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Spatial multi-omic map of human 
myocardial infarction
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Myocardial infarction is a leading cause of death worldwide1. Although advances have 
been made in acute treatment, an incomplete understanding of remodelling 
processes has limited the effectiveness of therapies to reduce late-stage mortality2. 
Here we generate an integrative high-resolution map of human cardiac remodelling 
after myocardial infarction using single-cell gene expression, chromatin accessibility 
and spatial transcriptomic profiling of multiple physiological zones at distinct time 
points in myocardium from patients with myocardial infarction and controls. 
Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at 
increased resolution, yielding insights into changes of the cardiac transcriptome and 
epigenome through the identification of distinct tissue structures of injury, repair and 
remodelling. We identified and validated disease-specific cardiac cell states of major 
cell types and analysed them in their spatial context, evaluating their dependency on 
other cell types. Our data elucidate the molecular principles of human myocardial 
tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum 
following ischaemic injury. In sum, our study provides an integrative molecular map 
of human myocardial infarction, represents an essential reference for the field and 
paves the way for advanced mechanistic and therapeutic studies of cardiac disease.

Coronary heart disease driving acute myocardial infarction is the larg-
est contributor to cardiovascular mortality, which in turn is the leading 
cause of death worldwide1. Substantial progress has been made in the 
acute therapy of myocardial infarction, focusing primarily on percu-
taneous coronary intervention resulting in decreased acute mortality. 
However, the morbidity and mortality caused by left ventricular cardiac 
remodelling after myocardial infarction remain unacceptably high2. 

Cardiac remodelling after myocardial infarction involves immune cell 
recruitment and demarcation of the infarcted area followed by resorp-
tion of necrotic tissue, phagocytosis, myofibroblast activation, scar 
formation and neovascularization3. Understanding the exact cellular 
and molecular mechanisms of cardiac remodelling processes from the 
acute ischaemic event to the chronic cardiac scar formation in their 
spatial context will be key to developing novel therapeutics.
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Here we used a combination of single-cell gene expression, chro-
matin accessibility and spatially resolved transcriptomics to study 
the events of cardiac tissue reorganization and to characterize the 
cell-type-specific changes in gene regulation, providing an integrated 
spatial multi-omic map of cardiac remodelling after myocardial infarc-
tion. Our multi-omic data-driven approach, including spatial context, 
enables us to understand how a given cell state changes based on the 
cells’ neighbourhood and how this relates to transcriptional and regu-
latory variations. By deconvoluting spatial transcriptomics spots into 
cell-type abundances, we characterized cell niches occurring in differ-
ent stages following acute myocardial infarction. We identified differ-
ent cell states of cardiomyocytes, endothelial cells, myeloid cells and 
fibroblasts that are associated with disease progression on the basis 
of the integrated single-cell multi-omics data. Moreover, we inferred 
the gene-regulatory networks differentiating these cell states and pro-
jected this information onto specific tissue locations, thus mapping 
putative regulators controlling gene expression on specific myocardial 
tissue zones and disease stages. This enabled us to gain novel insights 
into the gene-regulatory programmes driving injury of cardiomyocytes, 
activated phagocytic macrophages and their relation to myofibroblast 
differentiation in cardiac tissue remodelling. Our results provide a 
comprehensive spatially resolved characterization of gene regulation 
of the human heart in homeostasis and after myocardial infarction. 
We have released our spatial multi-omics data through publicly avail-
able platforms to enable users to interactively explore the dataset. We 
anticipate that this data will be a reference map for future studies and 
ultimately for the development of novel therapeutics.

Multi-omic map of myocardial infarction
We applied an integrative single-cell genomics strategy with single- 
nucleus RNA sequencing (snRNA-seq) and single-nucleus assay 
for transposase-accessible chromatin sequencing (snATAC-seq) 
together with spatial transcriptomics from the same tissue mapping 
human cardiac cells in homeostasis and after myocardial infarction 
at unprecedented spatial and molecular resolution (Fig. 1a–c and 
Supplementary Table 1). We profiled a total of 31 samples from 23 
individuals, including four non-transplanted donor hearts as con-
trols, and samples from tissues with necrotic areas (ischaemic zone 
and border zone) and the unaffected left ventricular myocardium 
(remote zone) of patients with acute myocardial infarction (Fig. 1a). 
These acute myocardial infarction specimens were collected from 
heart tissues obtained at different time points after the onset of clini-
cal symptoms (chest pain), before the patients received an artificial 
heart or a left-ventricular assist device because of cardiogenic shock 
and as a bridge to transplantation (Supplementary Fig. 1a–c). We also 
analysed nine human heart specimens at later stages after myocardial 
infarction (fibrotic zone; Fig. 1b) that exhibited ischaemic heart disease 
and were available from heart transplantation recipients at the time 
of orthotopic heart transplantation.

For each cardiac sample, we obtained 10-µm cryo-sections and 
isolated nuclei from the remaining tissue directly adjacent to the 
cryo-section with subsequent fluorescence-activated nuclei sorting 
(FANS) for snRNA-seq and snATAC-seq (Fig. 1c). After filtering out 
low-quality nuclei, we obtained a total of 191,795 nuclei from all samples 
for snRNA-seq, with an average of 2,020 genes per nucleus, together 
with chromatin accessibility data from 46,086 nuclei overall with an 
average of 28,066 fragments per nucleus (Supplementary Fig. 2a,b 
and Supplementary Tables 2–5). After controlling for data quality, 
the spatial transcriptomics datasets contained a total of 91,517 spots 
(average of 3,389 spots per specimen and 2,001 genes per spot) (Sup-
plementary Figs. 2c,e–g and 3a,b). Quantification based on histology 
revealed an average of four nuclei per spatial transcriptomic spot from 
all slides (Supplementary Fig. 2c and Supplementary Table 6). Sam-
ples from the ischaemic zone had the lowest abundance of nuclei and 

an enriched expression of genes associated with cell death and the 
regulated necrosis pathway, suggesting increased necrotic cell death 
(Supplementary Fig. 2d). This integrated dataset represents, to our 
knowledge, the largest and most comprehensive multi-modal profil-
ing of human myocardial infarction tissue including spatial informa-
tion and samples at distinct disease progression stages. We devised 
an integrative data analysis approach spanning all three modalities of 
our single-cell experiments to study cardiac cell-specific information 
and cell-specific interactions in their spatial and disease progression 
context (Extended Data Fig. 1a).

We established a map of major human heart cell types using the 
snRNA-seq and snATAC-seq datasets independently. First, we clustered 
cells on the basis of the integrated snRNA-seq data from all samples after 
batch correction (Extended Data Fig. 1b). Clusters were annotated with 
curated marker genes from the literature4–6 and ten major cardiac cell 
types were identified (Fig. 1d,e). We also found an additional cluster 
with enriched expression of the cell-cycle marker gene MKI67, which 
showed a high score of cell-cycle G2/M and S phases and was mainly 
recovered in ischaemic zone samples (Extended Data Fig. 1c,d). To 
validate the annotations, we compared the data with a recent study on 
healthy human hearts4 and an independent novel dataset of ischaemic 
heart samples (n = 3, generated during this study) and observed a high 
agreement and correlation in terms of molecular profiles and cellular 
composition (Extended Data Fig. 1e–g). Of note, the cycling cells were 
also captured in the independent ischaemic dataset (Extended Data 
Fig. 1f).

We next integrated and clustered the snATAC-seq data from all sam-
ples (Extended Data Fig. 2a). These clusters were annotated on the 
basis of gene chromatin accessibility with the same markers as for 
snRNA-seq. This approach identified eight major cell types, matching 
all cell types from snRNA-seq data with the exception of two rare cell 
types (that is, mast cells and adipocytes) (Fig. 1f,g). Label transfer from 
snRNA-seq to snATAC-seq indicated that the annotations between these 
two modalities were consistent (Extended Data Fig. 2b,c). This was fur-
ther supported by a high correlation of cellular composition between 
snRNA-seq and snATAC-seq and the presence of the same eight cell types 
in the majority of samples (Extended Data Fig. 2d,e). To explore regula-
tory information provided by the snATAC-seq, we performed transcrip-
tion factor footprinting analysis using cell-type-specific pseudo-bulk 
ATAC-seq profiles. This revealed footprinting-based binding activity of 
known transcription factors such as MEF2C (ref. 7) in cardiomyocytes, 
CEBPD)8 in myeloid cells, FOS–JUNB9 in fibroblasts and SRF10 in vascular 
smooth muscle cells (vSMCs), which correlated with the expression of 
their predicted target genes in snRNA-seq data (Extended Data Fig. 2f). 
Together, our integrative analysis of transcriptomic and chromatin 
accessibility data defined a robust catalogue of cell types in the adult 
human heart across multiple modalities and samples.

Molecular mapping of cell types in space
Using these data, we first identified overrepresented biological pro-
cesses for each major histomorphological region (control, remote zone, 
border zone, ischaemic zone and fibrotic zone) using spatially variable 
genes (Supplementary Table 7). We identified cardiac muscle contrac-
tion in remote zones and controls, with adaptive immune system in 
the border and ischaemic zones and with matrisome processes in the 
fibrotic zones (Extended Data Fig. 2g). Overall, this analysis confirmed 
that the spatial data clearly reflect typical zones of biological processes 
following acute human myocardial infarction.

Since each spatial transcriptomics spot captured a group of cells, 
we increased its resolution by estimating the cell-type compositions 
of each spot. To this end, we deconvoluted each spot on the basis of the 
annotated snRNA-seq data from the same sample (Fig. 1h, Supplemen-
tary Figs. 2e–g and 3a,b, Supplementary Tables 8 and 9 and Methods). 
The estimated cell-type compositions from spatial transcriptomics of 
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each patient generally agreed with their respective observed composi-
tions in the snRNA-seq and snATAC-seq data (Extended Data Fig. 2h). We 
then estimated signalling pathway activities with PROGENy (Methods) 
for each spot from the spatial gene expression data. The comparison of 
spatially localized pathway activities with the estimated cellular abun-
dance per spot enabled us to link the information on spatial cell com-
position to cellular function for each slide. For example, in areas with 
an abundance of fibroblasts, we detected increased TGFβ signalling 

activity, and in ischaemic regions, increased myeloid cell abundance 
occurred in areas of higher NFκB signalling activity (Fig. 1h,i).

Mapping the information obtained from the snATAC-seq data to 
space resulted in spatially resolved footprinting-based transcription 
factor binding activity, as exemplified by the previously described tran-
scription factors associated with cardiomyocytes (for example, MEF2C; 
ref. 7), myeloid cells (for example, CEBPD8 and ATF111), fibroblasts (for 
example, FOS–JUNB9) and vSMCs (for example, SRF10) (Fig. 1j). To test 
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the association of genetic variants with cell types, we performed enrich-
ment analysis based on cell-type-specific pseudo-bulk ATAC-seq pro-
files and cardiomyopathy-related single nucleotide polymorphisms 
(SNPs) obtained from genome-wide association studies12 (GWAS). We 
focussed on SNPs relevant to left ventricular function, since we hypoth-
esized that these might provide the most biologically relevant infor-
mation for the cellular composition of myocardial tissue. This analysis 
revealed that SNPs associated with stroke volume and left ventricular 
end-diastolic volume were enriched in endothelial cells (Extended Data 
Fig. 2i), consistent with the role of the endothelial cells in cardiac relaxa-
tion and dilation13. SNPs associated with left ventricular end-systolic 
volume and left ventricular ejection fraction were enriched in cardio-
myocytes, supporting the relationship between contraction and these 
left ventricular measures. We also visualized the spatial distribution of 
GWAS signals by mapping SNPs associated with left ventricular ejec-
tion fraction to each spot from spatial transcriptomics (Extended Data 
Fig. 2j). In summary, our integrated spatial atlas enabled us to map 
cell-type abundance, signalling pathway activities, transcription factor 
binding activity and GWAS signals across the complete spectrum of 
cardiac tissue zonations, providing an in-depth view at tissue remodel-
ling processes following myocardial infarction in humans.

Spatial organization of myocardial tissue
To explore the spatial organization of the myocardial tissue, we lever-
aged the spatial transcriptomics data. Unsupervised clustering of spots 
from all samples on the basis of their cell-type compositions identified 
nine clusters, which we defined as major cell-type niches (Fig. 2a and 
Extended Data Fig. 3a–d). We hypothesized that these niches represent 
potential structural building blocks that are shared between different 
slides and could facilitate comparisons between subjects. Visualization 
of these niches in space revealed that some niches aligned closely with 
the underlying sample condition; for example, cell-type niche 8 was 
equally distributed across a control slide, whereas cell-type niche 5 
localized to distinct regions on the ischaemic slide (Fig. 2b). We then 
tested the overrepresentation of the annotated cell types derived from 
snRNA-seq in the cell-type niches. We observed 4 myogenic cell-type 
niches (1, 7, 8 and 9), which were enriched with cardiomyocytes, 
endothelial cells, and pericytes (Fig. 2c); an inflammatory cell-type 
niche (niche 5); and a fibrotic cell-type niche (niche 4) containing fibro-
blasts, myeloid and lymphoid cells. The fibrotic cell-type niche (4) 
contained a higher proportion of fibroblasts, whereas the inflammatory 
cell-type niche (5) contained more myeloid and lymphoid cells (Fig. 2c). 
Finally, we observed niches associated with rare cell types of the myo-
cardium, such as vSMCs (cell-type niches 3 and 6), adipocytes, lymphoid 
and cycling cells (cell-type niche 2) (Fig. 2c and Extended Data Fig. 3d). 
Our integrated results provide a comprehensive description of cellular 
colocalization events, enabling downstream molecular comparisons 
within this atlas across all tissue zonations. We next tested whether 
the abundances of major cell types within spots could be predicted by 
their spatial context described by the cell-type compositions of their 
neighbourhood. We evaluated three different neighbourhood area sizes 
using MISTy: (1) the importance of cell-type abundances within a spot 
(colocalization) (Fig. 2d), (2) in the local neighbourhood (radius of 1 
spot), and (3) in an extended neighbourhood that expanded to a radius 
of 15 spots. We observed that endothelial cells were the most predictive 
of the abundance of vSMCs, pericytes, adipocytes and cardiomyocytes 
within all spots, probably reflecting dependencies between cell types 
of the vasculature (Fig. 2d). Lymphoid and myeloid cells showed strong 
dependencies with each other in line with zones of immune cell infiltra-
tion and inflammation—similarly captured by cell-type niche 5 (Fig. 2d). 
Notably, we observed strong dependencies between myeloid cells and 
fibroblasts, which were strongly co-enriched in niche 4 (Fig. 2d and 
Extended Data Fig. 3e), in line with a known key role of macrophages 
in fibroblast activation14 and fibroblasts in macrophage attraction15. 

Between immediate and extended neighbouring spots (Extended Data 
Fig. 3f–h), we observed stronger dependencies between cells associated 
with the cardiac vasculature (vSMCs, endothelial cells, pericytes and 
fibroblasts) indicating that the myocardial vascular network dominates 
cardiac tissue structural organization.
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To link tissue organization to function, we analysed spatial dependen-

cies between signalling pathways and cell types. Modelled importance 
of colocalized pathways captured relationships between PI3K and p53 
signalling (Extended Data Fig. 4a–e), which showed a mutually exclu-
sive spatial distribution (Extended Data Fig. 4c). Both pathways were 
related to the abundance of cardiomyocytes (Extended Data Fig. 4a). 
PI3K signalling in cardiomyocytes controls the hypertrophic response 
to preserve cardiac functions16, whereas p53 is known to act as a mas-
ter regulator in cardiac homeostasis17. Spatial segregation of these 
cardiomyocyte-related pathways points towards functional cardiomyo-
cyte heterogeneity. We observed colocalized and extended neighbour-
hood relationships of known key pathways in fibrosis including TGFβ 
and NFκB predicted by fibroblasts, and JAK–STAT and NFκB predicted 
by immune cells (Extended Data Fig. 4a–e). Overall, cardiomyocytes 
were the best predictor cell types of the activities of the estimated 
pathways. Hypoxia and WNT pathways showed a colocalization to car-
diomyocytes in ischaemic specimens (Extended Data Fig. 4b–e), highly 
consistent with the cardiomyocyte differentiation events occurring 
after myocardial infarction18. Our results compiled principles of tissue 
organization of the human heart that relate to coordinated cellular 
processes and provide a basis for comparative analysis.

Structural variation of cardiac tissue
To identify general tissue differences during remodelling after 
myocardial infarction, we compared the samples of distinct histo-
morphological regions, time points and individuals at the molecu-
lar and compositional level. We defined three major sample groups: 
myogenic-enriched (including control, border zone and remote zone), 
fibrotic-enriched (including all fibrotic zone samples, except one) and 
ischaemic-enriched (including all ischaemic zone samples) samples. 
Hierarchical clustering of their pseudo-bulk spatial transcriptomics 
supported this grouping and was displayed as a UMAP embedding 
(Fig. 2e and Extended Data Fig. 4f). Co-clustering of control, border 
zone and remote zone samples can be explained by the large abun-
dance of functional myocardial tissue within these specimens (Fig. 2e). 
Since the pseudo-bulk profile of each spatial transcriptomic dataset 
combines information of multiple cell types, we next tested how dif-
ferences in cellular composition determined by all modalities (that is, 
snRNA-seq, snATAC-seq and spatial transcriptomics) are associated 
with these three groups. Ischaemic-enriched samples showed a larger 
proportion of myeloid, lymphoid and cycling cells, with the lowest 
proportions of cardiomyocytes, representing cellular compositional 
changes expected after myocardial infarction. By contrast, fibroblasts 
and vSMCs were enriched in fibrotic-enriched samples (Extended Data 
Fig. 4g). These results indicate that the spatial transcriptomic data 
align with major histomorphological sample annotation and capture 
compositional hallmarks following myocardial infarction across our 
datasets.

We then analysed whether the cell-type compositional changes 
between sample groups were also reflected as changes in the spatial 
dependencies between the major cell types in spatial transcriptomics. 
To this end, we contrasted the importance, previously computed using 
MISTy, of each major cell type in predicting the others in the three 
different neighbourhood area sizes (colocalization, immediate and 
extended neighbourhood) between the three different sample groups 
(Extended Data Fig. 4h). We observed an increased spatial dependency 
in the immediate neighbourhood between lymphoid and myeloid cells 
in ischaemic samples compared with myogenic-enriched samples, 
reflecting the expected role that immune cell interactions have in car-
diac repair following myocardial infarction (Extended Data Fig. 4i). 
Moreover, an increased colocalization of cardiomyocytes and pericytes 
in fibrotic-enriched samples revealed an exclusion of pericytes from 
scar tissue areas (Extended Data Fig. 4j). Similarly, the distribution 
of fibroblasts was better predicted by the presence of vSMCs in the 

immediate neighbourhood only in myogenic-enriched samples, where 
fibroblasts surrounded the vasculature, in contrast to ischaemic and 
fibrotic tissue specimens, where more extensive tissue scarring pro-
cesses were captured (Fig. 2f).

We next compared compositions of cell-type niches between groups 
and observed differences in six out of nine cell-type niches (Extended 
Data Fig. 4k). Cell-type niches 8 and 9 (Extended Data Fig. 4k–l), mostly 
representing cardiac muscle structures, were more present in myogenic- 
and fibrotic-enriched samples compared with ischaemic-enriched 
samples, whereas cell-type niche 7, enriched in cardiomyocytes and 
pericytes (Extended Data Fig. 4k), was reduced in fibrotic-enriched 
samples. Niche 4, mainly associated with fibrotic structures (more fibro-
blasts than myeloid cells and thus termed fibrotic niche), was observed 
in higher proportions in fibrotic-enriched samples, whereas niche 5 
(more myeloid cells than fibroblasts and thus termed inflammatory 
niche) was mainly present in ischaemic-enriched samples (Extended 
Data Fig. 4k). In summary, the major cell-type niches enabled us to 
categorize and compare interindividual spatial differences. Overall, 
this demonstrates the importance of cardiac vasculature in defining the 
overall myocardial architecture and the unique spatial dependencies 
of fibroblasts and myeloid cells, which facilitates gaining molecular 
insights of disease-specific spatial tissue remodelling.

Molecular variation following infarction
To study the molecular differences between similar tissue structures 
in an unbiased manner across samples, we generated a set of molec-
ular niches by clustering of spots on the basis of their gene expres-
sion (Fig. 3a,b and Extended Data Fig. 5a–d). We identified molecular 
niches associated with inflammatory and fibrotic processes (molecular 
niches 3, 6 and 9), vSMCs (molecular niche 11) and myogenic-enriched 
regions (molecular niches 1, 2, 4, 5 and 12) (Fig. 3c). The molecular niches 
enriched in cardiomyocytes were depleted in ischaemic-enriched sam-
ples, whereas the fibrotic- and inflammatory-enriched molecular niches 
were depleted in myogenic-enriched samples (Fig. 3d and Extended 
Data Fig. 5e,f). The vSMC-enriched molecular niche 11 had a more dis-
tinct cell-type marker gene expression of vSMCs (MYH11) compared 
with the cell-type defined niche 6 (Fig. 3b versus Extended Data Fig. 3d).

Of note, we observed molecular niches that enabled us to differen-
tiate border zone, remote zone and control samples (Extended Data 
Fig. 5g), which were indistinguishable using the major cell-type niches 
(Extended Data Fig. 4m). Molecular niche 3, enriched in fibroblasts and 
immune cells, was more present in remote zones and border zones 
compared with control samples. Moreover, we observed differences in 
the proportions of the molecular niches 1, 2 and 4 among border zone, 
remote zone and controls (Extended Data Fig. 5g). These three molecu-
lar niches were enriched mainly in cardiomyocytes (Fig. 3c), but with a 
distinct molecular profile: among the top 5 upregulated genes of niche 
2 was XIRP1, which encodes an intercalated-disc ion-channel-interacting 
protein and RRAD, which encodes a GTPase known to regulate L-type 
Ca2+ channels and contractile functions of the heart19; molecular niche 
4 was enriched for SLC8A1 (also known as NCX1), which encodes the 
Na+/Ca2+ exchanger that is the major regulator of the Ca2+ efflux in 
cardiomyocytes and is critical to maintain Ca2+ homeostasis during 
excitation–contraction coupling20, and MPC1, which encodes mito-
chondrial pyruvate carrier, a known mitochondrial metabolic regulator 
of heart function21 (Extended Data Fig. 5h). Overall, molecular niche 
1 was enriched in control and remote zone samples and niche 2 was 
enriched in the damaged tissue areas in border zone samples (Fig. 3e,f 
and Extended Data Fig. 5g). We observed slight changes in enrichment 
of molecular niches 2 and 4, and a depletion of niche 1 in border zones 
compared with controls (Extended Data Fig. 5g,i,j), suggesting that dif-
ferences in cardiomyocyte phenotypes might also be present between 
these groups. In summary, the comparison of molecular niches pointed 
towards subtle changes between the remote myocardium and controls, 
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and expected differences between border zone and both controls and 
remote zone that were not detectable in the cell-type niche comparison. 
Overall, this suggested the existence of functional differences between 
cardiomyocyte states in our data.

Disease-specific cardiomyocyte states
To further investigate distinct cardiomyocyte states, we aimed to under-
stand the molecular heterogeneity of cardiomyocytes after myocardial 
infarction. We co-embedded the snRNA-seq and snATAC-seq data from 
cardiomyocytes into a common low-dimensional space and clustered 
the cells (Extended Data Fig. 6a). This uncovered five cell states of ven-
tricular cardiomyocytes (vCM1–5), spanning multiple samples and 
modalities (Fig. 4a and Supplementary Table 10). Differential gene 
expression analysis revealed a significant upregulation of ANKRD1 in 
both vCM2 and vCM3, whereas NPPB showed a distinct upregulation 

and increased chromatin accessibility in vCM3 (Fig. 4b and Extended 
Data Fig. 6b,c). We validated this upregulation by single-molecule 
fluorescence in situ hybridization (smFISH) in an independent patient 
cohort (Fig. 4c and Extended Data Fig. 6d). Both NPPB and ANKRD1 have 
been reported to be upregulated in the border zone after myocardial 
infarction in mice22. vCM2 additionally showed enhanced expression 
of MYH7 (Extended Data Fig. 6b), a cardiomyocyte-associated stress 
gene that encodes the β-myosin heavy chain23. Thus, we annotated the 
vCM2-state as ‘pre-stressed’. In addition, we observed a higher cor-
relation between ion-channel-related genes and vCM1 marker genes 
compared with ‘stressed’ vCM3 marker genes in spatial transcriptom-
ics, which further highlights the functional differences between these 
two cardiomyocyte states (Extended Data Fig. 6e). Accordingly, we 
annotated the vCM3 state as stressed. Moreover, when comparing 
the differential expression of individual genes belonging to these 
ion-channel-related gene sets in snRNA-seq data, we observed mostly 
upregulations in vCM1 compared with vCM3 (Extended Data Fig. 6f,g). 
Cellular composition comparison between sample groups revealed 
that vCM1 was associated with myogenic-enriched samples and vCM3 
was significantly associated with ischaemic-enriched samples. This 
was validated in an independent cohort using in situ hybridization, 
suggesting that these cardiomyocyte states represent distinct cellular 
stress states within the acute myocardial infarction phase (that is, vCM1, 
‘non-stressed’; vCM2, ‘pre-stressed’; and vCM3, ‘stressed’) (Fig. 4c,d 
and Extended Data Fig. 6h,i).

Next, we checked vCM marker genes in spatial transcriptomics in 
border zone samples, since spatial remodelling of this area is inextri-
cably linked to the recovery of cardiac function. Interestingly, despite 
homogenous H&E staining and unique molecular identifier (UMI) distri-
bution across spots (Supplementary Fig. 2g), we observed extensively 
heterogeneous spatial gene expression patterns of ANKRD1 and NPPB 
(Fig. 4e). Pathway analysis of the spatial gene expression data indicated 
an increased TGFβ signalling activity within the injured area (lower 
right), but a homogeneous distribution of hypoxia pathway activ-
ity (Fig. 4f). Mapping of cell states to space in a border zone sample 
revealed that vCM1 were solely located in the top left uninjured cor-
ner, vCM2 were located in the middle–top area, serving as a transi-
tion zone from injured towards remote myocardium, and vCM3 were 
primarily located below the transition zone within the injured area 
(Fig. 4g). Of note, such a spatially distributed pattern was also observed 
in another border zone sample, indicative of a similar remodelling 
process (Extended Data Fig. 6j).

Variability of cardiomyocyte states
To infer an enhancer-based gene-regulatory network (eGRN), we lever-
aged our multi-omics data to further investigate molecular mechanisms 
differentiating the relevant cardiomyocyte states (that is, vCM1–vCM3) 
(Methods and Supplementary Table 11). To this end, we paired the cells 
between snATAC-seq and snRNA-seq data and studied gene-regulatory 
changes along the cellular continuum from vCM1 to vCM3 (Extended 
Data Fig. 7a). Next, we estimated an enhancer-mediated transcription 
factor–target network by considering transcription factor activity 
(from snATAC-seq), expression of transcription factor and target genes 
(from snRNA-seq), and motif-supported peak-to-gene links (Extended 
Data Fig. 7b–d). Clustering of these transcription factors to the target 
network revealed three major modules, with each corresponding to a 
distinct cardiomyocyte state (Extended Data Fig. 7e).

We next used network analysis to visualize and detect major tran-
scription factors (Fig. 4h). We identified the mineralocorticoid receptor 
(NR3C2), a major target of therapy for common heart failure, as a major 
regulator of the vCM1 state (Fig. 4h). Decreased NR3C2 expression 
has been associated with the development of severe heart failure and 
cardiac fibrosis24, and we observed decreased transcription factor 
binding activity and gene expression along the pseudotime of vCM1 
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to vCM3 differentiation (Fig 4i). Target genes of NR3C2 include several 
ion channel genes (such as SLC8A1), which also showed decreased gene 
expression along the pseudotime axis (Fig. 4i). Notably, these target 

genes were also differentially expressed in cardiomyocyte-enriched 
molecular niches (Fig. 3e,f and Extended Data Fig. 5h) and aligned spa-
tially in the border zone with the vCM1 state (Fig. 4j). Notably, we also 
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observed transcription factors (TBX3 and MEF2D) that were associated 
with pre-stressed stages of cardiomyocyte differentiation (Fig. 4h). Our 
analysis suggests that MEF2D, a cardiomyocyte factor controlling pace-
maker function25, regulates the expression of the sarcomere protein 
MYBPC3 (Fig. 4i). MYBPC3, in turn, has been reported to regulate car-
diomyocyte proliferation postnatally26. Of note, we identified MYBPC3 
independently in our spatial data as being enriched in molecular niche 
1 (Fig. 3e and Extended Data Fig. 5h).

We also identified ANKRD1, a mediator of cardiomyocyte response 
to stress27, as a target of MEF2D, suggesting a key regulatory role of 
MEF2D in the transition from vCM1 to vCM327 (Extended Data Fig. 7f). 
For vCM3 (stressed cardiomyocytes), we identified ATF3 as a regulator 
of the GTPase and Ca2+ regulator gene RRAD (Fig. 4h). We indepen-
dently identified RRAD in molecular niche 2 (Extended Data Fig. 5h), 
which supports its relevance as a spatially differentially expressed 
gene of a distinct cardiomyocyte state, especially in border zone sam-
ples (Fig. 4i). We additionally identified the transcriptional regulator 
JDP2—which has a function in preventing cardiomyocyte hypertrophy 
and cell death28—as an important regulator of the vCM3 cardiomyocyte 
state, with TGFB2 as one of its target genes (Extended Data Fig. 7g,h). 
In summary, our cardiomyocyte states and major transcription factor 
regulators identified from the integrated snRNA-seq and snATAC-seq 
data reflect expression patterns associated with molecular niches sup-
porting spatial changes of cardiomyocyte states during remodelling.

We next estimated the cell dependencies of the stressed cardiomyo-
cyte state vCM3 with other cell types within each spatial spot and its 
local neighbourhood (radius of five spots) between sample groups 
(Fig. 4k–o). We observed that there was an increased importance of 
vSMCs in predicting vCM3 within a spot in myogenic and ischaemic 
samples (Fig. 4k), whereas fibroblasts and myeloid cells had a larger 
role in fibrotic samples (Fig. 4k). The local neighbourhood modelling of 
vCM3 revealed that the abundance of fibroblasts better explained vCM3 
in myogenic-enriched samples compared with fibrotic samples (Fig. 4l 
and Extended Data Fig. 7i). To gain further insight, we visualized the 
dependencies of vSMCs and fibroblasts on vCM3 in myogenic-enriched 
samples and observed that their colocalization occurred in the perivas-
cular niches (Fig. 4n). Overall, this demonstrates that the stressed 
cardiomyocyte state vCM3 occurs in the perivascular niche of larger 
blood vessels, highlighting the interaction of mesenchymal cells29 
of the perivascular niche with stressed cardiomyocytes in this tissue 
area. Furthermore, we noticed that when comparing remote zone 
with control samples, stressed vCM3s are best predicted by myeloid 
cells (Fig. 4o). This underlines the importance of immune–cardio-
myocyte interactions that could additionally explain the increased 
arrhythmia susceptibility in the remote regions of the post-infarct 
heart, since it has been shown that cardiac macrophages influence 
normal and aberrant cardiac conduction30. Our results showed that the 
stressed-cardiomyocyte vCM3 can be found in distinct spatial cell-type 
neighbourhoods enriched by different compositions of vSMCs, fibro-
blasts, adipocytes or myeloid cells.

Cardiac endothelial cell heterogeneity
Co-embedding of snRNA- and snATAC-seq data identified five sub-
types of endothelial cells from all major vascular beds, namely capillary 
endothelial cells, arterial endothelial cells, venous endothelial cells, 
lymphatic and endocardial endothelial cells (Fig. 5a, Extended Data 
Fig. 8a–d, and Supplementary Table 12). Subtype-based pseudo-bulk 
ATAC-seq signals also revealed distinct chromatin accessibility of these 
marker genes (Extended Data Fig. 8c). Our analysis suggested POSTN 
as a characteristic marker for endocardial endothelial cells, which 
we validated using smFISH (Extended Data Fig. 8e). Analysis of cell 
proportions among the myogenic-enriched, ischaemic-enriched and 
fibrotic-enriched samples revealed a reduction of capillary endothelial 
cells in the ischaemic samples associated with a concordant increase 

in venous endothelial cells (Fig. 5b and Extended Data Fig. 8f,g). Fur-
thermore, we observed that lymphatic endothelial cells were overall 
less abundant than the other populations, as expected, but were sig-
nificantly increased in the ischaemic zone, suggesting an increased 
abundance of lymphatics modulating the immune response following 
cardiac injury31 (Fig. 5b).

We modelled the association of the different endothelial cell sub-
types with the abundances of the other major cell types in spatial tran-
scriptomics. We observed that the markers of arterial endothelial cells 
were best predicted by vSMCs within a spot and in the local neighbour-
hood (radius of five spots) reflecting the anatomy of arteries and arte-
rioles in the heart (Fig. 5c,d and Extended Data Fig. 8h). Moreover,  
the expression of markers of capillary endothelial cells were best 
predicted by the presence of pericytes in the tissue, in line with the 
known presence and role of pericytes in direct contact with capillary 
endothelium32 (Extended Data Fig. 8i). The other endothelial subtypes 
were mainly predicted by the presence of fibroblasts within a spot 
and in the local neighbourhood (Extended Data Fig. 8h). Additionally, 
we observed that the abundance of myeloid cells correlated with the 
expression of markers of lymphatic endothelial cells (Extended Data 
Fig. 8h). Focusing on molecular niche 10, which contained the highest 
cell proportion of endothelial cells and additionally pericytes and mast 
cells (Extended Data Fig. 8j), we observed a significant enrichment of 
capillary endothelial cells (Extended Data Fig. 8k). Pathway analysis 
revealed a significantly higher hypoxia and TGFβ signalling activity 
in ischaemic and in fibrotic samples, underlining the importance of 
these processes in chronic fibrotic cardiac remodelling processes 
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(Extended Data Fig. 8l). Pathways important for endothelial signal-
ling in homeostasis such as PI3K and TRAIL showed a reduction in the 
fibrotic and ischaemic groups, respectively, highlighting further the 
differential endothelial cell signalling changes. Gene set enrichment 
analysis further revealed an altered metabolism (for example, fatty 
acid metabolism and oxidative phosphorylation) of this endothelial 
cell niche in diseased samples which was further associated with an 
increased inflammatory response via the TNF and NFκB pathways and 
increased apoptosis signalling33 (Extended Data Fig. 8m). In summary, 
we resolved all major endothelial cells states, localized them in space 
and described their spatial dependencies. Further, we identified a spa-
tial niche enriched in capillary endothelial cells with complex metabolic 
and signalling changes.

Cardiac myofibroblast differentiation
To dissect molecular and cellular mechanisms of fibrogenesis in 
the human heart, we clustered all fibroblasts using the integrated 
snRNA-seq and snATAC-seq data and identified four sub-clusters 
(Fib1–4) (Fig. 6a, Extended Data Fig. 9a and Supplementary Table 13). 
Fib1 was marked by SCARA5, which we recently reported as a marker for 
myofibroblast progenitors in the human kidney34. Fib2 was marked by 
POSTN, COL1A1 and FN1, which, together with the fact that this popula-
tion expresses most extracellular matrix (ECM)-related genes, suggests 
that Fib2 indeed comprises terminally differentiated myofibroblasts 
(Fig 6b and Extended Data Fig. 9a–c). Notably, Fib2 also exhibited an 
upregulation of RUNX1, which we recently reported as being involved 
in kidney myofibroblast differentiation35. Overexpression of RUNX1 in 
human heart PDGFRβ-expressing cells led to increased myofibroblast 
differentiation and matrix expression (Extended Data Fig. 9d). We 
validated the presence of high SCARA5 expression in fibroblasts by 
co-staining with the pan-fibroblast and myofibroblast marker COL15A1 
as well as POSTN and COL1A1 in human heart tissues, and demonstrated 
that POSTN is significantly enriched in COL1A1+ cells compared with 
SCARA5+ cells (Extended Data Fig. 9e). Visualization of these markers 
in our spatial transcriptomics dataset suggested that Fib1 and Fib2 
were enriched in mutually exclusive regions of the heart following 
injury (Fig. 6c and Extended Data Fig. 9f). Additionally, we observed 
that Fib1 comprised the highest proportion in myogenic-enriched 
samples, whereas Fib2 (myofibroblasts) were significantly enriched 
and Fib3 slightly reduced in ischaemic samples (Fig. 6d and Extended 
Data Fig. 9g,h).

To precisely understand differentiation trajectories of fibroblasts 
and transfer this knowledge to the human data, we performed induc-
ible lineage tracing in mice using the pan-mesenchymal Cre driver 
Pdgfrb-CreER (crossed to a R26-tdTomato reporter) combined with 
scRNA-seq at different time points following myocardial infarction 
(Extended Data Fig. 9i–l). We integrated and annotated the cells by 
label transfer (Fib1–4) from human to mouse (Extended Data Fig. 9m,n). 
We observed an overall increase of the Fib2 population and collagens 
and ECM genes over time, whereas the Fib1 proportion was decreased, 
pointing towards a differentiation trajectory from SCARA5+ fibroblasts 
(Fib1) to myofibroblasts (Fib2) in mice (Extended Data Fig. 9o,p). 
Based on these observations, we inferred a pseudotime trajectory 
from Fib1 (SCARA5+) to Fib2 (myofibroblast) in the human samples, 
which was further supported by an increased enrichment of the ECM 
score (Fig. 6e,f) and of ECM biological gene ontology processes con-
sistent with fibroblast-to-myofibroblast differentiation (Extended 
Data Fig. 9q).

To understand the regulatory mechanisms of these stromal cell dif-
ferentiation processes we inferred a fibroblast eGRN (Fig. 6g, Extended 
Data Fig. 10a,b and Supplementary Table 14). Clustering resolved two 
eGRN modules that each corresponded to a distinct fibroblast state 
(Extended Data Fig. 10c) and identified potential regulators of myofi-
broblast differentiation (Fig. 6g). Among the transcription factors 

regulating the Fib1 module was KLF4, which regulates diverse cellular 
functions including cellular growth arrest, and is also one of the original 
reprogramming factors of induced pluripotent stem cells. Our network 
analysis highlighted the role of KLF4 in regulating SCARA5 and PCOLCE2 
expression in Fib1, and it also targets MBLN1, an important regulator of 
cardiac wound healing36 and fibroblast-to-myofibroblast transition37. 
Concordantly, we observed reduced KLF4 binding activity and reduced 
SCARA5 expression in our pseudotime analysis (Fig. 6h), highlighting 
the role of KLF4 as a putative inhibitor of fibroblast activation. Among 
the transcription factors identified in the Fib2 module were TEAD3 
(an effector of the Hippo pathway), GLI2 (in the hedgehog pathway) 
and RUNX2, which have been previously identified as regulators of 
myofibroblast differentiation38 (Fig. 6h and Extended Data Fig. 10d,e). 
Our network analysis revealed that both TEAD3 and GLI2 regulate bona 
fide myofibroblast target genes including COL1A1, TGFB1 and POSTN. 
Additionally, our network analysis identified the key anti-angiogenic 
regulator THBS139 as a direct target of TEAD3 and the recently identified 
cardiac fibrosis regulator MEOX1 in human cardiac myofibroblasts40. 
We next visualized the expression of the KLF4 and TEAD3 target genes 
in spatial transcriptomics slides and observed gradients and mutu-
ally exclusive spatial expression in defined cardiac regions of fibrotic 
responses, highlighting their differential spatial activity in the human 
heart (Fig. 6i and Extended Data Fig. 10d).

Fibro-myeloid spatial relations
Myeloid-derived cells have been reported to have key roles in cardiac 
remodelling following myocardial infarction41. To understand their 
heterogeneity, we sub-clustered them using the multi-omic data and 
identified five sub-clusters across all myocardial infarction samples 
(Fig. 6j,k, Extended Data Fig. 11a–d and Supplementary Table 15). We 
observed that two clusters showed expression of resident myeloid cell 
markers42 (LYVE- and FOLR-expressing myeloid clusters), as well as a 
CCL18- and SPP1-expressing macrophage cluster and a monocyte and 
classical dendritic cell cluster (Fig. 6j and Extended Data Fig. 11b–d). 
We used an independent snRNA-seq dataset of three acute human 
myocardial infarction samples as reference for validation and found 
high concordance in terms of myeloid cell populations based on marker 
gene expression (Extended Data Fig. 11e). Cell proportion analysis 
revealed an increased abundance of a macrophage population defined 
by SPP1 expression in the ischaemic sample group, whereas CCL18+ mac-
rophages were increased in fibrotic samples (Extended Data Fig. 11f). 
SPP1+ macrophages have been described in pulmonary fibrosis and 
COVID-1943,44, and recent work suggests a role of these cells in cardiac 
tissue remodelling in zebrafish45. We observed an upregulation of CD36 
in the SPP1+ myeloid population; CD36 encodes a macrophage receptor 
known to be important for macrophage phagocytosis, binding to apop-
totic and dead neutrophils and having a unique role in cardiac remodel-
ling following myocardial infarction46 (Extended Data Fig. 11b). Indeed, 
smFISH staining of SPP1+ macrophages suggests increased phago-
cytic activity, since multiple intracellular vacuoles could be observed 
(Extended Data Fig. 11g,h). Quantification of multiplex in situ hybridi-
zation of SPP1, TREM2 and CCR2 in human myocardial infarction tissue 
specimens revealed that approximately half of all TREM2-expressing 
myeloid cells also express SPP1, whereas CCR2+ myeloid cells where less 
frequent (Extended Data Fig. 11i). Cell-dependency analyses of myeloid 
cell states revealed a close interaction for two identified LYVE+ resident 
macrophage populations, whereas the disease-enriched SPP1+ mac-
rophages predicted the presence of CCL18+ macrophages (Extended 
Data Fig. 11j,k).

Following acute myocardial infarction, an inflammatory response is 
triggered, resulting in tissue remodelling that can lead to heart failure47. 
It has been demonstrated that SPP1 itself can activate fibroblasts 
in vitro48, highlighting the fibro-myeloid signalling interaction as a cru-
cial driver of the cardiac remodelling process. To further gain insights 
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about the spatial dependencies of the myeloid and fibroblasts states, 
we modelled their marker expression using the spatial transcriptom-
ics data. We observed that the presence of SPP1+ macrophages better 

predicted all fibroblasts states compared to other myeloid cell states, 
with a higher importance for myofibroblasts within a spot and in the 
local neighbourhood (Fig. 6l and Extended Data Fig. 12a). Myofibroblast 
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marker expression aligned with a gradient of expression of the mark-
ers of SPP1+ macrophages (Fig. 6m). This pattern was also recovered 
by our cell-type niche definition, in which the inflammatory niche 5 
was surrounded by the fibrotic-rich niche 4 (Extended Data Fig. 12b), 
which we could confirm by a higher expression of SPP1+ macrophages 
and myofibroblast marker genes in niche 5 compared with niche 4 
(Extended Data Fig. 12c). As our data pointed towards a clear spatial 
association of myeloid cells and fibroblasts, and spatially associated 
cells are presumably more likely to communicate with each other, we 
next used receptor–ligand interaction analysis to study their cellular 
crosstalk. We observed an overall complex myeloid–fibroblast interac-
tion (Extended Data Fig. 12d), and detected distinct changes in crosstalk 
between SPP1+ macrophages and Fib2. This included increased PDGF-C, 
PDGF-D and THBS1 signalling in ischaemic versus myogenic samples 
and increased ADAM17 and TGFB1 in fibrotic versus myogenic samples 
(Extended Data Fig. 12e). Of note, we observed enhanced TGFβ1 signal-
ling in ischaemic versus myogenic samples towards Fib3 (Extended 
Data Fig. 12f). To validate the spatial interaction of SPP1+ macrophages 
and Fib2, we performed RNA in situ hybridization on human cardiac 
tissues following myocardial infarction and could confirm the spatial 
interaction and enrichment of SPP1+ macrophages in an independent 
tissue cohort (n = 26 patients) using an orthogonal method (Fig. 6n 
and Extended Data Fig. 12g).

In summary, we have decoded cellular fibroblast and myeloid hetero-
geneity and spatial modelling of the fibro-myeloid cell states, revealing 
a unique interaction of SPP1+ macrophages with myofibroblasts across 
the different stages of human cardiac tissue remodelling.

Discussion
In multicellular organs, such as the human heart, normal cellular func-
tion and tissue homeostasis depend on the interaction between neigh-
bouring individual cell types. Single-cell technologies can profile the 
molecular heterogeneity of the different cell types and changes that 
occur during disease. However, without spatial context it is unclear how 
these different cell types interact in space to coordinate tissue func-
tions. Here we provide a comprehensive map of the human heart at early 
and late stages after myocardial infarction compared to control hearts 
(non-transplanted donor hearts) by integrating spatial transcriptomics 
with single-nucleus gene expression and chromatin accessibility data.

Our computational analyses enabled an increased resolution of spa-
tial transcriptomics by estimating cell-type compositions for each loca-
tion and by estimating pathway activities, mapping transcription factor 
binding activities, and projecting GWAS SNPs. These different layers 
of biological information enabled us to link the organization in human 
heart tissue specimens of different histomorphological regions, differ-
ent time points after myocardial infarction and different individuals 
to cellular functions. Here we characterized inflammatory and fibrotic 
remodelling events that differentiated functional myocardium from 
ischaemic and chronically remodelled tissue. We explored the effects 
that these remodelling events had on cardiac architecture, specifically 
on the vasculature and the dependencies between fibroblasts and 
myeloid cells. Furthermore, we identified spatial enrichment of dif-
ferent functional states of myogenic regions in control, remote and 
border zones that were not captured by looking at cell-type composi-
tions or histology only.

Analysis of the integrated snRNA-seq and snATAC-seq data identified 
different cell states and subtypes for cardiomyocytes, endothelial cells, 
fibroblasts and myeloid cells. We observed distinct cardiomyocyte cell 
states associated with spatial distribution, pathway activity and disease 
condition. Leveraging our multi-omic data, we inferred an eGRN and 
identified potential regulators of cardiomyocytes and fibroblasts, 
which were also reflected in spatial transcriptomics data. Our data 
revealed a distinct niche of the border zone surrounding the injured 
myocardium, with a sharp border between injured and uninjured cell 

types and were marked by a gradient of ANKRD1 and NPPB expression. 
Late-stage remodelling after myocardial infarction was driven by fibro-
sis, with fibroblast-to-myofibroblast differentiation in distinct tissue 
areas. Our data provide novel insights into myofibroblast differentia-
tion in human hearts after myocardial infarction, with distinct gene 
expression and gene-regulatory programmes driving this process. In 
addition, we decoded the fibroblast myeloid cellular heterogeneity 
after human myocardial infarction and identified a distinct cellular 
dependency between myofibroblasts and activated phagocytic mac-
rophages (SPP1+CD36+). The combination of spatial technologies with 
single-cell data represented an opportunity to study how cardiac cell 
states are influenced by their tissue microenvironment. The identified 
interactions between cell types largely reflect the spatial organization 
of the tissue and, although many other factors are involved, these inter-
actions provide hypotheses for further analysis. Of note, we observed 
high levels of cell death in the ischaemic samples, as expected, and 
thus also higher levels of ambient RNA, which could introduce a bias 
in the analyses. Furthermore, we cannot exclude an overestimation of 
cardiomyocytes in our cell-type proportion analysis, since about 25% 
of adult human cardiomyocytes are binucleated49, although multiple 
nuclei in a cell are reported to be transcriptionally homogenous50.

We envision that our publicly available atlas will serve as a reference 
for future studies integrating single-cell genomics and epigenomics 
with spatial gene expression data of the human heart. Furthermore, we 
believe that our data will facilitate the understanding of spatial gene 
expression and gene-regulatory networks within the human myocar-
dium and will be a resource for future studies that aim to understand 
the function of distinct cardiac cell types in cardiac homeostasis and 
disease.
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Methods

Ethics
The local ethics committee of the Ruhr University Bochum in Bad Oey-
nhausen, the RWTH Aachen University, Utrecht University and WUSTL 
approved all human tissue protocols (no. 220-640, EK151/09, 12/387 
and no. 201104172 respectively). Human myocardial tissue was col-
lected from non-transplanted donor hearts, patients after myocardial 
infarction undergoing heart transplantation, implantation of a total 
artificial heart or left ventricular assist device (LVAD) implantation. 
The study met all criteria of the code of conduct for responsible use 
of human tissue that is used in the Netherlands. The collection of the 
human heart tissue was approved by the scientific advisory board of 
the biobank of the University Medical Center Utrecht, The Netherlands 
(protocol no. 12/387). All patients provided informed consent and the 
study was performed in accordance with the Declaration of Helsinki. 
Written informed consent for collection and biobanking of tissue sam-
ples was obtained prior to LVAD implantation.

Human tissue processing and screening
Heart tissues were sampled by the surgeon and immediately frozen in liq-
uid nitrogen. Tissues were homogenized in liquid nitrogen and 7–10 mm3  
pieces were embedded in OCT compound (Tissue-Tek) and frozen on 
dry-ice. Ten-micrometre tissue cryosections were stained with H&E and 
the appropriate tissue regions were selected for further processing. In 
total 52 human tissue samples were screened this way and evaluated by 
a cardiac pathologist. For RNA quality control we minced a 3 × 3 mm3 
heart tissue piece in liquid nitrogen and isolated the RNA using Qiagen 
RNeasy Mini kit (Qiagen) using a proteinase K digestion step as suggested 
in RNeasy Fibrous Tissue Mini Kit (Qiagen, 74704). RNA integrity number 
(RIN) analysis (Agilent) was performed using Bioanalyzer RNA 6000 
Nano kits (Agilent, No. 5067). RIN ranged from >2 to a maximum of 8.8.

Spatial gene expression assay
Frozen heart samples were embedded in OCT (Tissue-Tek) and cryo-
sectioned (Thermo Cryostar). The 10-µm section was placed on the 
pre-chilled Optimization slides (Visium, 10X Genomics, PN-1000193) 
and the optimal lysis time was determined. The tissues were treated 
as recommended by 10X Genomics and the optimization procedure 
showed an optimal permeabilization time of 12 or 18 min of digestion 
and release of RNA from the tissue slide. Spatial gene expression slides 
(Visium, 10X Genomics, PN-1000187) were used for spatial transcrip-
tomics following the Visium User Guides. Brightfield histological 
images were taken using a 10X objective on the Nikon Eclipse TiE and 
a Leica Aperio Versa 200 scanner. Stitching of the raw images was per-
formed using the NIS-Elements software. Next generation sequencing 
libraries were prepared according to the Visium user guide. Libraries 
were loaded at 300 pM and sequenced on a NovaSeq 6000 System 
(Illumina) as recommended by 10X Genomics.

Single-nuclei isolation of human hearts
Single-nuclei isolation was performed as previously described51. Briefly, 
heart tissue was cut into small pieces (0.5 mm3) in a sterile petri dish 
on ice and transferred to a tissue homogenizer. Nuclei isolation buffer 
0.5 ml (EZ lysis buffer, NUC101, Sigma-Aldrich) plus RNase inhibitor 
(Protector RNase Inhibitor, Roche) were added to the tissue, and 10-15 
strokes with pestle A were applied followed by 10–15 strokes of pestle B. 
The nuclei were stained with DAPI and FANS sorted using a Sony SH800 
to enrich the nuclei. Nuclei isolation from three acute myocardial infarc-
tion samples from the WUSTL biobank was performed as described52.

scRNA-seq
Nuclei suspensions with a concentration ranging from 400–1000 
nuclei per μl were loaded into the chromium controller (10X, Genomics,  
PN-120223′) on a Single Cell B chip (10X Genomics, PN-120262) and 

processed following the manufacturer’ original protocol to generate 
single-cell gel beads in the emulsion. The sequencing library was gener-
ated using the Chromium Single cell 3′ reagent Kit v3 (10X, PN-1000092) 
and Chromium i7 Multiplex Kit (10X Genomics, PN-120262). Quality 
control for the constructed library was performed by Tape Station. 
Libraries were sequenced on NovaSeq targeting 50,000 reads per cell 
2 × 150 paired-end kits using the following read length: 28 bp Read1 
for cell barcode and UMI, 8-bp I7 index for sample index, and 91-bp 
Read2 for transcript.

sc-ATAC-seq
The remaining nuclei after processing for 3′ scRNA-seq assay were 
centrifuged at 500g at 4 °C for 5 min and resuspended in 10 μl of 
nuclei suspension buffer. After tagmentation the nuclei suspension 
was loaded on the Chromium Chip E (10X Genomics, PN-1000082) in 
the Chromium controller according to the manufacturer’s protocol. 
The library was sequenced on an Illumina NovaSeq 6000 using the fol-
lowing read length: 50 bp Read1 for DNA fragments, 8 bp for i7 index 
for sample index, 16 bp i5 index for cell barcodes, and 50 bp Read2 for 
DNA fragments.

RNA in situ hybridization and image quantification
In situ hybridization was performed using formalin-fixed paraffin 
embedded tissue samples and the RNAscope Multiplex Detection KIT 
V2 (RNAscope, cat. no. 323100) and RNAscope 4-Plex Ancillary Kit 
(RNAscope, cat. no. 323120) following the manufacturer’s protocol 
with minor modifications. The antigen retrieval was performed for 30 
min at 99 °C in a water bath (VWR). Tissue pretreatment and washing 
was performed as suggested by the RNAscope staining protocol. The 
following probes were used for the RNAscope assay: Hs-CD163 cat. no. 
417061-C1, Hs-CCR2 cat. no. 438221-C1, Hs-ANKRD1 cat. no. 524241-C1, 
Hs-POSTN cat. no. 575941-C1, Hs-Col15a1 cat. no. 484001-C2, Hs-Col1a1 
cat. no. 401891-C2, Hs-PECAM1-O2 cat. no. 487381-C2, Hs-NPPB cat. no. 
448511-C2, Hs-TREM2 cat. no. 420491-C2, Hs-SPP1 cat. no. 420101-C2, 
Hs-NPR3 cat. no. 431241-C3, Hs-POSTN cat. no. 409181-C3, Hs-SCARA5 
cat. no. 574781-C3, Hs-TNNT2 cat. no. 518991-C3, Hs-SPP1 cat. no. 
420101-C4 and Hs-NFE2L1 cat. no. 53850.

Nuclei quantification of H&E stained Visium slides
To quantify nuclei from the H&E staining, we used VistoSeg53, an auto-
mated MATLAB pipeline for image analysis. Using this pipeline, the 
individual TIFF files were used for nuclei segmentation using k-means 
colour-based segmentation in the image processing toolbox. Next, the 
binary images were refined with the refineVNS() function for accurate 
detection of the nuclei. Then a CSV and JSON file was generated that 
contained the metrics to reconstruct the spot grid to allow for nuclei 
quantification per 10X Visium detection spot. Counting of nuclei was 
performed with the countNuclei() function. The images were checked 
individually with the spotspotcheck() function. Code is available at 
http://research.libd.org/VistoSeg.

Animal model of myocardial infarction
Myocardial infarction was performed as previously described54. In 
brief, 12-week-old male and female C57Bl/6J Pdgfrb-creER;tdTomato 
mice were subjected to chronic left anterior descending artery liga-
tion. The mice were anaesthetized using isoflurane (2–2.5%). The mice 
were injected 30 min before surgery with metamizole (200 µg g−1 body 
weight) subcutaneously. Then they were intubated and ventilated 
with oxygen using a mouse respirator (Harvard Apparatus). Before 
incision, we injected bupivacaine (2.5 µg g−1 body weight) subcutane-
ously and intercostally for local analgesia. Then a left thoracotomy 
was performed, and myocardial infarction was induced by ligature of 
the left anterior descending artery with 0/7 silk (Seraflex, IO05171Z). 
The ribs, muscle layer and skin incision were closed. Metamizole was 
administered for three days via drinking water (1.25 mg ml−1, 1% sucrose) 

http://research.libd.org/VistoSeg


post-surgery. All mice were housed under standardized conditions 
in the Animal Facility of the University Hospital Aachen (Germany). 
The operating procedure was in accordance with European legisla-
tion and approved by local German authorities (LANUV, reference 
no. 81-02.04.2017.A410.). Mice were euthanized at different time 
points (sham, 4 days, 7 days and 14 days). As control, hearts from 
sham-operated, age-matched mice were taken (2 sham female and  
2 sham male mice).

Inducible fate-tracing experiments
For inducible fate tracing, male and female Pdgfrb-creER;tdTomato 
mice (8 weeks of age) received tamoxifen (3 mg intraperitoneally)  
4 times followed by a washout period of 21 days and were then subjected 
to myocardial infarction surgery or sham (12 weeks of age) as described 
above and euthanized at 4 days, 7 days and 14 days after surgery.

Echocardiography
Left ventricular heart function was determined by echocardiogra-
phy performed on a small-animal ultrasound imager (Vevo 3100 and 
MX550D transducer, FUJIFILM Visualsonics). Recordings of short and 
long cardiac axis were taken in B mode (2D real-time) using a 40 MHz 
transducer (MX550D). During the procedure, mice were anaesthetized 
with 1–2% isoflurane. Ejection fraction (EF) and global longitudinal 
strain (GLS) were recorded and analysed with the VevoLab Software. 
The Simpson method was used to assess EF. The GLS was measured in 
the B-mode of the long axis.

smFISH spot quantification and nuclear segmentation
Images for smFISH were exported in native Nicon format (.nd2). 
Images were split by channel using bfconvert55 for further process-
ing. RNA spots were quantified using the command line version of 
Radial Symmetry-FISH (RS-FISH)56. The sigma parameter from RS-FISH, 
determining spot size, was set to 2.9 for all images. Threshold settings 
in RS-FISH were manually determined for each channel and were set 
to the following values for cardiomyocyte state analysis: channel 1 
(TNNT2) = 0.0107, channel 2 (ANKRD1) = 0.005, channel 3 (NPPB) = 
0.0066. To remove spot counts resulting from low signal, high back-
ground images, we removed spots with an intensity lower than the 25th 
percentile of the channel intensity distribution across all images and 
applied a minimum intensity threshold of 600. For the quantification 
of CD163+SPP1+ macrophages, while we were not able to perform full 
cell segmentation, we performed nuclear segmentation using Mesmer57 
with pre-trained nuclear segmentation models to identify all detect-
able nuclei in each image based on DAPI staining. We subsequently 
assigned spots to the closest nuclei based on euclidean distance and 
classified cells as positive or negative for the different markers (POSTN, 
CD163 and SPP1). Cells with more than 2 spots for a given marker were 
considered positive for that marker.

Masson trichrome staining
Masson’s trichrome staining was conducted using a ready-to-use kit 
(Trichrome Stain (Masson) Kit, HT15, Sigma-Aldrich) as described by 
the manufacturer.

Antibodies and immunofluorescence staining
Heart tissues were fixed in 4% formalin for 4 h at room temperature 
and then embedded in paraffin. For staining slides were blocked 
in 5% donkey serum followed by 1 h of incubation with the primary 
antibody, washing 3 times for 5 min in PBS, and subsequent incuba-
tion of the secondary antibodies for 45 min. Following DAPI (4′,6′-dia
midino-2-phenylindole) staining (Roche, 1:10.000) the slides were 
mounted with ProLong Gold (Invitrogen, cat. no. P10144). The fol-
lowing antibodies were used: anti-ACTA2(aSMA)-Cy3 (C6198,1:250, 
Sigma-Aldrich), anti-SEMA3G (HPA001761, 1:100, Sigma-Aldrich), 
AF647 donkey anti-rabbit (1:200, Jackson Immuno Research).

Confocal imaging
Acquisition of images was performed using a Nikon A1R confocal micro-
scope using 40× and 60× objectives (Nikon). Image processing was 
performed using the Nikon Software or ImageJ58.

Generation of a human PDGFRB+ cardiac cell line
PDGFRB+ cells were isolated from a 69-year-old male patient, undergoing 
left ventricular assist device surgery. To generate a single-cell suspension, 
the tissue was homogenized in a gentleMACS dissociator (Miltenyi) and 
digested with liberase (200 µg ml−1, Roche cat. no. 5401020001) and 
DNase (60 U ml−1), for 30 min at 37 °C. After filtering the cell suspension 
(70 µm mesh), cells were stained in two steps using a specific PDGFRB 
antibody (R&D cat. no. MAB1263 antibody, dilution 1:100) followed by 
Anti-Mouse IgG1-MicroBeads solution (Miltenyi, cat. no. 130-047-102). 
Following MACS isolation, cells were cultured in DMEM media (Thermo 
Fisher cat. no. 31885) for 20 days and immortalized using SV40-LT and 
HTERT. Retroviral particles were produced by transient transfection of 
HEK293T cells using TransIT-LT (Mirus). Two types of amphotropic parti-
cles were generated by co-transfection of plasmids pBABE-puro-SV40-LT 
(Addgene #13970) or xlox-dNGFR-TERT (Addgene #69805) in combina-
tion with a packaging plasmid pUMVC (Addgene #8449) and a pseu-
dotyping plasmid pMD2.G (Addgene #12259). Retroviral particles 
were 100x concentrated using Retro-X concentrator (Clontech) 48 h 
post-transfection. Cell transduction was performed by incubating the 
target cells with serial dilutions of the retroviral supernatants (1:1 mix 
of concentrated particles containing SV40-LT or rather hTERT) for 48 h. 
Subsequently at 72 h after transduction, the transduced PDGFRb+ cells 
were selected with 2 μg ml−1 puromycin for 7 days.

Lentiviral overexpression of RUNX1
The human cDNA of RUNX1 was PCR amplified using the primer sequences 
5′- atgcgtatccccgtagatgcc −3′ and 5′- tcagtagggcctccacacgg −3′. Restric-
tion sites and N-terminal 1xHA-Tag were introduced into the PCR product 
using the primer 5′- cactcgaggccaccatgtacccatacgatgttccagattacgctcg-
tatccccgtagatgcc −3′ and 5′- acggaattctcagtagggcctccacac −3′. Subse-
quently, the PCR product was digested with XhoI and EcoRI and cloned 
into pMIG (pMIG was a gift from W. Hahn) (Addgene plasmid #9044 ; 
http://n2t.net/addgene:9044; RRID:Addgene_9044). Retroviral particles 
were produced by transient transfection in combination with packaging 
plasmid pUMVC (pUMVC was a gift from B. Weinberg (Addgene plasmid 
#8449)) and pseudotyping plasmid pMD2.G (pMD2.G was a gift from 
D. Trono (Addgene plasmid #12259 ; http://n2t.net/addgene:12259; 
RRID:Addgene_12259)) using TransIT-LT (Mirus). Viral supernatants 
were collected at 48–72 h post-transfection, clarified by centrifugation, 
supplemented with 10% FCS and Polybrene (Sigma-Aldrich, final con-
centration of 8 µg ml−1) and filtered with a 0.45-µm PES filter membrane 
(Millipore; SLHP033RS). Cell transduction was performed by incubating 
the PDGFB+ cells with viral supernatants for 48 h. eGFP-expressing single 
cells were sorted with a SH800 Cell Sorter.

Quantitative PCR with reverse transcription
Cell pellets were collected and washed with PBS followed by RNA extrac-
tion using the RNeasy Mini Kit (Qiagen) according to the manufacturer's 
instructions. Two-hundred nanograms total RNA was reverse tran-
scribed with High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems) and quantitative PCR with reverse transcription was car-
ried out as described29 Data were analysed using the 2Ct method. The 
primers used are listed in Supplementary Table 18.

Preprocessing of snRNA-seq, snATAC-seq and spatial 
transcriptome data
For snRNA-seq data, CellRanger software (v6.0.2) was used to perform 
the alignment with default options. Since the input consists of nuclei, 
we enabled the option ‘–include-introns’ to include intronic reads. For 

https://eur02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fn2t.net%2Faddgene%3A9044&data=04%7C01%7C%7C5792e86d29a34605e85108d88aee2e3e%7C5a6d5ee56edf4a26ba93f5872dbb9614%7C0%7C0%7C637412102870907346%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=PHBM0oZlO%2Bm6qCjvpg2bIHnAFcwRlOL9trLTl4S2rUU%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fn2t.net%2Faddgene%3A12259&data=04%7C01%7C%7C5792e86d29a34605e85108d88aee2e3e%7C5a6d5ee56edf4a26ba93f5872dbb9614%7C0%7C0%7C637412102870917335%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=8PnvW8tGRBvjGoy01umviI6GEP91psvmOa3%2BO3r2wx4%3D&reserved=0
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snATAC-seq data, the CellRanger ATAC pipeline (v2.2.0) was used with 
the default settings. For spatial transcriptome data, the SpaceRanger 
software (v1.3.2) was used to pre-process the sequencing data. The 
option ‘–reorient-images’ was enabled to allow for automatic image 
alignment. hg38 was used as the reference genome for human data 
alignment.

snRNA-seq data processing
To identify the major lineages representative of all of our specimens, we 
created a single-nuclei atlas analysing and integrating each snRNA-seq 
dataset using Seurat59 (v4.0.1).

Each dataset went through identical quality control processing. We 
discarded nuclei (1) in the top 1% in terms of the number of genes, (2) 
with less than 300 genes and less than 500 UMIs, (3) with more than 
5% of mitochondrial gene expression, and (4) doublets as estimated 
using scDblFinder (v1.4.0)60 with default parameters. Count matrices 
were log-normalized for downstream analyses using a scaling factor of 
10,000. We calculated a dissociation score for each cell using Seurat’s 
module score functions with a gene set provided by O’Flanagan et. al.61 
and discarded the nuclei that belonged to the top 1%. To generate an 
integrated atlas of all samples, log-normalized expression matrices 
were merged and dimensionality reduction was performed on the 
collection of the top 3,000 most variable genes that were shared with 
most of the samples using principal component analysis (PCA). To 
select the collection of shared variable genes between samples, first 
we estimated the top 3,000 most variable genes per sample and then 
selected the top 3,000 most-recurrent genes from them across all 
samples. PCA correction was performed with harmony62 (v1.0) using 
as covariates the patient, sample, and batch labels. A shared nearest 
neighbour (SNN) graph was built with the first 30 principal compo-
nents using Seurat’s FindNeighbors, and the cells were clustered with a  
Louvain algorithm with FindClusters. A high resolution (1) was selected 
to generate a large collection of nuclei clusters to capture representa-
tive major cell lineages, even if present in low proportions. Cluster 
markers were identified with Wilcoxon tests as implemented in Seurat’s 
FindAllMarkers function. Final assignment of cells to major cell lineages 
was based on literature marker genes. We filtered out small clusters 
(median number of nuclei across filtered clusters = 269) with low gene 
count distributions (median counts across filtered clusters = 756) or 
feature recovery (median number of genes across filtered clusters = 
695), with marker genes that could not be assigned to known cell types 
of the heart. To visualize all nuclei in a two-dimensional embedding, a 
UMAP was created with Seurat’s RunUMAP function using the first 30 
principal components of harmony’s PCA correction embedding. Major 
cell-type markers were estimated by performing differential expres-
sion analysis of cell-type and patient-specific pseudo-bulk profiles. 
Pseudo-bulk profiles were calculated by summing up the counts of all 
cells belonging to the same cell type and patient. Profiles coming from 
less than 10 cells or profiles from which the maximum gene expression 
was of less than 1,000 counts per library were discarded. Differen-
tially expressed genes were calculated by fitting a quasi-likelihood 
negative binomial generalized log-linear model as implemented in 
edgeR (v3.32.1)63 (false discovery rate (FDR) < 0.15). Each cell type was 
compared against the rest.

Comparison with independent healthy and ischaemic human 
heart cell atlases
We compared our generated atlas with another reference human 
single-nuclei RNA-seq atlas4 at the molecular and compositional level. 
The counts matrix was downloaded directly from https://www.heart-
cellatlas.org and we selected the data coming from single-nuclei  and 
left ventricle samples. Nuclei with fewer than 200 genes, and genes 
expressed in less than 3 nuclei were excluded. Log normalization with 
a scaling factor of 10,000 was performed with scanpy’s64 (v1.7.0) nor-
malize_total function.

To evaluate our major cell-type annotation, we calculated the enrich-
ment of the top 200 marker genes based on log fold change of each cell 
type defined in the reference atlas in the list of the top 200 marker genes 
of each of our defined cell types with hypergeometric tests. Marker 
genes of the reference atlas were calculated with Wilcoxon tests as 
implemented in scanpy’s 64 (v1.7.0) rank_genes_groups (adj. P < 0.01). 
Each cell type was compared against the rest. To evaluate the compo-
sitional stability of our control samples, we calculated the Pearson cor-
relation between the median proportion of each shared cell type of the 
reference atlas and our control, border zone, and remote zone samples. 
Similarly, we compared our atlas to an independent collection of human 
heart nuclei derived from three ischaemic specimens. First, we ana-
lysed and integrated the smaller collection of samples using identical  
procedures as the ones used in our provided atlas. After nuclei clustering,  
we assigned each cluster to a cell type using literature markers. Cell- 
type markers were calculated with Wilcoxon tests (adj. P < 0.01) and the 
top 200 genes based on log fold change were selected. Marker overlap 
and compositional stability comparison with ischaemic specimens 
from our atlas were performed as described previously.

snATAC-seq data processing
To control the data quality, the fragment files were used as input for the 
package ArchR (v1.0.1)65, and low-quality cells were filtered out based 
on transcription start site (TSS) enrichment (> 4) and the number of 
unique fragments (> 3,000 and < 100,000). Doublets were identified 
and removed by using the functions addDoubletScores and filterDou-
blets from ArchR with default settings. Next, peaks were identified 
by using the function addReproduciblePeakSet for each sample. All 
peaks were merged to create a union peak set of which each peak was 
annotated as distal, promoter, exonic and intronic. A count matrix 
was constructed with the function addPeakMatrix. For dimensional-
ity reduction, the method scOpen (v1.0.0)35 was used to generate a 
low-dimensional matrix of the cells. The algorithm Harmony62 was 
applied to correct the batch effects and integrate the data and UMAP 
was used to generate a 2D embedding for visualization. Cells were clus-
tered using the Leiden algorithm with a resolution of 1. To annotate the 
clusters, a gene activity score matrix was created using the function 
addGeneScoreMatrix and marker genes were detected for each clus-
ter using the function getMarkerFeatures. The same markers from 
snRNA-seq data were used to annotate the clusters.

Comparison between snRNA-seq and snATAC-seq data
The Seurat66 label-transferring approach was used to compare the 
annotation of snRNA-seq and snATAC-seq. To do so, the snRNA-seq 
data were used as reference and the function FindTransferAnchors 
was applied to identify a set of anchors using gene expression from 
snRNA-seq and gene activity score from snATAC-seq. Next, the cell 
labels from snRNA-seq were transferred to snATAC-seq by running 
the function TransferData. An adjusted rand index was calculated to 
evaluate the agreement between annotated and predicted cell labels 
for snATAC-seq data.

Cell-type-specific transcription factor binding and regulon 
activity
To estimate transcription factor binding activity for each major cell 
type identified from snATAC-seq data, we first aggregated the reads 
within each cell type and created a pseudo-bulk profile. Next, we used 
MACS2 (v2.2.7)67 to perform peak calling and removed the peaks from 
chrY, mitochondrial and unassembled ‘random’ contigs. We then pre-
dicted the transcription factor binding sites and estimated transcrip-
tion factor binding activity using HINT-ATAC (v0.13.2)68 based on the 
JASPAR2020 database69. We linked the transcription factor binding sites 
to the nearest genes to create a cell-type-specific transcription factor–
gene interaction. The number of ATAC-seq reads in the region with 100 
bp up-stream and downstream of the the transcription factor binding 
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site were used to indicate how strong the interaction was: each tran-
scription factor–gene interaction was weighted as the ratio between 
the number of ATAC-seq reads around the transcription factor bind-
ing site associated with that gene and the maximum number of reads 
observed in any binding site of the transcription factor. All interactions 
with a weight larger than 0.3 were considered in downstream analysis. 
This generated weighted and filtered cell-type-specific regulons. To 
infer a transcription factor regulon activity score, we estimated the 
mean expression of the target genes in each cell-type-specific regulon. 
Cell-type pseudo-bulk profiles were filtered to contain only genes with 
at least 10 counts in 5% of the samples, before the estimation of normal-
ized weighted means using decoupleR’s70 (v1.1.0) wmean function with 
1,000 permutations. Regulon activities were standardized and corre-
lated with transcription factor binding activities using Spearman cor-
relations. The minimum correlation of 0.5 was used as threshold and the 
top 5 transcription factors per cell type were selected for visualization.

Cell-type-specific GWAS signal enrichment
GWAS summary statistics for 4 MRI based left ventricle function param-
eters12 were downloaded from the Cardiovascular Disease Knowledge 
Portal (https://cvd.hugeamp.org/). For each phenotype, GWAS sum-
mary statistics were clumped with Plink (v1.9)71 to identify index SNPs 
(clump-p1 = 0.0001, clump-kb = 250, clump-r2 = 0.5) using the European  
samples from 1000 Genomes as a reference population.

Next, we lifted over the coordinates of index SNPs from hg19 to hg38 
using the LiftOver tools. For each major cell type, we generated an aver-
age chromatin accessibility profile by using snATAC-seq data from all 
cells. The cell-type-specific GWAS signal enrichment was performed 
using gchromVAR (v0.3.2)72 and enrichment scores were normalized 
to z-scores. P-values were calculated based on the z-scores and were 
corrected by the Benjamini–Hochberg method.

Cell-type-specific integration of snATAC-seq and snRNA-seq 
data and sub-clustering
For each major cell type that was recovered by both snATAC-seq and 
snRNA-seq, we aimed to identify sub-clusters spanning multiple sam-
ples and modalities. To do so, we devised a multi-step approach to 
integrate and cluster the data by controlling quality from sample-, 
cell-type- and modality-specific aspects.
(1) �To minimize the sample-specific effects, we only considered samples 

with a minimum number of cells in both snATAC-seq and snRNA-seq: 
for cardiomyocytes and endothelial cells (n_cells_ATAC > 300 and  
n_cells_RNA > 400); for fibroblasts (n_cells_ATAC > 100 and n_cells_
RNA > 400); and for myeloid (n_cells_ATAC > 50 and n_cells_RNA > 200).  
This step controls for samples with low recovery of cells in a par-
ticular modality.

(2) �To further filter cell-type-specific low-quality cells from snRNA-seq 
and snATAC-seq data, we integrated the samples as selected in step 
1 using Harmony to correct batch effects from patients and regions 
based on PCA space (30 dimensions) for snRNA-seq and LSI space 
(30 dimensions) for snATAC-seq data. We then clustered the cells 
using Seurat (resolution = 0.4) for each modality independently. We 
next excluded the clusters that were (i) enriched in a single sample;  
(ii) showed a lower data quality; (iii) showed a higher doublet score 
compared with others. Specifically, for cardiomyocytes, we removed 
3 clusters from snATAC-seq data: 2 clusters (481 cells) were enriched 
in a single sample and another cluster (171 cells) showed a low number 
of unique fragments (average = 8,102). For fibroblasts, we removed 1 
cluster (49 cells) from snATAC-seq (98% of cells from a single sample)  
and 1 cluster (1,172 cells) from snRNA-seq (average doublet score 
of 0.12). This step controls for cell type and modality-specific low- 
quality cells.

(3) ��We next integrated the cells from snATAC-seq and snRNA-seq data. 
To this end, we used the gene activity score matrix of snATAC-seq 
estimated by ArchR and the gene expression data from snRNA-seq 

data as input for canonical component analysis by Seurat. The in-
tegrated data were projected into a PCA space (30 dimensions) and 
Harmony was used to correct the batch effects from samples and 
modalities. This step generated a co-embedded and batch-corrected 
dataset composed of cells from snRNA-seq and snATAC-seq samples.

(4) �For each major cell type, we defined the sub-clusters based on the 
co-embedded data using the Seurat (resolution = 0.9 or 1). Marker 
genes were identified by using the function FindAllMarkers. We 
next filtered clusters that were mainly driven by a single sample 
or modality. Finally, we merged and annotated the clusters based 
on the markers. The final statistics of the sub-clustering results 
for each major cell type were provided in Supplementary Table 16.

Analysis of snRNA-seq data from mouse fibroblasts
Cellranger mkfastq and count functions (version v6.0.2) with default 
parameters were used for demultiplexing and aligning the reads, 
respectively. Reads were aligned to the mouse reference transcrip-
tome (mm10, Version=2020-A). Prior to alignment, reads for tdTomato 
were added to the reference. Quantified counts from each sample were 
aggregated and cells with counts <1,500 and >20,000 were filtered out. 
Further, cells with >5% reads mapped to mitochondrial genes, as well 
as cells with <500 genes were removed. Scrublet73 was used to detect 
potential doublets and only the resulting 40,495 cells with <0.2 scrublet 
score were kept for further analyses. The highly_variable_genes() func-
tion with seurat_v3 flavour implemented in Scanpy (version 1.8.1) was 
used to obtain the top 2,000 most highly variable genes. Count data was 
log-normalized using sc.pp.normalize_total(target_sum=1e4) followed 
by sc.pp.log1p(). The data was subset to the 2,000 genes, unwanted 
sources of variation from n_umi and mito_fraction were regressed out 
using sc.pp.regress_out(), and the top 30 principal components were 
estimated using sc.tl.pca(). Harmony was then used to account for large 
differences across samples using ‘sample’ as the batch indicator. Net-
work neighbourhood graph was constructed using the function sc.pp.
neighbors() with 30 adjusted principal components, cosine distance 
and n_neighbors = 10. Leiden clustering with resolution 1.0 was used 
to cluster the cells into 17 clusters. Marker genes were identified using 
the Wilcoxon test implemented in sc.tl.rank_genes_groups() function 
in Scanpy. Clusters were manually annotated using the marker genes. 
We next cleaned up the data by removing clusters with low data qual-
ity and re-clustered the data with resolution of 0.2. To annotate the 
cells, we used the label transfer approach from Seurat based on the 
sub-clustering results from human fibroblasts.

Gene-regulatory network inference for cardiomyocytes and 
fibroblasts
We inferred an eGRN for cardiomyocytes and fibroblasts using a 
multi-step approach including modality pairing, transcription fac-
tors and genes selection, and network construction.
(1) �We first paired the cells between snATAC-seq and snRNA-seq based 

on the previously described co-embedding space using an opti-
mal matching approach74. This method returns a matching of a 
snATAC-seq cell to a unique cell in snRNA-seq. Next, we produced 
a diffusion map75 and created trajectories in this space using the 
function addTrajectory from ArchR (v1.0.1)65. For cardiomyocytes, 
we inferred a trajectory from clusters vCM1, vCM2 and vCM3, where 
vCM1 were considered as roots and vCM3 as the terminal state. For 
fibroblasts, we built a trajectory with SCARA5+ fibroblasts as root 
and myofibroblasts as terminal state.

(2) �Next, we predicted a single-cell-specific transcription factor bind-
ing activity score using the R package chromVAR (v1.16)76 from the 
snATAC-seq data based on motif from the JASPAR2020 database69. 
In contrast to HINT-ATAC, chromVAR provides transcription factor 
activity scores at single-cell level. We next selected transcription 
factors that display concordant binding activity (snATAC-seq) and 
its gene expression (snRNA-seq) (Pearson correlation > 0.1). This 
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analysis identified 65 transcription factors for cardiomyocytes 
and 44 transcription factors for fibroblasts. We considered these 
transcription factors to be potential regulators. We sorted the 
transcription factors along the trajectory as defined in step 1 and 
assigned a pseudotime label to each transcription factor. Next, we 
selected highly variable genes using the snRNA-seq data along the 
trajectories as described65. We kept the top 10% variable genes and 
considered them as potential transcription factor targets.

(3) �To associate regulators with targets (that is, transcription fac-
tors with genes), we explored the correlation of peak accessibility 
and gene expression to identify peak-to-gene links. Specifically, 
for each gene, we consider peaks that are within 125 kb on either 
side of the transcription start sites, while excluding the promoter 
regions. This analysis generated a list of enhancer-to-promoter 
links. We only considered significantly correlated links (FDR < 
0.0001) with a positive correlation as before65. Finally, we associ-
ated a transcription factor with a target gene if this gene was linked 
to an enhancer and this enhancer was predicted to be found by this 
transcription factor.

(4) �To build a quantitative transcription factor–gene-regulatory 
network, we estimated the correlation of the transcription fac-
tor binding activity from snATAC-seq and target gene expression 
from snRNA-seq data and only considered those interactions with 
Pearson correlation >0.4. We visualized the network based on a 
force-layout, which places transcription factors (or target genes) 
with similar interactions close together. We coloured transcription 
factor nodes in the networks using the assigned pseudotime labels 
as inferred in step 2. To characterize the importance of transcription 
factors, we computed two measures: node betweenness (denoted 
by b)77 and pagerank (denoted by p)78. A final importance score for 
transcription factor i was calculated as:

i b min b p min pImportance = ( − ( )) + ( − ( ))i i
2 2

(5) �Finally, to map the inferred GRN into spatial transcriptomics data, 
we used the target genes for each transcription factor and calcu-
lated a module score by using the function AddModuleScore from 
Seurat (v4.1.0).

Characterization of spatial transcriptomics datasets
Single-slide processing. Filtered feature-barcode expression matri-
ces from SpaceRanger (v1.3.2) were used as initial input for the spatial 
transcriptomics analysis using Seurat (v4.0.1). Spots with less than 300 
measured genes and less than 500 UMIs were filtered out. Ribosomal 
and mitochondrial genes were excluded from this analysis. Individual 
count matrices were normalized with sctransform79, and additional 
log-normalized (size factor = 10,000) and scaled matrices were calcu-
lated for comparative analyses using default settings.

Cell-type compositions were calculated for each spot using cell2lo-
cation80 (v0.05). Reference expression signatures of major cell types 
were estimated using regularized negative binomial regressions and 
our integrated snRNA-seq atlas. We fitted a model in six downsampled 
iterations of our snRNA-seq atlas (30%) and generated a final reference 
matrix by taking the mean estimation. Each slide was later deconvoluted 
using hierarchical bayesian models as implemented in run_cell2location. 
We provided the following hyperparameters: 8 cells per spot, 4 factors 
per spot, and 2 combinations per spot. Additionally, for each spot we 
calculated cell-type proportions using the cell-type-specific abundance 
estimations. Cell-type compositions of the complete slide were calcu-
lated adding the estimated number of cells of each type across all spots. 
To compare the stability of estimated cell compositions between our 
different data modalities, we calculated Spearman correlations between 
the estimated cell type proportions of each slide and the observed cell 
type proportions in its corresponding snRNA-seq and snATAC-seq  
dataset.

Estimation of functional information from spatial data. For each 
spot, we estimated signalling pathway activities with PROGENy’s81,82 
(v1.12.0) model matrix using the top 1,000 genes of each transcrip-
tional footprint and the sctransform normalized data. Spatially vari-
able genes were calculated with SPARKX83 (v1.1.1) using log-normalized 
data (FDR < 0.001). To obtain overrepresented biological processes 
from each list of spatially variable genes, we performed hypergeomet-
ric tests using the set of canonical pathways provided by MSigDB84 
(FDR < 0.05).

Estimation of cell death molecular footprints from spatial data. To 
associate the differences in nuclei capture in snRNA-seq between the 
different samples to cell death processes, we leveraged the informa-
tion from spatial transcriptomics to estimate the general expression of 
genes associated to cell death for each sample. For each unfiltered slide 
we estimated per spot the normalized gene expression of BioCarta’s84 
‘death pathway’ and Reactome’s85 ‘regulated necrosis pathway’ using 
the decoupleR (v1.1.0) wmean method and the sctransform normalized 
data. To have a final pathway score per slide, we calculated for each slide 
the mean ‘pathway expression’ across all spots.

Mapping transcription factor binding activity and GWAS enrich-
ment to spatial data. To visualize the transcription factor binding ac-
tivity estimated from snATAC-seq data in space, we used the estimated 
cell type proportion calculated from cell2location scores for mapping. 
Specifically, for each spot i and transcription factor j, we calculated the 
transcription factor binding activity as follows:

∑ACT = Proportion × ACT′ ,ij k

K

ik kj=1

where Proportionik is the estimated proportion of cell type k, K is the 
number of cell types, and ACT′kj is the binding activity of transcription 
factor j in cell type k from snATAC-seq data. An equivalent approach 
was used to map GWAS scores into space.

Cell-state spatial mapping. To map the functional states of each cell 
type into spatial locations, we leveraged the deconvolution results of 
each slide and the set of differentially expressed genes of each recov-
ered cell state. Given the continuous nature of cell states, we assumed 
that the collection of up and downregulated genes of a cell state rep-
resented its transcriptional fingerprint and could be summarized in 
a continuous score in locations where we could reliably identify the 
major cell type from which the state was derived. For a given major 
cell type of interest k, we identified spots where its inferred abundance 
was of at least 10%. To estimate state scores associated with cell type k,  
we used decoupleR’s (v1.1.0) normalized weighted mean method 
(wmean) and the set of the upregulated genes of each state defined 
with snRNA-seq and snATAC-seq (log fold change > 0; Wilcoxon tests, 
FDR < 0.05). The log fold change of each selected gene was used as the 
weight in the wmean function.

Analysis of ion channel-related genes. We related the expression of 
ion channel-related gene sets to the different cardiomyocyte cell states 
and their location in spatial transcriptomics. First we selected two dif-
ferent gene sets containing ion channel-related genes: (1) Reactome’s85 
‘ion channel transport’ and a curated list of transmural ion channels 
from Grant et al.86. Gene sets are provided in Supplementary Table 17. 
First, we calculated gene set scores for each spatial transcriptomics 
spot using decoupleR’s wmean function. Then we correlated these 
gene set scores to the spatial mapping of cardiomyocyte cell states 
in regions where we observed at least 10% of cardiomyocytes. Addi-
tionally, we evaluated if any of the genes belonging to these gene sets 
were differentially expressed between the vCM1 and stressed vCM3 



population using Wilcoxon tests as implemented in scran’s (v1.18.5) 
findMarkers function (area under the curve (AUC) < 0.4, AUC > 0.6, 
FDR < 0.05).

Spatial map of cell dependencies. We used MISTy’s87 implementation 
in mistyR (v1.2.1) to estimate the importance of the abundance of each 
major cell type in explaining the abundance of the other major cell 
types. Cell-type cell2location estimations of all slides were modelled in 
a multi-view model using three different spatial contexts: (1) an intrinsic 
view that measures the relationships between the deconvolution esti-
mations within a spot, (2) a juxta view that sums the observed deconvo-
lution estimations of immediate neighbours (largest distance threshold 
= 5), and (3) a para view that weights the deconvolution estimations of 
more distant neighbours of each cell type (effective radius = 15 spots). 
The aggregated estimated standardized importances (median) of each 
view of all slides were interpreted as cell-type dependencies in different 
spatial contexts, such as colocalization or mutual exclusion. Neverthe-
less, the reported interactions did not imply any causal relation. Before 
aggregation, we excluded the importances of all predictors of target 
cell types whose R2 was less than 10% for each slide.

To associate tissue structures with tissue functions, we fitted a MISTy 
model to explain the distribution of PROGENy’s pathway activities 
standardized scores. The multi-view model consisted of the following 
predictors: (1) an intrinsic view to model pathway crosstalk within a 
spot, (2) a juxta view to model pathway crosstalk between neighbour-
ing spots (largest distance threshold = 5), (3) a para view estimating 
pathway relations in larger tissue structures (effective radius = 15), (4) 
an intrinsic view and (5) a para view containing cell2location estima-
tions (effective radius = 15). These last two views model explicitly the 
relations between cell-type compositions of spots and pathway activi-
ties. Cycling cells and TNF were not included in the described analyses. 
Before aggregation, we excluded the importances of all predictors of 
target pathway activities whose R2 was less than 10% for each slide.

Niche definitions from spatial transcriptomics data. To identify 
groups of spots in the different samples that shared similar cell-type 
compositions, we transformed the estimated cell-type proportions 
of each spatial transcriptomics spot and slide into isometric log ratios 
(ILR)88, and clustered spots into groups. These niches represent groups 
of spots that are similar in cell composition and represent potential 
shared structural building blocks of our different slides; we refer to 
these groups of spots as cell-type niches. Louvain clustering of spots 
was performed by first creating a shared nearest neighbour graph with 
k different number of neighbours (10, 20, 50) using scran’s89 (v1.18.5) 
buildSNNGraph function. Then, we estimated the clustering resolution 
that maximized the mean silhouette score of each cluster. We assigned 
overrepresented cell types in each structure by comparing the distri-
bution of cell-type compositions within a cell-type niche versus the 
rest using Wilcoxon tests (FDR < 0.05). We tested if a given cell state 
was more representative of a cell-type niche by performing Wilcoxon 
tests between each niche and the rest (FDR < 0.05). Only positive state 
scores were considered in this analysis.

Additionally, to complement the repertoire of niches identified with 
cell-type compositions, we integrated and clustered the Visium spots 
of all slides using their log-normalized gene expression. We called 
these clusters molecular niches. Integration and clustering of spots 
was performed with the same methodology as the one used to create 
the snRNA-Seq atlas. A low resolution was used (0.2) to have a similar 
number of molecular niches as cell-type niches. Cell-type and cell-state 
enrichment was performed as mentioned before.

Differential expression analysis of molecular niches enriched with 
cardiomyocytes. Differential expression analysis between molecular 
niches enriched in cardiomyocytes (niche 0, niche 1, niche 3) was per-
formed using the log-transformed expression of all spots belonging to 

a given niche. Wilcoxon tests were performed with scran’s89 (v1.18.5) 
findMarkers function. Genes with a summary AUC >0.55 and FDR <0.05 
were considered upregulated genes.

Differential molecular profiles of the molecular niche 10 enriched 
with capillary endothelial cells. Differential expression analysis be-
tween ischaemic, fibrotic and myogenic-enriched spatial transcriptomic  
spots was performed with Wilcoxon tests as implemented in scran’s89 
(v1.18.5) findMarkers function. To obtain overrepresented biological 
processes from upregulated genes, we performed hypergeometric 
tests using the set of hallmark pathways provided by MSigDB84. Normal-
ized PROGENy’s pathway activities for each spot were calculated using  
decoupleR’s wsum method with 100 permutations on log-transformed 
data. Mean normalized pathway scores were calculated per slide 
and comparisons between groups were performed with Wilcoxon 
tests. Reported P-values were adjusted for multiple testing using the  
Benjamini–Hochberg procedure.

General differences in tissue organization. We annotated the dif-
ferent spatial transcriptomic slides into three groups based on histo-
logical differences with the help of pathologists: myogenic-enriched, 
fibrotic-enriched and ischaemic-enriched. A general comparison of 
the sampled patient specimens was performed at the compositional 
and molecular level.

Hierarchical clustering, with euclidean distances and Ward’s algo-
rithm, was used to cluster the pseudo-bulk profiles of the spatial tran-
scriptomics datasets (replicates where merged, n = 27). Genes with 
less than 100 counts in 85% of the sample size were excluded for this 
analysis. Log normalization (scale factor = 10,000) was performed. 
To visualize the general molecular differences between our samples, 
log-normalized pseudo-bulk profiles of the spatial transcriptomics 
datasets were projected in an UMAP embedding.

To identify compositional differences between our sample groups, 
we compared cell-type and niche compositions. To identify cell-type 
composition changes associated to the sample groups, mean cell-type 
compositions across single-cell and spatial datasets were compared 
with Kruskal–Wallis tests (FDR < 0.1). Pairwise comparisons of sam-
ple groups were performed with the Wilcoxon test. Additionally, to 
test which cell-type and molecular niches had different distributions 
between our group samples, we performed Kruskal–Wallis tests over 
the compositions of cell-type or molecular niches (FDR < 0.1). Addi-
tional pairwise comparisons were performed with Wilcoxon tests 
(P-values adjusted with Benjamini–Hochberg procedure). For this, 
we only consider slides where no single niche represents more than 
80% of the spots. Also, we only consider niches representing more 
than 1% of the composition of at least 5 slides.

To identify differences between the structurally similar tissues cap-
tured in the myogenic-enriched group, we separated the samples into 
remote, border, and control zones and repeated the niche composition 
comparison described previously.

To identify patterns of tissue organization associated with a sample 
group, we tested if differential cell dependencies were captured by 
the MISTy models used to predict cell-type abundance (see ‘Spatial 
map of cell dependencies’). First, we filtered the standardized impor-
tance matrices of each sample’s MISTy model fitted to predict the 
abundance of major cell-types to contain only the values of target cell 
types predicted with an R2 greater than 0.05. Then, for each slide we 
created a spatial dependency vector where each element contains the 
importance of each possible pair of target and predicted cell types. 
Finally, we tested which cell interactions had higher importances in 
one of the sample groups compared to the rest using Wilcoxon tests 
(FDR < 0.25). To prioritize interactions, we only performed pairwise 
comparisons between sample groups for cell-type dependencies 
from which the maximum median importance across all groups was 
greater than 0.
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Estimation of the effects of the spatial context on gene expres-
sion. We used mistyR (v1.2.1) to find the associations between the 
tissue organization and the spatial distribution of stressed cardi-
omyocytes and the different endothelial, myeloid and fibroblast 
cell states. We hypothesized that the distribution of specific cell 
states in the spatial transcriptomics slides could be modelled by the 
cell-type composition or cell-state presence of individual spots and 
their neighbourhood.

For a given collection of cell states of interest, we first defined regions of 
interest in every single slide as the collection of spots where the inferred 
abundance of the cell type from which the cell state was derived was at 
least 10%. These regions limit the target spots used in the MISTy model, 
however the whole slide is used to spatially contextualise the predictors. 
We used as predictors the abundances of cell types estimated with cell-
2location or cell states scores. To account only for the effects of the activa-
tion of a cell state, the state scores of predictor cell states were masked to 
0 whenever their score was lower than 0. In all models we included two 
classes of spatially contextualized predictive views: an intrinsic (intra) 
and a local neighbourhood view (para, effective radius = 5).

Specifically we fitted the following models to answer four questions:
(1) �What are the main cell types whose abundance within a spot or in 

the local neighbourhood predict the stressed vCM3?

vCM3 ~ intra(cell-type abundance) + para(cell-type abundance)

(2) �What are the main cell types whose abundance within a spot or in 
the local neighbourhood predict the endothelial subtypes? How 
do the different subtypes relate to each other?

ECsubtypes ~ intra(ECsubtypes) + para(ECsubtypes) + intra(cell-type 
abundance) + para(cell-type abundance)

(3) �What are the myeloid cell states within a spot or in the local neigh-
bourhood that better predict fibroblasts cell states? How do fibro-
blasts cell states relate to each other?

FibroblastStates ~ intra(FibroblastStates) + para(FibroblastStates) 
+ intra(MyeloidStates) + para(MyeloidStates)

(4) �What are the main cell types whose abundance within a spot or in 
the local neighbourhood predict the myeloid cell states? How do 
the different states relate to each other?

My�eloidStates ~ intra(MyeloidStates) + para(MyeloidStates)  
+ intra(cell-type abundance) + para(cell-type abundance)

Specific view importances were compared between patient groups 
as described previously with an R2 filter of 0.1.

Cell–cell communication analysis
To estimate ligand–receptor interactions between the sub-populations 
of fibroblasts and myeloid cells, we extracted gene expression matrix 
from the integrated snRNA-seq and snATAC-seq data for each sample 
group (that is, myogenic, ischaemic and fibrotic) and combined the 
matrices from all sub-populations. We next used LIANA (v0.0.9)90, a 
framework that compiles the results of state-of-the-art cell commu-
nication inference methods, to infer ligand–receptor interactions. 
We focused on the CellPhoneDB91 ligand–receptor method with 
Omnipath’s ligand–receptor database92 implemented in LIANA90. This 
was done by combining snRNA-seq samples of myogenic, ischaemic 
and fibrotic groups and subsetting only the fibroblasts and myeloid 
cells sub-states. Next, we used CrossTalker (v1.3.1)93 to find changes in 
cell–cell communication by contrasting ligand–receptor interactions 
predicted in myogenic vs. ischaemic samples and myogenic vs. fibrotic 

samples. The interactions considered by CrossTalkeR were obtained 
by filtering the output of LIANA90 (P > 0.01).

Visualization, statistics, and reproducibility
In data represented as box plots (Figs. 2f, 4c,d,m,o, 5b and 6d,n) the 
middle line corresponds to the median, the lower and upper hinges 
describe the first and third quartiles, the upper whisker extends 
from the hinge to the largest value no further than 1.5 × inter-quartile 
range (IQR) from the hinge and the lower whisker extends from the 
hinge to the smallest value at most 1.5 × IQR of the hinge, and data 
beyond the end of the whiskers are outlying points that are plotted 
individually. In Figs. 4b and 5b,k, Colours refer to gene-weighted ker-
nel density as estimated by using R package Nebulosa94. All reported 
P-values based on multi-comparison tests were corrected using the 
Benjamini–Hochberg method95. The depicted immunofluorescence 
micrographs are representative (Figs. 4c and 6n). The number of 
samples for each group was chosen on the basis of the expected 
levels of variation and consistency. The depicted RNAscope, immu-
nofluorescence micrographs are representative and were performed 
at least twice, and all repeats were successful. Fig. 1a contains a panel 
from BioRender.com.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Processed snRNA-seq, snATAC-seq, and spatial transcriptomics 
data are available at cellxgene https://cellxgene.cziscience.com/
collections/8191c283-0816-424b-9b61-c3e1d6258a77 and at the 
Zenodo data archive (https://zenodo.org/record/6578047). Raw data 
generated by CellRanger and SpaceRanger pipelines are available 
through the Human Cell Atlas Data Portal at https://data.humancel-
latlas.org/explore/projects/e9f36305-d857-44a3-93f0-df4e6007dc97 
and at the Zenodo data archive (https://zenodo.org/record/6578553, 
https://zenodo.org/record/6578617 and https://zenodo.org/
record/6580069). Source data are provided with this paper.

Code availability
All code used for analysis is available at https://github.com/saezlab/
visium_heart and https://github.com/KramannLab/visium_heart. 
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Computational workflow and snRNA-Seq data 
analysis. a, Schematic of the computational workflow for the main analyses  
of snRNA-seq, snATAC-seq, and spatial transcriptomics data. b, UMAP 
embedding of snRNA-seq data from all samples for patients, regions, and 
clusters. c, UMAP embedding of snRNA-seq data showing G2-M-phase cell-
cycle score (left) and S-phase score (right). d, Barplots showing cell-type 
proportions of snRNA-seq data across all samples. Colours indicate different 
major cell types. e, Comparison of the generated snRNA-seq atlas to a 
previously published human heart cell atlas (HCA) for molecular profiles (left) 
and cell-type proportion (right). Left panel shows the adjusted P-value of the 
overlap of top gene markers of each cell-type between the different data sets 

(hypergeometric test). Right panel shows the Pearson correlation between the 
median proportion of each shared cell-type of the reference atlas and our 
control, border zone, and remote zone samples. f, UMAP embedding and 
annotation of an external dataset of three ischaemic zone samples following MI.  
g, Comparison of the generated snRNA-seq atlas to the external ischaemic 
data for molecular profiles (left) and cell-type proportion (right). Left panel 
shows the adjusted P-value of the overlap of top gene markers of each cell-type 
between the different data sets (hypergeometric test). Right panel shows the 
Pearson correlation between the median proportion of each shared cell-type 
of the external data set and our ischaemic samples.
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Extended Data Fig. 2 | snATAC-seq and spatial transcriptomics data analysis. 
a, UMAP showing snATAC-seq data for all patients, regions, and clusters.  
b, Validation of snATAC-seq cell type annotation using snRNA-seq data.  
Left: UMAP showing the predicted labels for snATAC-seq data. Right:  heatmap 
showing evaluation results by adjusted rand index (ARI). c, snATAC-seq cell-type 
proportions of all samples. d, Spearman correlations of cell-type compositions 
of samples estimated from snRNA-seq and and snATAC-Seq. Box-Whisker plots 
showing median and IQR (n = 3 for BZ, n = 4 for control, n = 4 for RZ, n = 5 for FZ, 
and n = 9 for IZ) e, Cell type detection for snRNA-seq and snATAC-seq data across 
samples. The colour represents in which modality was cell type detected: snRNA-
seq and snATAC-seq, snRNA-seq only, or not recovered. f, Transcription factor 
(TF) binding and TF target expression per major cell type based on the snATAC-
seq and snRNA-seq data. g, Overrepresented spatially variable biological 
processes (myocardium related, immune related and fibrosis related) across 
regions. Each cell contains the mean adjusted P-value of a hypergeometric test 
across all spatial transcriptomics samples belonging to each region. h, Spearman 

correlations of cell-type compositions of samples estimated from spatial 
transcriptomics and snRNA-seq (left) or snATAC-seq (right). Box-Whisker plots 
showing median and IQR (n = 3 for BZ, n = 4 for control, n = 4 for RZ, n = 5 for FZ, 
and n = 9 for IZ). i, GWAS SNP enrichment score across major cell types.  
j, Visualization of GWAS12 ll SNP enrichment (left ventricular ejection fraction)  
in spatial transcriptomics data. In d,h, each spot is a patient sample (n = 3 for 
borderzone (BZ), n = 4 for controls, n = 6 for fibrotic zone (FZ), n = 9 for ischaemic 
zone (IZ), n = 5 for remote zone (RZ)). Data are represented as boxplots where the 
middle line is the median, the lower and upper hinges correspond to the first and 
third quartiles, the upper whisker extends from the hinge to the largest value no 
further than 1.5 × IQR from the hinge (where IQR is the inter-quartile range) and 
the lower whisker extends from the hinge to the smallest value at most 1.5 × IQR 
of the hinge, while data beyond the end of the whiskers are outlying points that 
are plotted individually. In a-c the number of spots of the bottom panels 
correspond to the barplots in the upper panel.
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Extended Data Fig. 3 | Cell-type niches and spatially contextualized views 
analysis. a-b, UMAP embedding of spatial transcriptomics (ST) spots based on 
major cell-type compositions coloured by the patient (a) or region (b).  
c, Cell-type niche compositions across patient sample. d, UMAP embedding of 
ST spots based on major cell-type compositions colored by the compositions 
of cycling cells, pericytes, adipocytes, endothelial cells and myeloid cells and 
their respective marker genes (RYR2 cardiomyocytes, PDGFRA fibroblasts, 
MKI67 cycling cells, ABCC9 pericytes, FASN adipocytes, VWF endothelial cells, 
IL7R myeloid cells, and MYH11 vSMCs). e, Standardized mean PROGENy 
pathway activities across different niches. f, H&E staining and cell2location 
cell-type abundance estimations of cardiomyocytes, fibroblasts and myeloid 

cells. Delineated areas represent myogenic or fibroblast/myeloid cell enriched 
tissue areas. g, Median standardized importances (> 0) of cell-type abundances 
in the prediction of other cell types within the immediate neighbourhood 
(upper part) and the extended neighbourhood (effective radius of 15 spots) 
(lower part) inferred from spatially contextualized models. Cell-type 
abundances of the immediate (upper panels) and extended neighbourhood of 
cardiomyocytes, fibroblasts and myeloid cells. h, Visualization examples of the  
dependencies between the abundance of endothelial cells and the abundance 
of pericytes in the immediate neighborhood, and vascular smooth muscle cells 
in the extended neighbourhood (effective radius of 15 spots) visualized on 
three tissues.
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Extended Data Fig. 4 | Spatial pathway and cell type dependency analysis. 
a, Median standardized importances (> 0) of cell-type abundances within the 
spot and in the extended neighbourhood (effective radius = 15), and PROGENy 
pathway activities within a spot, and in the immediate or extended 
neighbourhood on the prediction of pathway activities inferred from spatially 
contextualized models. b, Standardized importances of cardiomyocyte 
abundances in the extended neighbourhood (radius of 15 spots) in predicting 
hypoxia pathway activity. Comparison was performed between two sample 
groups: control, border and remote zones samples (n = 10), and fibrotic and 
ischaemic samples (n = 15). Two-sided Wilcoxon rank sum test. c–e, Visualization 
examples of pathway to pathway and pathway to cell-type dependencies in 
spatial transcriptomics. (c) p53 and PI3K spatial pathway distribution.  
(d) JAK-STAT and NFkB activities’ dependencies to myeloid and lymphoid cells’ 
abundance. (e) Cardiomyocyte to WNT and hypoxia pathway dependency.  
f,  Hierarchical clustering of the pseudo-bulk transcriptional profile of spatial 
transcriptomics slides of patient samples. Colour represents the three major 
sample groups. g, Comparisons of patient mean major cell-type proportions 
(inferred from snRNA, snATAC-seq data, and spatial transcriptomics) between 
myogenic, ischaemic and fibrotic groups. Two-sided Wilcoxon rank sum test. 
Each dot represents a patient sample (n=13 for myogenic group, n=9 for 
ischaemic group, n=5 for fibrotic group). h, Pairwise comparison between 
patient groups of the standardized importances of cell-type abundances 
within the same spot (intra), and in the immediate ( juxta) or extended 
neighborhood (para) to predict other cell types’ abundances (two-sided 
Wilcoxon rank sum test). Myogenic vs ischaemic (left), myogenic vs fibrotic 
(middle), fibrotic vs ischaemic (right). * = adj. P-value <= 0.15. i, Comparison of 
standardized importances of lymphoid cells’ abundances in the immediate 
neighborhood ( juxta) to predict myeloid cells between myogenic, ischaemic, 

and fibrotic groups (two-sided Wilcoxon rank sum test). Visualization of 
lymphoid and myeloid cells in an ischaemic (up) and control (down) sample.  
j, Comparison of standardized importances of pericytes’ abundances to 
predict cardiomyocytes’ abundances within the same spot (two-sided 
Wilcoxon rank sum test). Each dot represents a sample (n = 14 for myogenic 
group, n=9 for ischaemic group, n = 5 for fibrotic group). Spatial distributions 
of pericyte and cardiomyocytes abundances estimated from deconvolution in 
a myogenic sample (left) and a fibrotic sample (right). Arrows in the fibrotic 
enriched sample show a strong colocalization event. k, Comparison of the 
compositions of cell-type niches between myogenic, fibrotic, and ischaemic 
groups (Kruskal-Wallis test, line denotes an adj. P-value < 0.1). Comparison of 
the proportions of cell-type niches 4, 5, 7, and 8 between groups (adj. P-value 
estimated from two-sided Wilcoxon rank sum test) and visualization example. 
Each dot represents a patient sample (n for myogenic group = 13, n for 
ischaemic group = 7, n for fibrotic group = 5). l, Comparison of the proportions 
of cell-type niche 9 between groups (two-sided Wilcoxon rank sum test).  
Each dot represents a patient sample (n for myogenic group = 13, n for 
ischaemic group = 7, n for fibrotic group = 5). m, Pairwise comparison of the 
compositions of the cell-type niches between control, border and remote zone 
samples (two-sided Wilcoxon rank sum test). * = reflect changes with adj.  
P-value <  0.1, n for CTRL = 4, n for RZ = 5, n for BZ = 3. In b, g, i, j, k, l data are 
represented as boxplots where the middle line is the median, the lower and 
upper hinges correspond to the first and third quartiles, the upper whisker 
extends from the hinge to the largest value no further than 1.5 × IQR from the 
hinge (where IQR is the inter-quartile range) and the lower whisker extends 
from the hinge to the smallest value at most 1.5 × IQR of the hinge, while data 
beyond the end of the whiskers are outlying points that are plotted individually.
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Extended Data Fig. 5 | Characterization of molecular niches. a, UMAP 
embedding of ST spots based on gene expression coloured by patients (left) 
and regions (right). b, Gene expression of RYR2, ABCC9, MYH11, PDGFRa, CD8A 
and IL7R. Colours refer to gene-weighted kernel density as estimated by using  
R package Nebulosa. c, Bar plots visualizing molecular niches proportion per 
patient. d, Standardized mean PROGENy pathway activities across different 
molecular niches. e, Visualization of molecular niches in control, IZ, and FZ 
samples. f, Comparison between patient groups of the proportions of molecular 
niches 5, 6, and 1 (adj. P-value from a two-sided Wilcoxon rank sum test). Each 
dot represents a patient sample (n for myogenic group = 13, n for ischaemic 
group = 9, n for fibrotic group = 5). g, Comparison between control (CTRL), 
border zone (BZ) and remote zone (RZ) of the proportions of molecular niches 
1, 2, 3, and 4 (adj. P-value, two-sided Wilcoxon rank sum test, Box-Whisker plots 
showing median and IQR. Maximum and minimum values as described 
previously). Each dot represents a patient sample (n for BZ = 3, n for CTRL = 4,  
n for RZ group = 4). h, Top five differentially upregulated genes between spots 
belonging to molecular niches enriched with cardiomyocytes. Summary area 

under the curve (AUC) is used as a size effect of comparing the expression of 
one molecular niche against the rest. * = reflect FDR < 0.05 and summary  
AUC > 0.55 (n for mol. niche 0 = 30,058, n for mol. niche 1 = 19,958, n for mol. 
niche 3 = 7,360). Spatial distribution of the expression of MYLK3 in a control 
slide (upper) and a border zone (lower)  i, Comparison between patient groups 
of the proportions of molecular niche 2 (adj. P-value, two-sided Wilcoxon rank 
sum test, Box-Whisker plots showing median and IQR. Maximum and minimum 
values as described previously). Each dot represents a patient sample  
(n for myogenic group = 13, n for ischaemic group = 9, n for fibrotic group = 5).  
j, Same as (i) for niche 3. In f, g, i, j data are represented as boxplots where the 
middle line is the median, the lower and upper hinges correspond to the first 
and third quartiles, the upper whisker extends from the hinge to the largest 
value no further than 1.5 × IQR from the hinge (where IQR is the inter-quartile 
range) and the lower whisker extends from the hinge to the smallest value at 
most 1.5 × IQR of the hinge, while data beyond the end of the whiskers are 
outlying points that are plotted individually.
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Extended Data Fig. 6 | Characterization of cardiomyocyte state clusters.  
a, UMAP embedding of the integrated snRNA-seq and snATAC-seq data 
coloured by patients, regions, modalities, and clusters (resolution= 1). b, Dot 
plot showing the top 10 upregulated genes for each CM-state. c, State-specific 
pseudo bulk ATAC-seq profiles showing distinct chromatin accessibility for 
NPPB between different states. d, In situ RNA hybridization of NPPB, ANKRD1 
and TNNT2 on human cardiac control tissue (upper panel). Note that only a 
single NPPB/ANKRD1 positive cardiomyocyte could be detected. (below) 
Representative image of the same in-situ staining of a human myocardial 
infarction sample. Note the NPPB and ANKRD1 expression in several 
cardiomyocytes (arrows). Scale bars: 25 µm (upper) + 50 µm (lower).  
e, Spearman correlation between the spatial expression of Ion-channel transport 
and transmural-ion channels related genes to the expression of the marker 
genes (state scores) of vCM1-3 (two-sided Wilcoxon rank sum test). Each dot 
represents a visium slide (n = 28). f, Differential gene expression of ion channel 
related genes in vCM1 contrasted to vCM3 cardiomyocytes (two-sided 
Wilcoxon rank sum test, area under the curve (AUC) is shown as size effect). 
Colours refer to the gene set membership of each gene. g, Visualization of 
vCM1 gene marker expression mapping (state scores) and the expression of 
RYR2 and ATP2B4 in a border zone sample. h, Comparison of vCM1 and vCM2 
cell proportion between patient groups. P-values were calculated using 

Wilcoxon Rank Sum test (unpaired, two-sided). Each dot represents a sample (n 
= 13 for myogenic group, n = 7 for ischaemic group, and n = 4 for fibrotic group). 
i, Distribution of vCM3 marker gene expression (state-score) across molecular 
niche 1, 2, and 4. Each dot represents a spatial transcriptomics spot belonging 
to a molecular niche across samples (n = 30,058 for niche 1, n = 19,958 for niche 
2, niche 4 = 7,360). Two-sided Wilcoxon rank sum test, adj. p-values (niche 1 vs 
niche 4 = 0, niche 2 vs niche 4 = 2e-09, niche 1 vs niche 2 = 0). j, Visualisation of 
the expression of ANKRD1 and NPPB, the spatial distribution of TGFβ, hypoxia, 
p53 and PI3K signaling activities, the spatial distribution of the expression of 
vCM-states marker genes (state score) for a border zone sample and the 
distribution of molecular niches 1,2, and 4. Box-Whisker plots showing median 
and IQR. Maximum and minimum values as described previously. In e, h, i data 
are represented as boxplots where the middle line is the median, the lower and 
upper hinges correspond to the first and third quartiles, the upper whisker 
extends from the hinge to the largest value no further than 1.5 × IQR from the 
hinge (where IQR is the inter-quartile range) and the lower whisker extends 
from the hinge to the smallest value at most 1.5 × IQR of the hinge, while data 
beyond the end of the whiskers are outlying points that are plotted individually. 
In a-c the number of spots of the bottom panels correspond to the barplots in 
the upper panel.
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Extended Data Fig. 7 | Cardiomyocyte pseudotime and gene-regulatory 
network analysis. a, Diffusion map embedding of pseudotime cardiomyocyte 
clusters vCM1, vCM2 and vCM3. b, Computational workflow for building gene 
regulatory network (upper) and schematic of linking TF to target genes 
through peak-to-gene links and predicted TF binding sites (lower). c, Heatmap 
showing TF binding activity and gene expression along the pseudotime 
trajectory. d, Heatmap of gene expression across pseudotime vCM1-vCM3.  
e, Heatmap showing the correlation between TF binding activity and gene 
expression along the pseudotime trajectory from vCM1 to vCM3. Colors on the 
top refer to pseudotime point where the TF showed the highest binding 
activity. Clustering analysis identified three modules. f, ANKRD1 and NPPB  
CM-stress marker gene expression along pseudotime vCM1-vCM3. g, Peak-to-
gene links showing that JDP2 regulates TGFB2. Each loop represents a putative 
link between TGFB2 and a peak. Loop height represents the significance of the 
correlation and dash line represents threshold of significance (P = 0.05).  
ATAC-seq tracks were generated from pseudo-bulk chromatin profiles of vCM1, 
vCM2, and vCM3. Binding sites of JDP2 are highlighted. h, Line plots showing  
TF activity and expression after z-score normalization (y-axis) over pseudotime 

(x-axis) for JDP2 (left), its corresponding target gene expression after z-score 
normalization (y-axis) over pseudotime (x-axis) for TGFB2 (middle), and 
visualization of all target genes in the BZ sample (right). i, Comparison of 
standardized importances of myeloid abundances within the spot and 
fibroblast abundances in the local neighbourhood (radius of 5 spots) to predict 
vCM3 between patient groups samples. Each dot represents a sample (n = 9 for 
myogenic group, n = 7 for ischaemic group, n = 4 for fibrotic group). (lower 
panel) Spatial distribution of the state score of vCM3 and myeloid cell 
abundances in a RZ slide with histological evidence of a scar. (Two-sided 
Wilcoxon rank sum test, Box-Whisker plots showing median and IQR. Maximum 
and minimum values as described previously.) Data are represented as 
boxplots where the middle line is the median, the lower and upper hinges 
correspond to the first and third quartiles, the upper whisker extends from the 
hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is 
the inter-quartile range) and the lower whisker extends from the hinge to the 
smallest value at most 1.5 × IQR of the hinge, while data beyond the end of the 
whiskers are outlying points that are plotted individually. In a-c the number of 
spots of the bottom panels correspond to the barplots in the upper panel.
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Extended Data Fig. 8 | Endothelial cell heterogeneity. a. UMAP embedding 
of integrated snRNA-seq and snATAC-seq data coloured by patients, regions, 
modalities and clusters (resolution= 0.9). b, Gene expression of NRG3, FLT4, 
SEMA3G and ACKR1. Colours refer to gene-weighted kernel density as 
estimated by using R package Nebulosa. c, Sub-cluster-specific pseudo bulk 
ATAC-seq tracks showing the chromatin accessibility of the genes from (b).  
d, Marker dot plot showing the DEGs for each endothelial cells state and subtype. 
e, Gene expression of SEM3G and POSTN. Colors refer to gene-weighted kernel 
density as estimated by using R package Nebulosa. Immunofluorescence of 
SEMA3G and ACTA2 (upper image). In situ mRNA (RNAscope) for POSTN and 
PECAM1 (magenta). Arrows highlight endocardial endothelial cells. Scale bars: 
75 µm (upper) and 10 µm (lower). f,  Endothelial cell state compositions across 
all patient samples. g, Comparison between patient groups of the venous 
endothelial cell proportion (two-sided Wilcoxon rank sum test). Each dot 
represents a patient sample (n for myogenic group = 13, n for ischaemic group = 9,  
n for fibrotic group = 5). h, Mean Pearson correlation between the abundance 
of major cell-types and endothelial cell-state scores across all spatial 
transcriptomics slides. i, Visualization of the spatial distribution of the 
abundances of pericytes and the state score of capillary endothelial cells 
sample. Arrows point at colocalization events. j, Visualization of the spatial 

distribution of molecular niches, the state score of capillary endothelial cells 
and the abundance of pericytes and cardiomyocytes. Arrows point at locations 
where molecular niche 10 is present together with high abundances of 
cardiomyocytes and pericytes. k, Endothelial cell state score distributions in 
all spots belonging to the molecular niche 10 across all slides (n = 1,874,  
P-value = 3.19e-298, obtained from a two sided Wilcoxon signed-rank test).   
l, Mean signalling pathway activities in the molecular niche 10 across different 
patient groups (adj. P-value of two-sided Wilcoxon Rank Sum test). Each dot 
represents a slide (n = 14 for myogenic group, n = 9 for ischaemic group, n = 5 for 
fibrotic group). m, Overrepresented hallmark pathways in the differentially 
upregulated genes of molecular niche 10 across different patient groups 
(hypergeometric tests, adj. P-values). In g, k, l data are represented as boxplots 
where the middle line is the median, the lower and upper hinges correspond to 
the first and third quartiles, the upper whisker extends from the hinge to the 
largest value no further than 1.5 × IQR from the hinge (where IQR is the inter-
quartile range) and the lower whisker extends from the hinge to the smallest 
value at most 1.5 × IQR of the hinge, while data beyond the end of the whiskers 
are outlying points that are plotted individually. In a–c the number of spots of 
the bottom panels correspond to the barplots in the upper panel.
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Extended Data Fig. 9 | Fibroblast heterogeneity and PDGFRb lineage 
tracing in murine MI. a. UMAP embedding of integrated snRNA-seq and 
snATAC-seq data coloured by patients, regions, modalities and clusters 
(resolution = 0.9). b, Marker dot plot showing the DEGs for each fibroblast 
state. c, Box plots showing module score of NABA-collagen and NABA-core-
matrisome score per fibroblast state. P-values were calculated using Wilcoxon 
rank sum (unpaired and two sided). d, Expression of COL1A1, ACTA2 and FN1 by 
RNA qPCR after RUNX1 overexpression with and without TGFβ compared to 
empty vector (EV) (n = 6). One-way ANOVA followed by Bonferroni correction. 
Error bars = S.D. e, In situ hybridization (RNAscope) on human myocardial 
tissue of SCARA5 and COL15a1 and quantification and comparison of 
SCARA5+/POSTN+ cells vs. POSTN+/COL1A1+ cells in human heart failure tissues 
(n = 7). Mann-Whitney test. Error bars = S.D. f,  Visualization of SCARA5, POSTN, 
COL1A1 and FN1 on spatial transcriptomics slides from IZ and FZ human MI 
samples. g, Cell-type state compositions across patient sample. h, Comparison 
of Fib3 cell proportion between patient groups. P-values were calculated using 
Wilcoxon Rank Sum test (unpaired, two-sided). Each dot represents a sample  
(n = 13 for myogenic group, n = 7 for ischaemic group, and n = 4 for fibrotic group). 
i, Time course of lineage tracing experiment using PDGFRβCreER-tdTomato 
mice. j, Results of echocardiographic measurements EF (in %), and global 
longitudinal strain (GLS, in %), for each of the time points. One-way-ANOVA. 

n=4 day 0, n=3 day 4, n=4 day 7, n=4 day 14. Error bars = S.D.  k, Quality 
measurements of single-cell RNA-Seq data from mouse MI experiment.  
l, UMAP representation of time points, cluster and gene expression (POSTN, 
SCARA5, COL1A1 and FN1) from mouse MI experiment. m, Confusion matrix 
comparing predicted fibroblasts states and obtained clusters for mouse 
dataset. n, UMAP representation of species cross-annotation of fibroblast 
clusters. o, Cell proportion of mouse fibroblast state Fib1 (SCARA5+) and Fib2 
(POSTN+) per MI time-point. p, Box plots showing NABA collagens scores and 
NABA core matrisome score per fibroblast state (mouse Fib1 vs. Fib1) per time 
point. P-values were calculated using Wilcoxon rank sum (unpaired and two 
sided) (Sham: n = 578 for Fib1 and n = 685 for Fib2; Day 4: n = 1688 for Fib1 and  
n = 2498 for Fib2; Day 7: n = 203 for Fib1 and n = 330 for Fib2; Day 14: n = 2232  
for Fib1 and n = 7684 for Fib2). q, Gene set enrichment analysis per human 
fibroblast-cell state. Scale bar: 10 µm. In c, d, h, k, p data are represented as 
boxplots where the middle line is the median, the lower and upper hinges 
correspond to the first and third quartiles, the upper whisker extends from the 
hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is 
the inter-quartile range) and the lower whisker extends from the hinge to the 
smallest value at most 1.5 × IQR of the hinge, while data beyond the end of the 
whiskers are outlying points that are plotted individually.
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Extended Data Fig. 10 | Gene regulatory network analysis of human cardiac 
fibroblasts. a, Pseudotime heatmap showing gene expression (left) and TF 
binding activity (right) along the trajectory Fib1 to Fib2 (myofibroblasts). b, 
Pseudotime heatmap showing highly variable genes along the trajectory. c, 
Heatmap showing the correlation between TF binding activity and gene 
expression each TF from (a) and gene from (b). Each column represents a TF 
and each row represents a TF. Colours on the top refer to pseudotime labels for 
each TF estimated based on binding activity. d, Upper: line plots showing TF 
activity and expression after z-score normalization (y-axis) over pseudotime 

(x-axis) for GLI2 and their corresponding target gene expression after z-score 
normalization (y-axis) over pseudotime (x-axis) for TGFB1. Lower: visualization 
of target gene expression of KLF4 and GLI2, and TGFB pathway activity in the 
BZ sample. e, Line plots showing TF activity and expression after z-score 
normalization (y-axis) over pseudotime (x-axis) for RUNX2 and its 
corresponding target gene expression after z-score normalization (y-axis) over 
pseudotime (x-axis) for COL1A1. Visualization of RUNX2 target genes in the BZ 
sample (right).
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Extended Data Fig. 11 | Myeloid cell heterogeneity and spatial mapping in 
human myocardial infarction. a, UMAP embedding of integrated snRNA-seq 
and snATAC-seq data coloured by patient contribution, region, modality and 
clusters (resolution= 1). b, Marker dot plot showing the DEGs for each fibroblast 
state. c, Gene expression of MRC1, ITGAX, FLT3 and CD163. Colors refer to gene-
weighted kernel density as estimated by using R package Nebulosa. d, Bar plots 
visualizing myeloid cell sub-population proportion per patient. e, Gene 
expression of MRC1, ITGAX, SPP1, CCL18, FLT3, ZBTB46 in an external dataset of 
ischaemic patients. Colors refer to gene-weighted kernel density as estimated 
by using R package Nebulosa. f, Comparison of myeloid cell proportion 
between patient groups. P-values were calculated using Wilcoxon Rank Sum 
test (unpaired, two-sided) (n = 13 for myogenic, n = 8 for ischaemic, and n = 5 for 
fibrotic group). g, In situ hybridization of CCR2, SPP1 and TREM2 on human 
myocardial infarction section IZ. Arrows point to phagocytotic vacuoles in the 
magnification. h, In situ hybridization of SPP1, POSTN and CD163 on human 

myocardial infarction section IZ. Note that SPP1+ macrophages colocalized in 
distinct tissue regions and appeared to have an enlarged cell-size. i, In situ 
hybridization quantification of cell type proportion per tissue section. n=7 
patient tissues. Adjusted P-values were calculated using Wilcoxon signed-rank 
test. j, Median standardized importances (>0) of the cell-state scores of 
myeloid cells within the spot in the prediction of other myeloid cell-state scores 
in spatial transcriptomics. k, Mean pearson correlation between myeloid cell’s 
state scores across all spatial transcriptomics slides. Data in f, i are represented 
as boxplots where the middle line is the median, the lower and upper hinges 
correspond to the first and third quartiles, the upper whisker extends from the 
hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is 
the inter-quartile range) and the lower whisker extends from the hinge to the 
smallest value at most 1.5 × IQR of the hinge, while data beyond the end of the 
whiskers are outlying points that are plotted individually.
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Extended Data Fig. 12 | Myeloid cell spatial modelling and cell-cell 
communication. a, Median standardized importances (>0) of the cell-state 
scores of myeloid cells (colocalization) in the prediction of fibroblast cell-state 
scores in spatial transcriptomics. b, Spatial mapping of cell-type niches in a 
control and an ischaemic sample. Arrows in the IZ sample show niche 4 and how 
it surrounds niche 5. c, Distribution of myofibroblasts and SPP1+ macrophages 
marker gene expression (state-score) across cell-type niche 4 and 5. Each dot 
represents a spatial transcriptomics spot belonging to a molecular niche 
across samples (n = 12,427 for niche 4, n = 4,375 for niche 5) (two-sided Wilcoxon 
rank sum test, adj P-value = 6.02e-133 for myofibroblast, adj P-value = 0 for 
SPP1+ monocytes). Data are represented as boxplots where the middle line is 
the median, the lower and upper hinges correspond to the first and third 
quartiles, the upper whisker extends from the hinge to the largest value no 
further than 1.5 × IQR from the hinge (where IQR is the inter-quartile range) and 

the lower whisker extends from the hinge to the smallest value at most 1.5 × IQR 
of the hinge, while data beyond the end of the whiskers are outlying points that 
are plotted individually. d, Cell-cell communication network representing 
number of ligand-receptor interactions (edge richness), expression of ligand-
receptor pairs (LR scores; colour gradients) and cell centrality (Pagerank; node 
size) as estimated in snRNA-seq of myogenic, ischaemic and fibrotic samples.  
e, Sankey plots summarizing the top 50 ligand-receptor interactions for selected 
source and target cells and contrast. These ligand-receptor pairs are selected 
by absolute value of the difference in LRscore, as provided by CellPhoneDB 
method implemented in Liana. f. Sankey plot summarizing top 50 TGFbeta 
ligand-receptor interactions from Fib2 to SPP1+ Mac. cells. g, In situ 
hybridization mRNA (RNAscope) staining of CD163 (myeloid), POSTN 
(myofibroblast) and SPP1 on human cardiac MI tissue (crop-out in Fig. 6n). 
Arrows indicate CD163+SPP1+ macrophages near myofibroblasts. Scale: 25 µm.
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