view and (5) a para view containing cell2location estima-
tions (effective radius =15). These last two views model explicitly the
relations between cell-type compositions of spots and pathway activi-
ties. Cycling cells and TNF were notincluded in the described analyses.
Before aggregation, we excluded theimportances of all predictors of
target pathway activities whose R* was less than 10% for each slide.

Niche definitions from spatial transcriptomics data. To identify
groups of spots in the different samples that shared similar cell-type
compositions, we transformed the estimated cell-type proportions
of each spatial transcriptomics spot and slide intoisometric log ratios
(ILR)*, and clustered spotsinto groups. These niches represent groups
of spots that are similar in cell composition and represent potential
shared structural building blocks of our different slides; we refer to
these groups of spots as cell-type niches. Louvain clustering of spots
was performed by first creating ashared nearest neighbour graph with
k different number of neighbours (10, 20, 50) using scran’s® (v1.18.5)
buildSNNGraph function. Then, we estimated the clustering resolution
that maximized the meansilhouette score of each cluster. We assigned
overrepresented cell types in each structure by comparing the distri-
bution of cell-type compositions within a cell-type niche versus the
rest using Wilcoxon tests (FDR < 0.05). We tested if a given cell state
was more representative of a cell-type niche by performing Wilcoxon
tests between each niche and the rest (FDR < 0.05). Only positive state
scores were considered in this analysis.

Additionally, to complement the repertoire of niches identified with
cell-type compositions, we integrated and clustered the Visium spots
of all slides using their log-normalized gene expression. We called
these clusters molecular niches. Integration and clustering of spots
was performed with the same methodology as the one used to create
the snRNA-Seq atlas. A low resolution was used (0.2) to have a similar
number of molecular niches as cell-type niches. Cell-type and cell-state
enrichment was performed as mentioned before.

Differential expression analysis of molecular niches enriched with
cardiomyocytes. Differential expression analysis between molecular
niches enriched in cardiomyocytes (niche O, niche 1, niche 3) was per-
formed using the log-transformed expression of all spots belonging to

a given niche. Wilcoxon tests were performed with scran’s® (v1.18.5)
findMarkersfunction. Genes withasummary AUC>0.55and FDR<0.05
were considered upregulated genes.

Differential molecular profiles of the molecular niche 10 enriched
with capillary endothelial cells. Differential expression analysis be-
tweenischaemic, fibroticand myogenic-enriched spatial transcriptomic
spots was performed with Wilcoxon tests asimplemented in scran’s®
(v1.18.5) findMarkers function. To obtain overrepresented biological
processes from upregulated genes, we performed hypergeometric
tests using the set of hallmark pathways provided by MSigDB3¢. Normal-
ized PROGENY’s pathway activities for each spot were calculated using
decoupleR’s wsum method with100 permutations onlog-transformed
data. Mean normalized pathway scores were calculated per slide
and comparisons between groups were performed with Wilcoxon
tests. Reported P-values were adjusted for multiple testing using the
Benjamini-Hochberg procedure.

General differences in tissue organization. We annotated the dif-
ferent spatial transcriptomic slides into three groups based on histo-
logical differences with the help of pathologists: myogenic-enriched,
fibrotic-enriched and ischaemic-enriched. A general comparison of
the sampled patient specimens was performed at the compositional
and molecular level.

Hierarchical clustering, with euclidean distances and Ward’s algo-
rithm, was used to cluster the pseudo-bulk profiles of the spatial tran-
scriptomics datasets (replicates where merged, n=27). Genes with
less than 100 counts in 85% of the sample size were excluded for this
analysis. Log normalization (scale factor =10,000) was performed.
To visualize the general molecular differences between our samples,
log-normalized pseudo-bulk profiles of the spatial transcriptomics
datasets were projected in an UMAP embedding.

Toidentify compositional differences between our sample groups,
we compared cell-type and niche compositions. To identify cell-type
compositionchanges associated to the sample groups, mean cell-type
compositions across single-cell and spatial datasets were compared
with Kruskal-Wallis tests (FDR < 0.1). Pairwise comparisons of sam-
ple groups were performed with the Wilcoxon test. Additionally, to
test which cell-type and molecular niches had different distributions
between our group samples, we performed Kruskal-Wallis tests over
the compositions of cell-type or molecular niches (FDR < 0.1). Addi-
tional pairwise comparisons were performed with Wilcoxon tests
(P-values adjusted with Benjamini-Hochberg procedure). For this,
we only consider slides where no single niche represents more than
80% of the spots. Also, we only consider niches representing more
than 1% of the composition of at least 5 slides.

Toidentify differences between the structurally similar tissues cap-
turedinthe myogenic-enriched group, we separated the samplesinto
remote, border, and control zones and repeated the niche composition
comparison described previously.

Toidentify patterns of tissue organization associated with asample
group, we tested if differential cell dependencies were captured by
the MISTy models used to predict cell-type abundance (see ‘Spatial
map of cell dependencies’). First, we filtered the standardized impor-
tance matrices of each sample’s MISTy model fitted to predict the
abundance of major cell-types to contain only the values of target cell
types predicted with an R? greater than 0.05. Then, for each slide we
created aspatial dependency vector where each element contains the
importance of each possible pair of target and predicted cell types.
Finally, we tested which cell interactions had higher importancesin
one of the sample groups compared to the rest using Wilcoxon tests
(FDR < 0.25). To prioritize interactions, we only performed pairwise
comparisons between sample groups for cell-type dependencies
from which the maximum median importance across all groups was
greater than 0.
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Estimation of the effects of the spatial context on gene expres-
sion. We used mistyR (v1.2.1) to find the associations between the
tissue organization and the spatial distribution of stressed cardi-
omyocytes and the different endothelial, myeloid and fibroblast
cell states. We hypothesized that the distribution of specific cell
statesinthe spatial transcriptomics slides could be modelled by the
cell-type composition or cell-state presence of individual spots and
their neighbourhood.

Foragiven collection of cell states of interest, we first defined regions of
interestineverysingleslideas the collection of spots where theinferred
abundance of the cell type from which the cell state was derived was at
least 10%. These regions limit the target spots used in the MISTy model,
however the whole slide is used to spatially contextualise the predictors.
We used as predictors the abundances of cell types estimated with cell-
2locationor cell states scores. Toaccount only for the effects of the activa-
tion ofacellstate, the state scores of predictor cell states were masked to
0 whenever their score was lower than 0. In all models we included two
classes of spatially contextualized predictive views: an intrinsic (intra)
and alocal neighbourhood view (para, effective radius =5).

Specifically wefitted the following models to answer four questions:
(1) What are the main cell types whose abundance within a spot or in

the local neighbourhood predict the stressed vCM3?

vCM3 - intra(cell-type abundance) + para(cell-type abundance)

(2) What are the main cell types whose abundance within aspot or in
the local neighbourhood predict the endothelial subtypes? How
do the different subtypes relate to each other?

ECsubtypes~intra(ECsubtypes) +para(ECsubtypes) +intra(cell-type
abundance) + para(cell-type abundance)

(3) What are the myeloid cell states within a spot or in the local neigh-
bourhoodthatbetter predict fibroblasts cell states? How do fibro-
blasts cell states relate to each other?

FibroblastStates ~intra(FibroblastStates) + para(FibroblastStates)
+intra(MyeloidStates) + para(MyeloidStates)

(4) What are the main cell types whose abundance within a spot orin
the local neighbourhood predict the myeloid cell states? How do
the different states relate to each other?

MyeloidStates ~ intra(MyeloidStates) + para(MyeloidStates)
+intra(cell-type abundance) + para(cell-type abundance)

Specificviewimportances were compared between patient groups
as described previously with an R filter of 0.1.

Cell-cell communication analysis

Toestimate ligand-receptor interactions between the sub-populations
of fibroblasts and myeloid cells, we extracted gene expression matrix
from the integrated snRNA-seq and snATAC-seq data for each sample
group (that is, myogenic, ischaemic and fibrotic) and combined the
matrices from all sub-populations. We next used LIANA (v0.0.9)%°, a
framework that compiles the results of state-of-the-art cell commu-
nication inference methods, to infer ligand-receptor interactions.
We focused on the CellPhoneDB® ligand-receptor method with
Omnipath’sligand-receptor database®? implemented in LIANA®. This
was done by combining snRNA-seq samples of myogenic, ischaemic
and fibrotic groups and subsetting only the fibroblasts and myeloid
cells sub-states. Next, we used CrossTalker (v1.3.1)* to find changesin
cell-cellcommunication by contrasting ligand-receptor interactions
predicted in myogenic vs. ischaemic samples and myogenic vs. fibrotic

samples. The interactions considered by CrossTalkeR were obtained
by filtering the output of LIANA®® (P> 0.01).

Visualization, statistics, and reproducibility

Indatarepresented as box plots (Figs. 2f, 4c,d,m,o0, 5b and 6d,n) the
middle line corresponds to the median, the lower and upper hinges
describe the first and third quartiles, the upper whisker extends
fromthe hinge to the largest value no further than 1.5 x inter-quartile
range (IQR) from the hinge and the lower whisker extends from the
hinge to the smallest value at most 1.5 X IQR of the hinge, and data
beyond the end of the whiskers are outlying points that are plotted
individually. InFigs. 4b and 5b,k, Colours refer to gene-weighted ker-
nel density as estimated by using R package Nebulosa®*. All reported
P-values based on multi-comparison tests were corrected using the
Benjamini-Hochberg method®. The depicted immunofluorescence
micrographs are representative (Figs. 4c and 6n). The number of
samples for each group was chosen on the basis of the expected
levels of variation and consistency. The depicted RNAscope, immu-
nofluorescence micrographs are representative and were performed
atleasttwice, and all repeats were successful. Fig. 1a contains a panel
from BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Processed snRNA-seq, snATAC-seq, and spatial transcriptomics
data are available at cellxgene https://cellxgene.cziscience.com/
collections/8191c283-0816-424b-9b61-c3e1d6258a77 and at the
Zenodo dataarchive (https://zenodo.org/record/6578047). Raw data
generated by CellRanger and SpaceRanger pipelines are available
through the Human Cell Atlas Data Portal at https://data.humancel-
latlas.org/explore/projects/e9f36305-d857-44a3-93f0-df4e6007dc97
and at the Zenodo data archive (https://zenodo.org/record/6578553,
https://zenodo.org/record/6578617 and https://zenodo.org/
record/6580069). Source data are provided with this paper.

Code availability

All code used for analysis is available at https://github.com/saezlab/
visium_heart and https://github.com/KramannLab/visium_heart.
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Extended DataFig.1| Computational workflow and snRNA-Seq data
analysis. a, Schematic of the computational workflow for the main analyses
of snRNA-seq, snATAC-seq, and spatial transcriptomics data. b, UMAP
embedding of snRNA-seq data fromall samples for patients, regions, and
clusters.c, UMAP embedding of snRNA-seq data showing G2-M-phase cell-
cyclescore (left) and S-phase score (right). d, Barplots showing cell-type
proportions of snRNA-seq data across all samples. Coloursindicate different
major cell types. e, Comparison of the generated snRNA-seq atlastoa
previously published human heart cell atlas (HCA) for molecular profiles (left)
and cell-type proportion (right). Left panel shows the adjusted P-value of the
overlap of top gene markers of each cell-type between the different datasets

(hypergeometric test). Right panel shows the Pearson correlation between the
median proportion of each shared cell-type of the reference atlas and our
control,border zone, and remote zone samples. f, UMAP embedding and
annotation of an external dataset of three ischaemic zone samples following MI.
g, Comparisonofthe generated snRNA-seq atlas to the external ischaemic
datafor molecular profiles (left) and cell-type proportion (right). Left panel
shows the adjusted P-value of the overlap of top gene markers of each cell-type
between the different datasets (hypergeometric test). Right panel shows the
Pearson correlation between the median proportion of each shared cell-type
of the external dataset and ourischaemic samples.
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Extended DataFig.2|snATAC-seqand spatial transcriptomics dataanalysis.
a, UMAP showing snATAC-seq data for all patients, regions, and clusters.

b, Validation of snATAC-seq cell type annotation using snRNA-seq data.

Left: UMAP showingthe predicted labels for snATAC-seq data. Right: heatmap
showingevaluation results by adjusted rand index (ARI). ¢, snATAC-seq cell-type
proportionsofallsamples.d, Spearman correlations of cell-type compositions
of samples estimated from snRNA-seq and and snATAC-Seq. Box-Whisker plots
showing medianandIQR (n=3for BZ,n=4 for control,n=4forRZ,n=5forFZ,
andn=9forlZ) e, Celltype detection for snRNA-seq and snATAC-seq dataacross
samples. The colour representsin which modality was cell type detected: snRNA-
seqand snATAC-seq, snRNA-seq only, or notrecovered. f, Transcription factor
(TF) binding and TF target expression per major cell type based on the snATAC-
seqand snRNA-seq data. g, Overrepresented spatially variable biological
processes (myocardiumrelated,immune related and fibrosis related) across
regions. Each cell contains the mean adjusted P-value of ahypergeometric test
acrossall spatial transcriptomics samples belonging to eachregion. h, Spearman

correlations of cell-type compositions of samples estimated from spatial
transcriptomics and snRNA-seq (left) or snATAC-seq (right). Box-Whisker plots
showing medianandIQR (n=3for BZ,n=4for control,n=4forRZ,n=5forFZ,
andn=9forlZ).i, GWAS SNP enrichmentscore across major cell types.

j, Visualization of GWAS" Il SNP enrichment (left ventricular ejection fraction)
inspatial transcriptomics data.Ind,h, eachspotisapatient sample (n=3for
borderzone (BZ), n=4 for controls, n=6 for fibrotic zone (FZ), n=9 forischaemic
zone (1Z), n=5forremote zone (RZ)). Data are represented as boxplots where the
middlelineis the median, the lower and upper hinges correspond to the firstand
third quartiles, the upper whisker extends from the hinge to the largest value no
further than1.5 x IQR from the hinge (where IQRis the inter-quartile range) and
thelower whisker extends from the hinge to the smallest valueat most1.5 x IQR
ofthe hinge, while databeyond the end of the whiskers are outlying points that
are plotted individually. Ina-c the number of spots of the bottom panels
correspondtothebarplotsinthe upper panel.
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Extended DataFig. 3| Cell-type niches and spatially contextualized views
analysis. a-b, UMAP embedding of spatial transcriptomics (ST) spots based on
major cell-type compositions coloured by the patient (a) or region (b).

¢, Cell-type niche compositions across patient sample.d, UMAP embedding of
ST spots based on major cell-type compositions colored by the compositions
of cycling cells, pericytes, adipocytes, endothelial cells and myeloid cells and
their respective marker genes (RYR2 cardiomyocytes, PDGFRA fibroblasts,
MKI67 cycling cells, ABCC9 pericytes, FASN adipocytes, VWF endothelial cells,
IL7R myeloid cells,and MYH11 vSMCs). e, Standardized mean PROGENy
pathway activities across different niches. f, H&E staining and cell2location
cell-type abundance estimations of cardiomyocytes, fibroblasts and myeloid

cells. Delineated areas represent myogenic or fibroblast/myeloid cell enriched
tissue areas. g, Median standardized importances (> 0) of cell-type abundances
inthe prediction of other cell types within the immediate neighbourhood
(upper part) and the extended neighbourhood (effective radius of 15 spots)
(lower part) inferred from spatially contextualized models. Cell-type
abundances of theimmediate (upper panels) and extended neighbourhood of
cardiomyocytes, fibroblasts and myeloid cells. h, Visualization examples of the
dependencies between the abundance of endothelial cells and the abundance
of pericytesintheimmediate neighborhood, and vascular smooth muscle cells
inthe extended neighbourhood (effective radius of 15 spots) visualized on
threetissues.
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Extended DataFig. 4 |Spatial pathway and cell type dependency analysis.
a,Median standardized importances (> 0) of cell-type abundances within the
spotandinthe extended neighbourhood (effective radius=15), and PROGENy
pathway activities within aspot, and in theimmediate or extended
neighbourhood onthe prediction of pathway activities inferred from spatially
contextualized models. b, Standardized importances of cardiomyocyte
abundancesinthe extended neighbourhood (radius of 15spots) in predicting
hypoxia pathway activity. Comparison was performed between two sample
groups: control, border and remote zones samples (n=10), and fibrotic and
ischaemicsamples (n=15). Two-sided Wilcoxonrank sumtest.c-e, Visualization
examples of pathway to pathway and pathway to cell-type dependenciesin
spatial transcriptomics. (c) p53 and PI3K spatial pathway distribution.

(d) JAK-STAT and NFkB activities’dependencies to myeloid and lymphoid cells’
abundance. (e) Cardiomyocyte to WNT and hypoxia pathway dependency.

f, Hierarchical clustering of the pseudo-bulk transcriptional profile of spatial
transcriptomics slides of patient samples. Colour represents the three major
sample groups. g, Comparisons of patient mean major cell-type proportions
(inferred fromsnRNA, snATAC-seq data, and spatial transcriptomics) between
myogenic,ischaemicand fibrotic groups. Two-sided Wilcoxon rank sum test.
Each dotrepresentsa patient sample (n=13 for myogenic group, n=9 for
ischaemic group, n=5for fibrotic group). h, Pairwise comparison between
patientgroups of the standardized importances of cell-type abundances
within the same spot (intra), and in theimmediate (juxta) or extended
neighborhood (para) to predict other cell types’abundances (two-sided
Wilcoxon rank sum test). Myogenic vsischaemic (left), myogenic vs fibrotic
(middle), fibrotic vsischaemic (right). * = adj. P-value <= 0.15. i, Comparison of
standardized importances of lymphoid cells’ abundancesin theimmediate
neighborhood (juxta) to predict myeloid cells between myogenic, ischaemic,

and fibrotic groups (two-sided Wilcoxon rank sum test). Visualization of
lymphoid and myeloid cellsinanischaemic (up) and control (down) sample.

j, Comparison of standardized importances of pericytes’abundances to
predict cardiomyocytes’abundances within the same spot (two-sided
Wilcoxon rank sum test). Each dot represents asample (n =14 for myogenic
group, n=9 forischaemic group, n=5for fibrotic group). Spatial distributions
of pericyte and cardiomyocytes abundances estimated from deconvolutionin
amyogenicsample (left) and afibrotic sample (right). Arrows in the fibrotic
enriched sample show astrong colocalization event. k, Comparison of the
compositions of cell-type niches between myogenic, fibrotic, and ischaemic
groups (Kruskal-Wallis test, line denotes an adj. P-value < 0.1). Comparison of
the proportions of cell-type niches 4, 5,7, and 8 between groups (adj. P-value
estimated from two-sided Wilcoxon rank sum test) and visualization example.
Eachdotrepresentsapatient sample (n for myogenic group =13, nfor
ischaemic group =7, nfor fibrotic group =5).1, Comparison of the proportions
of cell-type niche 9 between groups (two-sided Wilcoxon rank sum test).
Eachdotrepresentsapatient sample (n for myogenic group =13, nfor
ischaemic group =7, nfor fibrotic group = 5). m, Pairwise comparison of the
compositions of the cell-type niches between control, border and remote zone
samples (two-sided Wilcoxonrank sum test). *=reflect changes with adj.
P-value< 0.1,nfor CTRL=4,nforRZ=5,nforBZ=3.Inb, g,i,j,k, | dataare
represented as boxplots where the middle line is the median, the lower and
upper hinges correspond to the firstand third quartiles, the upper whisker
extends from the hinge to the largest value no further than1.5 x IQR from the
hinge (whereIQRis the inter-quartile range) and the lower whisker extends
from the hinge to the smallest value at most 1.5 x IQR of the hinge, while data
beyondthe end of the whiskers are outlying points that are plotted individually.
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Extended DataFig. 5| Characterization of molecular niches.a, UMAP
embedding of ST spots based on gene expression coloured by patients (left)
andregions (right). b, Gene expression of RYR2, ABCC9, MYH11, PDGFRa, CD8A
and/L7R. Coloursrefer to gene-weighted kernel density as estimated by using
R package Nebulosa. ¢, Bar plots visualizing molecular niches proportion per
patient.d, Standardized mean PROGENy pathway activities across different
molecularniches. e, Visualization of molecular niches in control,1Z,and FZ
samples. f, Comparison between patient groups of the proportions of molecular
niches5, 6, and 1(adj. P-value from a two-sided Wilcoxon rank sum test). Each
dotrepresentsapatient sample (nfor myogenic group =13, nfor ischaemic
group=9,nforfibroticgroup =5).g, Comparison between control (CTRL),
border zone (BZ) and remote zone (RZ) of the proportions of molecular niches
1,2,3,and 4 (adj. P-value, two-sided Wilcoxon rank sum test, Box-Whisker plots
showing median and IQR. Maximum and minimum values as described
previously). Each dotrepresents a patient sample (nforBZ=3,nfor CTRL=4,
nforRZ group=4).h, Top five differentially upregulated genes between spots
belonging to molecular niches enriched with cardiomyocytes. Summary area

under the curve (AUC) is used as a size effect of comparing the expression of
one molecular niche against therest. *=reflect FDR <0.05 and summary
AUC > 0.55 (nfor mol.niche 0=30,058, nfor mol. niche1=19,958, nfor mol.
niche3=7,360).Spatial distribution of the expression of MYLK3in a control
slide (upper) and aborder zone (lower) i, Comparisonbetween patient groups
ofthe proportions of molecular niche 2 (adj. P-value, two-sided Wilcoxon rank
sumtest, Box-Whisker plots showing median and IQR. Maximum and minimum
values asdescribed previously). Each dot represents a patient sample

(nfor myogenic group =13, nforischaemic group=9, nfor fibroticgroup =5).
Jj.Sameas (i) for niche 3.Inf, g,i,j dataare represented as boxplots where the
middlelineis the median, the lower and upper hinges correspond to the first
and third quartiles, the upper whisker extends from the hinge to the largest
value no further than1.5 x IQR from the hinge (where IQRis the inter-quartile
range) and the lower whisker extends from the hinge to the smallest value at
most 1.5 xIQR of the hinge, while databeyond the end of the whiskers are
outlying points thatare plotted individually.
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Extended DataFig. 6 | Characterization of cardiomyocyte state clusters.
a,UMAP embedding of the integrated snRNA-seq and snATAC-seq data
coloured by patients, regions, modalities, and clusters (resolution=1). b, Dot
plotshowingthe top 10 upregulated genes for each CM-state. ¢, State-specific
pseudo bulk ATAC-seq profiles showing distinct chromatin accessibility for
NPPBbetween different states. d, Insitu RNA hybridization of NPPB, ANKRDI
and TNNT2on human cardiac control tissue (upper panel). Note thatonly a
single NPPB/ANKRDI positive cardiomyocyte could be detected. (below)
Representative image of the same in-situ staining of a human myocardial
infarction sample. Note the NPPBand ANKRDI expressionin several
cardiomyocytes (arrows). Scale bars: 25 um (upper) + 50 pm (lower).

e, Spearman correlation between the spatial expression of lon-channel transport
and transmural-ion channels related genes to the expression of the marker
genes (state scores) of vCM1-3 (two-sided Wilcoxon rank sum test). Each dot
represents avisiumslide (n=28).f, Differential gene expression ofion channel
related genes in vCM1 contrasted to vCM3 cardiomyocytes (two-sided
Wilcoxon rank sum test, area under the curve (AUC) is shown as size effect).
Coloursrefer tothe gene set membership of each gene. g, Visualization of
vCMl1gene marker expression mapping (state scores) and the expression of
RYR2and ATP2B4 inaborder zone sample. h, Comparison of vCM1and vCM2
cell proportion between patient groups. P-values were calculated using

Wilcoxon Rank Sum test (unpaired, two-sided). Each dot representsasample (n
=13 for myogenic group, n=7forischaemic group, and n=4 for fibrotic group).
i, Distribution of vCM3 marker gene expression (state-score) across molecular
nichel,2,and 4.Each dotrepresents aspatial transcriptomics spot belonging
toamolecularnicheacrosssamples (n=30,058 for niche1,n=19,958 for niche
2,niche 4=7,360). Two-sided Wilcoxon rank sum test, adj. p-values (niche1vs
niche4 =0, niche2vsniche4=2e-09,nichelvsniche2=0).j, Visualisation of
the expression of ANKRDI and NPPB, the spatial distribution of TGF3, hypoxia,
p53and PI3K signaling activities, the spatial distribution of the expression of
vCM-states marker genes (state score) for aborderzonesample and the
distribution of molecular niches 1,2, and 4. Box-Whisker plots showing median
and IQR. Maximum and minimum values as described previously.Ine, h,idata
arerepresented asboxplots where the middlelineis the median, the lower and
upper hinges correspond to the first and third quartiles, the upper whisker
extends from the hinge to the largest value no further than1.5 x IQR from the
hinge (whereIQRis theinter-quartile range) and the lower whisker extends
fromthe hinge to the smallest value at most 1.5 x IQR of the hinge, while data
beyond the end of the whiskers are outlying points that are plotted individually.
Ina-cthe number of spots of the bottom panels correspond to the barplotsin
theupper panel.
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Extended DataFig.7|Cardiomyocyte pseudotime and gene-regulatory
network analysis. a, Diffusion map embedding of pseudotime cardiomyocyte
clusters vCM1,vCM2 and vCM3. b, Computational workflow for building gene
regulatory network (upper) and schematic of linking TF to target genes
through peak-to-gene links and predicted TF binding sites (lower). ¢, Heatmap
showing TF bindingactivity and gene expressionalong the pseudotime
trajectory.d, Heatmap of gene expression across pseudotime vCM1-vCM3.

e, Heatmap showing the correlation between TF binding activity and gene
expression along the pseudotime trajectory from vCM1to vCM3. Colorsonthe
top refer to pseudotime point where the TF showed the highest binding
activity. Clustering analysis identified three modules. f, ANKRD1 and NPPB
CM-stress marker gene expression along pseudotime vCM1-vCM3. g, Peak-to-
genelinks showing thatJDP2 regulates TGFB2.Eachloop represents a putative
linkbetween TGFB2and apeak. Loop height represents the significance of the
correlationand dashline represents threshold of significance (P=0.05).
ATAC-seqtracks were generated from pseudo-bulk chromatin profiles of vCML1,
vCM2,and vCM3. Binding sites of JDP2 are highlighted. h, Line plots showing
TF activity and expression after z-score normalization (y-axis) over pseudotime

(x-axis) forJDP2 (left), its corresponding target gene expression after z-score
normalization (y-axis) over pseudotime (x-axis) for TGFB2 (middle), and
visualization of all target genesin the BZ sample (right).i, Comparison of
standardized importances of myeloid abundances within the spot and
fibroblastabundancesinthelocal neighbourhood (radius of 5spots) to predict
vCM3 between patient groups samples. Each dot represents asample (n=9 for
myogenic group, n="7forischaemic group, n=4for fibrotic group). (lower
panel) Spatial distribution of the state score of vCM3 and myeloid cell
abundancesinaRZslide with histological evidence of ascar. (Two-sided
Wilcoxon rank sum test, Box-Whisker plots showing median and IQR. Maximum
and minimum values as described previously.) Dataarerepresented as
boxplots where the middleline is the median, the lower and upper hinges
correspond to the firstand third quartiles, the upper whisker extends from the
hinge to the largest value no further than1.5 x IQR from the hinge (where IQR is
theinter-quartile range) and the lower whisker extends from the hinge to the
smallest valueat most 1.5 x IQR of the hinge, while databeyond the end of the
whiskers are outlying points that are plotted individually. In a-c the number of
spots ofthebottom panels correspond to the barplots in the upper panel.
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Extended DataFig. 8| Endothelial cell heterogeneity. a. UMAP embedding
ofintegrated snRNA-seq and snATAC-seq data coloured by patients, regions,
modalities and clusters (resolution=0.9). b, Gene expression of NRG3, FLT4,
SEMA3G and ACKR1. Colours refer to gene-weighted kernel density as
estimated by using R package Nebulosa. ¢, Sub-cluster-specific pseudo bulk
ATAC-seqtracks showing the chromatinaccessibility of the genes from (b).

d, Marker dot plot showing the DEGs for each endothelial cells state and subtype.
e, Gene expression of SEM3G and POSTN. Colorsrefer to gene-weighted kernel
density as estimated by using R package Nebulosa. Immunofluorescence of
SEMA3G and ACTA2 (upper image). In situ mRNA (RNAscope) for POSTN and
PECAMI (magenta). Arrows highlight endocardial endothelial cells. Scale bars:
75pm (upper) and 10 um (lower). f, Endothelial cell state compositions across
all patient samples. g, Comparison between patient groups of the venous
endothelial cell proportion (two-sided Wilcoxon rank sum test). Each dot
represents apatientsample (nfor myogenic group =13, nforischaemicgroup=9,
nforfibroticgroup =5). h, Mean Pearson correlation between the abundance
of major cell-types and endothelial cell-state scores across all spatial
transcriptomics slides. i, Visualization of the spatial distribution of the
abundances of pericytes and the state score of capillary endothelial cells
sample. Arrows point at colocalization events. j, Visualization of the spatial

distribution of molecular niches, the state score of capillary endothelial cells
and the abundance of pericytes and cardiomyocytes. Arrows point at locations
where molecular niche 10 is present together with high abundances of
cardiomyocytes and pericytes. k, Endothelial cell state score distributionsin
all spots belonging to the molecular niche10 across all slides (n=1,874,

P-value =3.19e-298, obtained from a two sided Wilcoxon signed-rank test).

1, Mean signalling pathway activities in the molecular niche 10 across different
patientgroups (adj. P-value of two-sided Wilcoxon Rank Sum test). Each dot
represents aslide (n=14 for myogenic group, n=9 forischaemic group, n=5for
fibrotic group). m, Overrepresented hallmark pathways in the differentially
upregulated genes of molecular niche10 across different patient groups
(hypergeometrictests, adj. P-values).Ing, k, | dataare represented as boxplots
where the middlelineis the median, the lower and upper hinges correspond to
the firstand third quartiles, the upper whisker extends from the hinge to the
largest value no further than 1.5 x IQR from the hinge (where IQRis the inter-
quartilerange) and the lower whisker extends from the hinge to the smallest
valueatmost1.5 x IQR of the hinge, while databeyond the end of the whiskers
areoutlying points that are plotted individually. In a-c the number of spots of
thebottom panels correspond to the barplotsinthe upper panel.
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Extended DataFig.9|Fibroblast heterogeneity and PDGFRb lineage
tracinginmurine MI. a. UMAP embedding of integrated snRNA-seq and
snATAC-seq data coloured by patients, regions, modalities and clusters
(resolution=0.9). b, Marker dot plot showing the DEGs for each fibroblast
state. ¢, Box plots showing module score of NABA-collagen and NABA-core-
matrisome score per fibroblast state. P-values were calculated using Wilcoxon
rank sum (unpaired and two sided). d, Expression of COL1A1, ACTA2 and FN1 by
RNA qPCR after RUNX1 overexpression with and without TGF compared to
empty vector (EV) (n=6). One-way ANOVA followed by Bonferroni correction.
Errorbars=S.D. e, Insitu hybridization (RNAscope) on human myocardial
tissue of SCARAS and COL15al and quantification and comparison of

SCARAS+/POSTN+ cells vs. POSTN+/COL1AI+ cellsin human heart failure tissues

(n=7).Mann-Whitney test. Error bars=S.D.f, Visualization of SCARAS, POSTN,
COL1A1and FN1onspatial transcriptomics slides from1Zand FZhuman Ml
samples. g, Cell-type state compositions across patient sample. h, Comparison
of Fib3 cell proportion between patient groups. P-values were calculated using
Wilcoxon Rank Sumtest (unpaired, two-sided). Each dot represents asample

(n=13for myogenic group, n=7 forischaemic group, and n=4 for fibrotic group).

i, Time course of lineage tracing experiment using PDGFRBCreER-tdTomato
mice.j, Results of echocardiographic measurements EF (in %), and global
longitudinal strain (GLS, in %), for each of the time points. One-way-ANOVA.

n=4day 0,n=3day4, n=4 day 7,n=4 day 14. Error bars =S.D. k, Quality
measurements of single-cell RNA-Seq data from mouse Ml experiment.

1, UMAP representation of time points, cluster and gene expression (POSTN,
SCARAS, COL1IAI and FNI) from mouse Ml experiment. m, Confusion matrix
comparing predicted fibroblasts states and obtained clusters for mouse
dataset.n, UMAP representation of species cross-annotation of fibroblast
clusters. o, Cell proportion of mouse fibroblast state Fibl (SCARAS5+) and Fib2
(POSTN+) per Ml time-point. p, Box plots showing NABA collagens scores and
NABA core matrisome score per fibroblast state (mouse Fibl vs. Fibl) per time
point. P-values were calculated using Wilcoxon rank sum (unpaired and two
sided) (Sham: n=578for Fibland n =685 for Fib2; Day 4: n=1688 for Fibl and
n=2498 for Fib2; Day 7: n =203 for Fibl and n =330 for Fib2; Day 14: n=2232

for Fibland n=7684 for Fib2). q, Gene set enrichment analysis per human
fibroblast-cell state.Scalebar:10 um.Inc, d, h,k, pdataarerepresented as
boxplots where the middleline is the median, the lower and upper hinges
correspond to the firstand third quartiles, the upper whisker extends from the
hinge to thelargest value no further than1.5 x IQR from the hinge (where IQR is
theinter-quartile range) and the lower whisker extends from the hinge to the
smallest valueat most 1.5 x IQR of the hinge, while databeyond the end of the
whiskers are outlying points that are plotted individually.
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Extended DataFig.10 | Generegulatory network analysis of human cardiac
fibroblasts. a, Pseudotime heatmap showing gene expression (left) and TF
binding activity (right) along the trajectory Fibl to Fib2 (myofibroblasts). b,
Pseudotime heatmap showing highly variable genes along the trajectory.c,
Heatmap showing the correlation between TF binding activity and gene
expressioneach TF from (a) and gene from (b). Each columnrepresentsa TF
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Extended DataFig.11|Myeloid cell heterogeneity and spatial mappingin
human myocardial infarction.a, UMAP embedding of integrated snRNA-seq
and snATAC-seq data coloured by patient contribution, region, modality and
clusters (resolution=1). b, Marker dot plot showing the DEGs for each fibroblast
state. c, Gene expression of MRCI, ITGAX, FLT3and CD163. Colors refer to gene-
weighted kernel density as estimated by using R package Nebulosa.d, Bar plots
visualizing myeloid cell sub-population proportion per patient. e, Gene
expression of MRC1, ITGAX, SPP1, CCL18, FLT3, ZBTB46in an external dataset of
ischaemic patients. Colors refer to gene-weighted kernel density as estimated
by using R package Nebulosa.f, Comparison of myeloid cell proportion
between patient groups. P-values were calculated using Wilcoxon Rank Sum
test (unpaired, two-sided) (n=13 for myogenic, n=8 forischaemic,and n=>5for
fibroticgroup).g, Insitu hybridization of CCR2, SPP1and TREM2 on human
myocardialinfarctionsectionIZ. Arrows point to phagocytotic vacuolesin the
maghnification. h, Insitu hybridization of SPP1, POSTN and CD163 on human

myocardialinfarction section1Z. Note that SPP1+ macrophages colocalized in
distinct tissue regions and appeared to have an enlarged cell-size. i, In situ
hybridization quantification of cell type proportion per tissue section. n=7
patient tissues. Adjusted P-values were calculated using Wilcoxon signed-rank
test.j, Median standardized importances (>0) of the cell-state scores of
myeloid cells withinthe spotinthe prediction of other myeloid cell-state scores
inspatial transcriptomics. k, Mean pearson correlation between myeloid cell’s
state scores across all spatial transcriptomics slides. Datainf,iare represented
asboxplots where the middle line is the median, the lower and upper hinges
correspond to the firstand third quartiles, the upper whisker extends from the
hinge to thelargest value no further than1.5 x IQR from the hinge (where IQR is
theinter-quartile range) and the lower whisker extends from the hinge to the
smallest valueatmost 1.5 x IQR of the hinge, while databeyond the end of the
whiskers are outlying points that are plotted individually.
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Extended DataFig.12|Myeloid cell spatial modelling and cell-cell
communication. a, Medianstandardized importances (>0) of the cell-state
scores of myeloid cells (colocalization) in the prediction of fibroblast cell-state
scoresinspatial transcriptomics. b, Spatial mapping of cell-type nichesina
controland anischaemic sample. Arrows in the IZ sample show niche 4 and how
itsurrounds niche 5. ¢, Distribution of myofibroblasts and SPP1+ macrophages
marker gene expression (state-score) across cell-type niche 4 and 5. Each dot
represents aspatial transcriptomics spot belonging to a molecular niche
acrosssamples (n=12,427 for niche 4, n=4,375 for niche 5) (two-sided Wilcoxon
rank sumtest, adj P-value = 6.02e-133 for myofibroblast, adj P-value = 0 for
SPPI+monocytes). Dataare represented as boxplots where the middleline is
the median, the lower and upper hinges correspond to the first and third
quartiles, the upper whisker extends from the hinge to the largest value no
further than1.5 xIQR from the hinge (where IQR is the inter-quartile range) and

thelower whisker extends from the hinge to the smallest value at most 1.5 x IQR
ofthe hinge, while databeyond the end of the whiskers are outlying points that
areplotted individually. d, Cell-cell communication network representing
number of ligand-receptor interactions (edge richness), expression of ligand-
receptor pairs (LR scores; colour gradients) and cell centrality (Pagerank; node
size) as estimated in snRNA-seq of myogenic, ischaemic and fibrotic samples.
e, Sankey plots summarizing the top 50 ligand-receptor interactions for selected
source and target cells and contrast. These ligand-receptor pairs are selected
by absolute value of the differencein LRscore, as provided by CellPhoneDB
method implemented in Liana. f. Sankey plot summarizing top 50 TGFbeta
ligand-receptor interactions from Fib2 to SPPI+ Mac. cells. g, In situ
hybridization mRNA (RNAscope) staining of CD163 (myeloid), POSTN
(myofibroblast) and SPP1 on human cardiac MItissue (crop-outin Fig. 6n).
Arrows indicate CD163+SPPI+ macrophages near myofibroblasts. Scale: 25 um.
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Data analysis All software/scripts used in data analysis is described here: https://github.com/saezlab/visium_heart.
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The data is made available through the Human Cell Atlas (HCA) Data Coordination Platform (DCP) and can be accessed here: https://data.humancellatlas.org/
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For an overview on sample please see supplementary table 1. No statistical methods were used to predetermine sample size. The patients
were selected to give an equal representation of cells from healthy and myocardial infarction tissue from different zones. RT-qPCR and
histological analysis were performed on multiple independent replicates with a minimum of 3 (n=shown in the figure and described in
legends).

Data exclusions  For full details see description in Methods. For snRNA-Seq experiments, low-quality droplets were excluded based on standard, pre-
established approaches: (1) transcript count, (2) doublet score, (3) mitochondrial transcript content and (4) gene recovery.
For spatial transcriptomics experiments, spots were excluded based on their (1) transcript count and (2) gene recovery.
For snATAC-Seq experiments, low-quality droplets were excluded based on : (1) number of unique fragments; (2) transcription start site (TSS)
enrichment.

Replication The reported findings were replicated across multiple biological samples (n reported in each figure or Methods). Immunofluorescenct imaging
was performed on 3 heart samples minimum.

Randomization  Randomisation was not relevant due to the study design where human control and acute myocardial infarction tissues were used on
availability.

Blinding RRBlinding of the tissue was not possible. All analyses were performed in an automated manner across conditions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies X[ ] chip-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology |:| MRI-based neuroimaging

Animals and other organisms

Human research participants

XX [T

NOoOoxXOO=®

X Clinical data

Antibodies

Antibodies used Antibody, Company, Catalog number, Clone, Dilution:
anti-ACTA2(aSMA)-Cy3 (Sigma-Aldrich, C6198, 1:250)
anti-SEMA3G (Sigma Aldrich, HPA0O01761, 1:100)
anti-PDGFRb, R&D, MAB1263, PR7212, BQF0715061, 1:100
AF647 anti-rabbit Jackson ImmunoResearch, 711-605-152, 1:200
anti-mouse 1gG1-MicroBeads solution, Miltinyi, 130-047-102

Validation All antibodies used in this study are commercially available. They are validated by the vendors for the specific assay and species
used. The validation is available on the vendors website. Primary antibodies for immunostaining were validated by performing
comparisons to species-matched isotype antibodies and unstained controls. For the primary flow antibodies the specificity was
validated by staining directly against species-matched isotype and unstained controls.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) The immortalized human PDGFRb+ heart cell line from heart failure patients was generated as described in the methods.
Authentication None of the cell lines used were authenticated.
Mycoplasma contamination Mycoplasma tests showed no evidende of contamination by PCR.

Commonly misidentified lines  No commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals This study involved trangenic mice (Mus musculus). Used strains were PDGFRRBCreERt2 (i.e. B6-Cg-Gt(PdgfrR-cre/ERT2)6096Rha/
J, JAX Stock #029684), Rosa26tdTomato (i.e. B6-Cg-Gt(ROSA)26Sorttm(CAG-tdTomato)Hze/J JAX Stock # 007909).
PDGFRbCreER;tdTomato mice were males and females with an age of 8 weeks. Mice were housed two to five animals per cage
with a 12-h light—dark cycle (lights on from 0700 to 1900 h) at sustained temperature (20 °C+0.5°C) and humidity (~50%+10%)
with ad libitum access to food and water.

Wild animals This study did not involve any wild animals.
Field-collected samples This study did not involve any samples collected from the field.
Ethics oversight LANUV (Landesamt fur Natur, Umwelt und Verbraucherschutz) North Rhine-Westphalia (Germany) approved the study protocol

with reference No. 81-02.04.2017.A410.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Please see Extended Data table 1 for the clinical characteristics of the patients used in this study for snRNA, snATAC and spatial
transcriptomics. Extended Data table 5 described cohort of patients used for in-situ studies. Ethnicity was caucasian.

Recruitment Patients were recruited as described in the Methods. All tissue samples used for this study were obtained with written informed
consent from all patients in accordance with the guidelines of The Declaration of Helsinki 2000.

Ethics oversight The local ethics committee of the Ruhr University Bochum in Bad Oeynhausen, the RWTH Aachen University, Utrecht University
and WUSTL approved all human tissue protocols (No. 220-640, EK151/09, 12/387, No. 201104172 respectively).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration n/a
Study protocol n/a
Data collection n/a
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Flow Cytometry

Plots
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The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z All plots are contour plots with outliers or pseudocolor plots.
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Methodology
Sample preparation FACS protocol and flow cytometry and detailed sample preparation are described in the Methods.
Instrument SH800 Sorter (SONY)
Software SONY Sorter software.

Cell population abundance  Post-Sort purity was confirmed over 95%.

Gating strategy Please see Methods and Fig. 1b. for gating on DAPI+ nuclei.

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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