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Abstract

We introduce Giraffe, a pangenome short read mapper, which can efficiently map to a collection 

of haplotypes threaded through a sequence graph. Giraffe maps sequencing reads to thousands 

of human genomes at a comparable speed to standard methods mapping to a single reference 

genome. The increased mapping accuracy enables downstream improvements in genome-wide 

genotyping pipelines for both small variants and larger structural variants. We use Giraffe to 

genotype 167 thousand structural variants, discovered in long-read studies, in 5,202 diverse 

human genomes sequenced using short reads. We conclude that pangenomics facilitates a more 

comprehensive characterization of variation and, as a result, has the potential to improve many 

genomic analyses.
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Introduction

The field of genomics almost exclusively uses a single reference genome assembly as an 

archetype of a human genome. Reliance on comparing to the sequences within the reference 

assembly has created a pervasive bias toward the alleles it contains. This reference allele bias 

occurs because non-reference alleles are naturally harder to identify when mapping DNA 

sequencing data to the reference sequences. Reference allele bias is particularly acute for 

structural variations (SVs), which are complex alleles involving 50 or more nucleotides 

of divergent sequence. SVs affect millions of bases within each human genome. Due 

to reference allele bias, SVs are much more poorly characterized than single-nucleotide 

variants (SNVs) and short insertions and deletions (collectively termed indels) (1,2). 

Similarly, characterizing genetic variation in highly polymorphic and repetitive sequence 

has proven challenging (3).

Recent releases of the reference human genome assembly attempted to address these 

issues by adding additional sequences. These alternate sequences represent diversity in 

localized regions of the genome (4). However, to date these limited additions have not 

found widespread use. In contrast, pangenomes encode information about many complete 

genome assemblies and their homologies (the sequences that are shared between genomes 

by virtue of descending from a common ancestral sequence). Pangenomes are emerging as a 

replacement for linear reference assemblies to help mitigate these problems (5–7). They can 

particularly improve genotyping of structural variants (8).

Pangenomes are frequently formulated as sequence graphs (9): mathematical graphs that 

represent the homology relationships between multiple sequences. Several algorithms have 

been developed for mapping sequences to sequence graphs. None has yet made mapping the 

short sequencing reads from widely used DNA sequencers, such as those made by Illumina, 

to a structurally complex pangenome a practical option for large-scale applications. The 

original VG-MAP algorithm (10) maps to complex sequence graphs containing cycles 

produced by duplications and complex genomic rearrangements (10). However, VG-MAP 

is at least an order of magnitude slower than popular linear genome mappers that have 

comparable accuracy. Given that mapping is frequently a bottleneck in genome analysis, 

the cost of VG-MAP has proven prohibitive. Other pangenome mappers have different 

capabilities and limitations. Some are faster but limited to acyclic graphs containing 

variation at relatively low density (11), or can map to arbitrary sequence graphs but are 

designed for long reads (12). Other tools are not open source and thus unavailable for 

general testing and customization (13,14), and some additionally cannot run on commodity 

computing environments (14).

Results

Giraffe: Fast, Haplotype Aware Pangenome Mapping

When a sequence graph reference (5) (Fig. S1) is substituted for the traditional linear 

reference (Fig. 1A) it can reduce reference allele bias by including more alleles (10). 

However, it also expands the size of the alignment search space from a few linear 

chromosome strings to a combinatorially large number of paths in the graph. This has made 
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our previous graph mappers slower than linear mappers (10). Giraffe solves this problem by 

considering the paths that are observed in individuals’ genomes: the reference haplotypes. 

We use the two haplotypes (one from each parent) that each individual has in their genome, 

and trace them as paths through the sequence graph. The graph describes which positions in 

the haplotypes are equivalent, while the haplotypes describe the subset of the possible paths 

in the graph to consider. Giraffe uses a Graph Burrows Wheeler Transform (GBWT) index 

(15) to store and query a graph’s haplotypes efficiently.

Giraffe’s strategy of aligning to haplotype paths has two key benefits. First, it prioritizes 

alignments that are consistent with known sequences, avoiding combinations of alleles that 

are biologically unlikely. Second, it reduces the size of the problem by limiting the sequence 

space that the reads could be aligned to. This deals effectively with complex graph regions 

where most paths represent rare or nonexistent sequences.

We designed Giraffe to minimize the amount of gapped alignment that is performed. 

Computing gapped alignments, in which sequences are allowed to gain or lose bases 

relative to each other, is much more expensive than gapless alignment as it requires pairwise 

dynamic programming algorithms. Most Illumina sequencing errors are substitutions (16), 

and common true indels relative to the traditional linear reference should already be present 

in the haplotypes, therefore almost all reads will have a gapless alignment to some stored 

haplotype. Hence, we try to align each read without gaps before resorting to dynamic 

programming.

Giraffe follows the common seed-and-extend approach used by most existing mappers (see 

algorithm in (17)). In this framework, short seed matches between a sequencing read and 

a genomic reference are found with minimal work, and then only good seeds are extended 
into mappings of the entire read (18–20). A visual overview of Giraffe’s operation is given 

in (Fig. 1B–F). The Giraffe algorithm uses several heuristics for prioritizing alignments. 

These heuristics are configurable, and we present two presets: default Giraffe (written as just 

“Giraffe”) balances speed and accuracy, and fast Giraffe optimizes for speed at the expense 

of some accuracy.

Pangenome references for evaluation

To evaluate Giraffe we built two human genome reference graphs based on the GRCh38 

reference assembly. One (the 1000GP graph) contained mostly small (<50 base pairs (bp)) 

variants from the 1000 Genomes Project (21). The other (the HGSVC graph) contained 

entirely SVs (≥50 bp) from the Human Genome Structural Variant Consortium (22,17). 

The 1000GP graph contained data from 2,503 individuals, with one (NA19239) held out 

for benchmarking. It was built from 76,749,431 SNVs, 3,177,111 small indels (<50 bp), 

and 181 larger SVs (≥50 bp). The HGSVC graph contained data from three individuals 

sequenced with long reads: HG00514, HG00733, and NA19240. The HGSVC graph 

contained 78,106 larger SVs (≥50 bp). Both graphs are available for re-use (see Data and 

materials availability).
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Giraffe and VG-MAP map accurately to human pangenomes

We evaluated Giraffe for mapping human data by simulating paired-end reads for two 

individuals (17): NA19240, who has available genotypes for HGSVC variants (22), and 

NA19239, who has available genotypes for the 1000GP variants (21). Simulated read sets 

were mapped using Giraffe and competing tools (17). We examined the accuracy of single 

and paired-end mapping (Fig. 2). We looked at a variety of input read sets and evaluated 

the calibration of reported mapping quality, a standard measure of mapping uncertainty 

(Figs. S2, S3, S4, S5, S6, and S7 and Tables S1, S2, S3, S4, S5, and S6). Relative to other 

tools, at the highest reported mapping quality, VG-MAP and default Giraffe consistently 

have either higher precision or recall across all simulated read technologies and graphs. 

Their performance is generally similar. Relative to the linear mappers, the Giraffe and 

VG-MAP lead is larger for the HGSVC graph (Fig. 2C–D) than the 1000GP graph (Fig. 

2A–B). This suggests that the gains from using a genome graph are higher when the graph 

facilitates alignment of genomic sequences from the sample that differ greatly from the 

linear reference.

Haplotype sampling improves read mapping

Having rare variants or errors in the graph and haplotypes may reduce mapping accuracy 

by creating opportunities for false positive mappings (23). Mapping reads to regions with 

many distinct local haplotypes can also be slow. Additionally, Giraffe needs a mechanism 

to synthesize haplotypes for graph components where no haplotype variation is known. 

To overcome these issues, Giraffe includes mechanisms for creating synthetic haplotype 

paths. When real haplotypes are available, these synthetic haplotype paths represent local 

haplotype variation sampled according to haplotype frequency, and we call the result 

a sampled GBWT (17). When no haplotypes are available, we call the result a path 
cover GBWT. In this case, the synthetic haplotypes represent random walks through the 

graph. We evaluated the effects of running our mapping evaluations with sampled and 

path cover GBWTs (Fig. S8, Tables S7 and S8, (17)). The mapping benefit of sampling 

more haplotypes plateaued at 64 haplotypes for the 1000GP graph (which contains around 

five thousand haplotypes), with higher accuracy than is achieved by mapping to the full 

haplotype set. We used the HGSVC graph (which contains just six haplotypes) for an 

experiment on generating path covers without known haplotypes. Path covers alone did 

not outperform the full underlying haplotype set for the HGSVC graph, but came close to 

matching its performance. We selected the 64-haplotype sampled GBWT for the 1000GP 

graph and the full GBWT for the HGSVC graph as the best-performing GBWTs, which we 

use in the rest of the analysis.

Giraffe improves pangenome mapping speed

We measured the runtime (Fig. 3A–B) and memory usage (Fig. 3C–D) of Giraffe and 

competing tools when mapping real reads (17). Giraffe was more than an order of magnitude 

faster than VG-MAP in all conditions. It was also faster at aligning to human graphs than 

Bowtie2 or BWA-MEM were at aligning to the corresponding linear reference. For the 

1000GP graph using the 64-haplotype sampled GBWT for mapping instead of the full ~ 
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5,000-haplotype GBWT was much faster in every case. HISAT2 and fast Giraffe were both 

about equally fast and both faster than all other mappers.

Due to the in-memory indexes it uses, Giraffe’s memory consumption is higher than the 

other mappers, except for GraphAligner. However, it can map to the 1000GP graph with the 

full GBWT in ~ 80 gigabytes of memory—an amount readily available on compute cluster 

nodes (Fig. 3C–D).

Giraffe reduces allele mapping bias

We assessed Giraffe’s reference bias(17). We expected Giraffe to be able to use the extra 

variation information contained in the graph reference to achieve a lower level of bias than 

a linear mapper. For variants that were heterozygous in NA19239, we found the fraction 

of reads supporting alternate vs. reference alleles at each indel length (Fig. 4A). Giraffe 

and VG-MAP both show less bias towards the reference allele than a linear mapper and 

this difference becomes more pronounced as indel length increases, particularly for larger 

insertions.

Giraffe genotyping outperforms best practices

We used Illumina’s Dragen platform (14) to genotype SNV and short indels using Giraffe 

mappings to the 1000GP graph, projected onto the linear reference assembly. We compared 

these results to results using competing graph and linear reference mappers (17). No training 

or optimization was performed for any of the mappings other than those performed by 

default by Dragen itself. We evaluated the calls using the Genome In a Bottle (GIAB) v4.2.1 

HG002 high confidence variant calling benchmark (24).

Out of the examined pipelines, Giraffe mappings to the 1000GP graph produce the highest 

overall F1 score (harmonic mean of precision and recall) at 0.9953 (Figure 4B and Tables 

S9 and S10). Similar but uniformly higher results were found with higher coverage, 250bp 

reads (Tables S11, S12 and Figure S9). Although one would expect longer reads and higher 

coverage to produce better variant calls, all else being equal, Giraffe has a slightly higher 

F1 score with the 150bp read set (0.9953) than BWA-MEM with the higher coverage 250bp 

read set (0.9952). Restricting comparison only to confident regions that overlap variant calls 

from the 1000GP variants used in graph construction, Giraffe has the highest F1 score 

at 0.9995 relative to the other methods (Table S13 and Figure S10). Perhaps surprisingly, 

Giraffe maintains the highest F1 score (0.9528) when performing the converse analysis, 

restricting the comparison to confident regions that do not overlap 1000GP variant calls 

(Table S14 and Figure S11).

DeepVariant is a highly accurate genotyping tool that requires training (25). We trained 

DeepVariant to use Giraffe mappings and evaluated it on the held-out sample HG003 (17). 

We compared it to the Dragen pipelines tested and DeepVariant using BWA-MEM with 

the BWA-MEM trained model they provide. The Giraffe/DeepVariant pipeline (F1: 0.9965) 

outperforms all other tested pipelines (Tables S15, S16 and Figure S12).

Previously, when we used VG-MAP to map reads to SV pangenomes, we found it to 

perform better than other methods for SV genotyping (8). We replicated that evaluation on 
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the HGSVC and GIAB datasets (1,22) to confirm that the quality of the SV genotypes from 

Giraffe was competitive (17). We observe similar SV genotyping accuracy across SV types, 

genomic regions, and datasets (Fig. 4C). Of note, GraphTyper (26), which was published 

after our earlier benchmarking analysis (8), was also compared with vg as a variant caller, 

but showed lower genotyping performance across SV types, genomic regions, and datasets 

(Fig. S13).

Giraffe generalizes beyond human

We assessed Giraffe’s performance mapping to a yeast pangenome for five strains of the 

S. cerevisiae and S. paradoxus yeasts (17). This graph was substantially different from the 

human graphs. It proved challenging because it contains the cycles and duplications typical 

of graphs generated from genome-wide alignments of more divergent sequences. Using a 

graph decomposition technique (27), we find it contains 1,459,769 variant sites, 4 times the 

density of variation in the 1000GP graph. 90 of these sites are complex, meaning they are 

not directed, acyclic, and free of internal source and sink nodes.

Mapping accuracy results for reads from the held-out DBVPG6044 strain are displayed in 

Fig. 2 panels E (single end) and F (paired end). Speed results for mapping real reads are 

presented in Fig. S14. Neither HISAT2 nor GraphAligner could be map reads to the yeast 

graph; in the case of HISAT2, this was because it cannot map to graphs containing cycles. 

Giraffe is 28 times faster for paired end mapping than the only other tool that could map 

to this graph, VG-MAP, while achieving similar accuracy. Both graph mappers are much 

more accurate than the linear reference methods. Moreover, the gap between the graph 

methods and the linear reference is even larger on this graph than in the HGSVC graph (Fig. 

2C–D). This lends further support to the hypothesis that graph mapping methods have the 

most benefit when facilitating alignment of genomic sequences that differ greatly from the 

reference, such as the sibling-subspecies-scale differences represented in the yeast graph.

Genotyping 5,202 samples’ structural variants

Building on our previous work to genotype SVs (8), we demonstrate the value of Giraffe 

by performing population-scale genotyping of an expanded compendium of SVs in large 

cohorts of samples sequenced with short reads. We built a comprehensive pangenome 

containing SVs combining variants from three catalogs of SVs discovered using long read 

sequencing (1, 22, 28). The combined catalog represents 16 samples from diverse human 

populations and is estimated to cover the majority of common insertions and deletions 

in the human population (28). Near-duplicate versions of variants (i.e. SVs with slightly 

different breakpoints) are often present within and across SV catalogs. A naïve integration 

of all these variants can lead to redundancy in the graph that can impact read mapping 

and variant genotyping. We remapped sequencing data and integrated variants iteratively 

into the graph to progressively build a non-redundant, compact SV graph (17). The final 

SV graph was constructed from 123,785 SVs from the original catalogs: 53,663 deletions 

and 70,122 insertions. Overall, the graph contained 26.2 Mbp of non-reference sequences in 

the form of insertions. Using a graph decomposition (27), we identified 228,405 subgraphs 

representing variant sites. Some of these correspond to smaller variants nested inside larger 

ones. Combining these cases, there were 96,644 non-nested, non-overlapping SV subgraphs.
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Compared to Hickey et al. (8), we used a graph containing more SVs and a more recent 

version of the VG toolkit (see Data and materials availability), including the Giraffe mapper 

presented here. Our SV genotypes were as accurate as in (8) if not more so (Fig. S15A–

C). Thanks to Giraffe and improvements in the variant calling approach, the genotyping 

workflow used about 12 times less compute on a sample sequenced at about 20x coverage.

SV genotyping was run using the NHLBI BioData Catalyst ecosystem (29) (Fig. S15D). 

We genotyped samples from the Multi-Ethnic Study of Atherosclerosis (MESA) cohort 

within the Trans-Omics for Precision Medicine (TOPMed) program. The MESA cohort is 

a longitudinal cohort study consisting of 6,814 participants at baseline (between the years 

2000 and 2002). Participants were ascertained from 6 sites in the USA, and identified 

themselves as “Spanish/Hispanic/Latino” (22% at baseline), and/or “African American or 

Black” (28%), “Chinese” (12%), and “Caucasian or White” (39%) (30). Two thousand 

samples from the MESA cohort (30) were selected, using a criterion to maximize the sample 

diversity (17). Using the graph described above and fast Giraffe, it took around 4 days to 

genotype 2,000 samples from the MESA cohort. We used the same workflow to genotype 

the 3,202 diverse samples from the high-coverage 1000GP dataset (31) in around 6 days. 

On average, genotyping a sample took 194.4 CPU-hours of compute and cost between $1.11 

and $1.56 (Fig. S15D, Table S17 and Table S18). The sequencing data were down-sampled 

in advance to ~20x coverage to reduce compute costs. Benchmarking indicates that this 

down sampling has a minimal impact on the genotyping accuracy (Fig. S16).

Diverse, clustered structural variants

Our SV graph construction approach preserves multiple alleles cataloged at a given SV 

site, and decomposes them into a parsimonious joint representation. In general, these SV 

representations require more alleles per site than is common for small variants. For example, 

there may be SNVs and indels within the sequence of an insertion or around a deletion’s 

breakpoints, or copy-number changes in Variable Number Tandem Repeat (VNTR) regions. 

The existence of these potentially recombining sub-variants implies the possibility of novel 

alleles.

We genotyped a total of about 1.7 million alleles clustered in 167,858 SV sites across the 

2,000 MESA samples. In most SV sites, we only observed one or a few alleles (~90% of SV 

sites with 5 or fewer alleles, Fig. 5A). Additionally, most of the SV sites (~151 thousand, 

90%) contained SV alleles that differed by only small variants (17), while the rest of the 

sites showed size variation from polymorphic VNTR regions (Fig. S17A). Examples of SV 

sites that illustrate these different profiles are given in Fig. 5B–C and Fig. S18. Fig.5D–E 

shows the size and frequency distributions of the most common allele at each site. SVs 

spanned the size spectrum (50 bp up to 125 kbp), with 89.8% shorter than 500 bp. For 

84% of the SVs, simple repeats or low-complexity regions overlapped at least 50% of the 

SV region. Hence, the SVs genotyped in this study match the original SVs discovered in 

long-read sequencing studies (1,22,28) in terms of number, size distribution, and sequence 

context.

We observed similar patterns in the 1000 Genomes Project dataset. We identified 1.9 million 

alleles clustered in 167,188 SV sites, with a size and frequency distribution similar to that 
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of the MESA cohort (Fig. S19). The 1000 Genomes Project dataset also provided 602 

trios that we used to estimate the quality of our genotypes. First, we computed the rate of 

Mendelian error which was 5.2% for deletions and 4.7% for insertions when considering 

all variants. This error decreased as the confidence in the genotype increased. For example, 

the Mendelian error dropped to 2.1% and 2.5% for the ~70% of deletions and insertions, 

respectively, with the highest genotype qualities (Fig. S20A). The most common error by 

far occurred when a heterozygous variant was predicted in the offspring but both parents 

were predicted homozygous for the reference allele (Table S19). The transmission rate of 

heterozygous alleles was close to the expected 50%: 40-47% for deletions and 43-49% for 

insertions (Fig. S20B).

Comprehensive structural variant frequency estimates

The genotyped SVs were originally discovered with long read sequencing technology, 

and many are absent from the population scale SV catalogs that could provide frequency 

information. 93% of the SV sites genotyped using our pangenome approach are missing 

from the 1000 Genomes Project SV catalog (32), and 67% were missing from the gnomAD-

SV catalog (33) (Table S20). This is consistent with the amount of novel structural variation 

described in the three studies from which our SV graph is derived (1,22,28). Our results 

provide frequency estimates across a large and diverse cohort for these SVs.

The frequency distribution resembled the allele frequency distributions in the 1000 Genomes 

Project SV catalog and gnomAD-SV (Fig. S21A). The frequencies of the subset of variants 

present in both our catalog and the mentioned public catalogs were largely concordant 

(Fig. S21B–C). Our frequency distribution looks rather different than that of SVPOP (28). 

However, we note that SVPOP’s frequency distribution is markedly different than the 1000 

Genomes Project and gnomAD-SV (Fig. S21A), and has very different frequency estimates 

on matched variants (Fig. S21D–F).

Fine-tuning structural variants with frequencies

SVs in the input catalogs may contain errors. When multiple alleles co-occur at an SV site, 

we often observed that one allele was frequently present in the cohort while other similar 

alleles were not (Fig. 5B–C). The other alleles at these sites are either rare or erroneous. In 

either case, it is useful to identify the major alleles. In 7,520 SV sites, only one allele was 

called in more than 1% of the population while other alleles from the original catalogs were 

not. Further, the major allele was at least three times more frequent than the second most 

frequent allele in 6,175 of these sites (Fig. S17B). As a quality control, we verified that these 

alleles were more likely to match exactly with the alleles in the GIAB truth set (1), which is 

the SV catalog with the highest base-level confidence (permutation p-value < 0.0001, (17)). 

Our results thus help fine-tune the sequence resolution of these SVs. More generally, our 

results identify one major allele for 39,699 multi-allelic SV sites.

Structural variant frequency population signatures

Principal component analysis (PCA) of the allele counts at the 166,959 SV sites in the 

MESA cohort produces a low-dimensional embedding of the samples. This embedding 

appears similar to the TOPMed consortium’s PCA of SNV genotype data from all samples 
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(Pearson correlation: 0.96-0.99 for the top three components, Fig. S22). This result is 

expected and provides confirmatory support for the accuracy of our SV genotypes.

We clustered samples with PCA, taking each cluster to be a population (17). Allele 

frequencies vary across these populations for thousands of SV sites (Fig. S23A–C). For 

example, we found 21,069 SV sites with strong inter-cluster frequency patterns, defined by a 

frequency in any population differing by more than 10% from the median frequency across 

all populations (Fig. S23D). The existence of structural variants with different frequencies 

across populations supports the need to develop and test genomic tools and references across 

multiple populations.

Since there is a risk of circularity when using the same genotype data to define populations 

and look for patterns across them, we replicated these observations in the high-coverage 

1000 Genomes Project dataset (31). Here again, the PCA of the allele counts organized the 

samples in a way consistent with the known history of the 1000 Genomes Project “super 

population” groups (Fig. S24). In this analysis, we found 25,960 SV sites with strong 

inter-super-population frequency patterns, defined as for the MESA analysis, but with the 

1000 Genomes super populations as the sample categories (Fig. S25). As a comparison, 

when the samples were randomly grouped into super populations, we observed only 14 

SV sites with strong inter-group frequency patterns (17). More than 17 thousand SV sites 

with strong inter-superpopulation frequency patterns were enriched or depleted in the AFR 

super population, followed by about 10 thousand sites enriched or depleted in the EAS super 

population.

As an example of a newly annotated variant, a deletion of the RAMACL gene was 

genotyped with frequency 46.6% in the AFR super population, 4% in AMR, and less than 

1% in other super populations. This deletion is not present in the 1000 Genomes Project SV 

catalog and was unresolved in version 2 of the gnomAD-SV catalog. It has been curated 

in gnomAD-SV v2.1 and shows similar population patterns there to what we found in our 

reanalysis of the 1000 Genomes Project dataset. Such variants could be falsely identified as 

putatively pathogenic if analyzed only in European-ancestry population where the frequency 

is low.

In addition, our approach is often capable of genotyping repeat-rich variants, such as short 

tandem repeats (STRs) that vary in length. For example, a 1 kbp expansion of an exonic 

variable-number tandem repeat (VNTR) in MUC6 with a frequency of 14% in the AFR 

super population was observed only rarely outside of it: 2.3% in AMR and <1% in other 

super populations (Fig. 6A). This repeat expansion is absent from gnomAD-SV and the SV 

catalog from the 1000 Genomes Project, despite its observed frequency.

Structural variants, genes, and expression

1,563 and 1,603 SVs overlapped coding regions of 408 and 380 protein-coding genes in the 

MESA and 1000 Genomes Project datasets respectively. When including promoters, introns 

and untranslated regions each dataset had overlaps between at least 78,290 SVs and 7,641 

protein-coding genes. 10,640 of these SVs show strong inter-super-population frequency 

patterns in the 1000 Genomes Project dataset (see Fig. 6A).
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We searched for associations between SVs and gene expression across 445 samples from 

the 1000 Genomes Project that have been RNA sequenced by the GEUVADIS consortium 

(34). These samples span four European-ancestry populations (CEU, FIN, GBR, and TSI), 

and the Yoruba in Ibadan, Nigeria (YRI) population (34). A pooled analysis identified 2,761 

expression Quantitative Trait Loci (eQTLs) across 1,270 genes (false discovery rate of 1%, 

(17)). 878 of those genes are protein-coding genes. We note that 58% of the SV-eQTLs are 

located within simple repeats or low-complexity regions. The distribution of the p-values 

across all tests showed the expected patterns for genome-wide association studies (Fig. S26).

Genes with eQTLs, or eGenes, were enriched in gene families involved in immunity, as 

previously observed (35), but we also found significant enrichments in other families (Table 

S21). For example, 3 of the 10 genes in the anoctamins family have SV-eQTLs (adjusted p-

value: 0.0006). This gene family is involved in the regulation of multiple processes including 

neuronal cell excitability, and mutations in some of its members have been linked to 

neurologic disorders (36). Other families enriched included the SMN complex family (3 out 

of 10 genes with SV-eQTLs, adjusted p-value: 0.0012) and aldehyde dehydrogenases genes 

(3 out of 19 genes with an SV-eQTLs, adjusted p-value: 0.008). As expected, SV-eQTLs 

were strongly enriched in coding, intronic, promoter, untranslated and regulatory regions 

(Fig. S27). Interestingly, SVs associated with decreased gene expression drove most of the 

enrichment in coding regions. Separate analysis of the four European-ancestry populations 

together, and the YRI population alone, identified, respectively, 44 and 139 SVs where an 

association with the expression of protein-coding genes was detected only in the smaller 

analysis (17). As expected, a number of these population-specific SV-eQTLs had shown 

strong inter-super-population frequency patterns (see above).

Finally, we performed a joint analysis with available SNVs and indels calls. Like previous 

studies (37,38), we found that the lead eQTLs (the strongest association for a gene) are 

enriched in SVs (permutation p-value: 0.022). For example, only 0.5% of the variants 

tested were SVs but SVs were the lead eQTL in 5.9% of the genes which had both SV 

and SNV/indel eQTLs. We didn’t observe a difference in relative effect size of SV-eQTLs 

compared to SNV/indel eQTLs, but we noticed that SV-eQTLs were 4-fold enriched in the 

genes with the highest expression (permutation p-value: 0.004; Fig. S28). Figs. 6B,C and 

Fig. S29 show two examples where the SV-eQTL is the strongest association: a 10,083 

bp insertion associated with an increased expression of the PRR18 gene, and a 5,405 bp 

deletion associated with a reduced expression of the SLC44A5 gene. In addition, 39 genes 

had SV-eQTLs but no SNV/indel eQTLs (Table S21). These results show that the SV 

genotypes produced here can be used to test for phenotypic association.

Discussion

Pangenome references hold great potential as a replacement for standard linear reference 

genomes. They can represent diverse collections of human genomes, and they have been 

shown to reduce the bias that arises from using a linear reference (10). However, due to the 

significant complexity of the task, previous methods for mapping to pangenomes have been 

slow or not clearly better than comparable methods for linear genomes. In contrast, Giraffe 

can map to pangenome graphs consisting of thousands of aligned haplotypes, potentially 
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with complex topologies, with accuracy comparable to the best previously published tools 

and speed surpassing linear reference mappers. Further, we have demonstrated that its 

mappings can improve genotyping.

Pangenome exchange formats have been co-evolving alongside pangenome methods. Giraffe 

is designed to meet and solidify these emerging standards while also interfacing with the 

broader genomics ecosystem. The GFA format for representing pangenome graphs has 

increasing tool support, including by vg (12,39–43). In addition, Giraffe can output the 

GAF read-to-pangenome-graph alignment format proposed by Li, et al. (39) and supported 

by other pangenome mappers (12). Giraffe also supports backwards compatibility to linear 

references by allowing mappings to be projected onto an embedded linear reference genome 

and output in standard formats. The state-of-the-art SNP and short indel genotyping results 

described in this study demonstrate the value of this support. These necessary technical 

advances are starting to nucleate an interoperable tool ecosystem for pangenomics.

For SVs, and particularly large insertions, we and others have shown that the benefits 

of pangenomes for genotyping are not merely incremental but transformative (8,39,44). 

Our approach allowed us to identify duplicate SVs, to refine the canonical definitions 

of SVs, and to establish the frequencies of these SVs in diverse human populations. 

Complementing previous surveys of SVs in diverse human populations (38, 45, 46), we 

demonstrate that many of the novel SVs studied here are also differentially distributed across 

human populations. This frequency information could be used, among other applications, 

for prioritizing variants to investigate for genomic medicine: variants common anywhere are 

unlikely to be pathogenic.

We expect accurate and unbiased SV genotyping to be one of pangenomics’ most impactful 

contributions. Among other applications, it will enable identifying more links from SVs 

to disease traits and other phenotypes. For example, we were able to detect thousands of 

associations between SVs and gene expression. Ebert et al. (38) recently performed a similar 

analysis using the same RNA-seq dataset from Geuvadis (complemented with 34 new deep 

RNA-sequencing experiments) and genotypes for SVs discovered in 32 haplotype-resolved 

genomes. Although we did not use this new sequencing data and SV catalog, we found a 

similar number of SV-eQTLs with our pangenomic approach (2,761 SV-eQTLs and 1,270 

eGenes in this study; 2,109 SV-eQTLs and 1,526 eGenes in Ebert et al. (38)).

Soon, pangenomes will be built from larger collections of high-quality de novo assembled 

genomes using accurate long reads. We hope such human pangenomes will enable more 

comprehensive genotyping of common complex variants (including SVs) from existing 

catalogs of short-read sequencing data, allowing for the typing of such variants at the scale 

of existing catalogs of point variation. We expect that unlocking this latent information 

will ultimately aid with disease association studies and help us further understand how the 

architecture of the genome contributes to an individual’s phenotype.
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Summary Methods

Evaluation

Read simulation: To evaluate Giraffe for mapping human data, we obtained paired-end 

sequencing reads from a parent-child pedigree. Reads were obtained from an Illumina 

NovaSeq 6000 machine for parent NA19239 (accession ERR3239454) and from Illumina 

HiSeq 2500 and HiSeq X Ten machines for child NA19240 (accessions ERR309934 and 

SRR6691663, respectively). These samples were selected because NA19240 has genotypes 

for HGSVC variants (22), while NA19239 has genotypes for the 1000GP variants (21). 

NA19239 was excluded from the 1000GP graph (17). We simulated 1 million read pairs (2 

million reads) from each individual’s haplotypes (17).

Read mapping accuracy: Simulated read sets were mapped to the graphs using Giraffe, 

VG-MAP (10), HISAT2 (11), and GraphAligner (12). We were unable to build a HISAT2 

index for the full 1000GP graph, and so instead we mapped it to a subset of the 1000GP 

data using a graph provided by the tool’s authors that contains approximately a third of 

the variants. In addition, we mapped the read sets to the primary graphs using Giraffe, 

and to the linear reference assemblies using the linear sequence mappers BWAMEM (19), 

Bowtie2 (18), and Minimap2 (20). Mapping accuracy was evaluated by comparing the 

positions along embedded, shared linear paths at which reads fell after mapping to similarly 

determined positions for their original simulated alignments.

Read mapping speed: We compared mapping runtime, speed, and memory usage on an 

AWS EC2 i3.8xlarge node with 32 vCPUs and 244 GB of memory. To estimate real-world 

runtime and memory usage, we aligned a shuffled read set of 600 million NovaSeq 6000 

reads from NA19239. We mapped reads to the 1000GP graph, the HGSVC graph, and the 

GRCh38 linear reference for comparison, and measured runtime and memory usage. For 

each tool we also separately measured reads mapped per thread per second, ignoring the 

start-up time of the mapper (Fig. S30). This measure gives an estimate of speed that is 

invariant to read set size or core/thread count, except for the effects of long-running work 

batches and thread synchronization overhead (17).

Read mapping bias: To assess reference allele mapping bias, we mapped 600 million 

real paired-end NovaSeq 6000 reads for NA19239 to the 1000GP graph using default Giraffe 

and VG-MAP. For comparison, we mapped the same reads to GRCh38 with BWA-MEM.

Genotyping accuracy: We compared the performance of Giraffe, VG-MAP, Illumina’s 

Dragen platform, and BWA-MEM for genotyping SNVs and short indels. The design of 

each calling pipeline is described in S4 in the supplement (17) and the parameters and 

indexes for each experiment is described in Table S22. The variants produced by each 

pipeline were compared against the Genome In a Bottle (GIAB) v4.2.1 HG002 high 

confidence variant calling benchmark (24) using the RealTimeGenomics vcfeval tool (47) 

and Illumina’s hap.py tool (48). This benchmark set covers 92.2% of the GRCh38 sequence.
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We also evaluated a DeepVariant (25) pipeline that uses Giraffe mappings (17). Using the 

default DeepVariant 1.1.0 trained model, we tested genotyping the HG003 sample across the 

entire genome. This sample was not used in training the model.

Generalization to yeast: To evaluate Giraffe’s performance on more diverged, non-

human data, we used a yeast graph built from a Cactus multiple sequence alignment for 

five strains of the S. cerevisiae and S. paradoxus yeasts (8). For the corresponding negative 

control primary graph, we used the S.c. S288C assembly. We collected basic statistics about 

the yeast graph, and decomposed the graph for analysis using the method of (27). We 

simulated 500,000 read pairs from a held-out yeast strain, DBVPG6044, not included in the 

yeast graph, using an error and length model for Illumina HiSeq 2500 reads (17).

Structural variant genotyping

We built an SV pangenome from the HGSVC (22), GIAB (1), and SVPOP (28) sequence-

resolved catalogs. After filtering erroneous duplicates using a re-mapping approach, the 

SVs were iteratively inserted in the genome graph to minimize the effect of errors and 

redundancy in the catalog. The SVs were then genotyped across 5,202 genomes by aligning 

short-read sequencing data using Giraffe with a Workflow Description Language (WDL) 

workflow that we deposited in Dockstore (49). 2,000 samples were selected from the 

Multi-Ethnic Study of Atherosclerosis (MESA) cohort to maximize sample diversity. The 

remaining 3,202 samples are from the 1000 Genomes Project and include 2,504 unrelated 

individuals. The trios available in this latter dataset were used to compute the rate of 

Mendelian concordance in the genotypes.

The different SV alleles observed in the population were clustered into SV sites based on 

their reciprocal overlap (for deletions) and sequence similarity (for insertions). We used the 

frequency profile across alleles within an SV site to identify the major allele and to fine-tune 

variants with near-duplicates in the combined catalog that may have been due to errors. 

Each variant was then annotated with its presence in existing SV databases (28,32,33), its 

repeat content, and its location relative to gene annotations. We also compared the frequency 

distributions across the SV databases and how well the frequency estimates matched for 

variants shared across databases.

Principal component analysis was performed on the SV genotypes and principal components 

were compared with those produced from SNV/indel genotypes. We defined strong inter-

cluster or inter-super-population frequency patterns by a frequency in any cluster or super 

population differing by more than 10% from the median frequency across all of them. 

For the 2,000 MESA samples, the clusters were defined using hierarchical clustering on 

the first three principal components. For the 1000 Genomes Project, we used their “super 

population” assignments. Permutations were used to contrast the number of SVs with such 

patterns with an expected baseline.

Finally, we examined the SV genotypes in a subset of the samples that had gene expression 

data available from the Geuvadis consortium (34). MatrixEQTL (50) identified SV-eQTLs 

while controlling for sex and population structures, as summarized by the first four principal 

components. Separate analyses of the four European-ancestry populations together, and the 
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YRI population alone were performed similarly. In addition, we performed a joint eQTL 

analysis with publicly available SNVs and indels (31). We used permutation to compute 

enrichment of SV-eQTLs in gene regions, gene families, or among lead-eQTLs (those with 

the strongest association for a gene).
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Refer to Web version on PubMed Central for supplementary material.
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Data and materials availability

An overview of the data generated for this paper, and key input 

data to reproduce the analyses, is available at https://cglgenomics.ucsc.edu/

giraffe-data/. The dataset is available via IPFS at https://ipfs.io/ipfs/

QmVo4Q5hCKqUGJJZyYLGJTaiHZdK9JWhJtGJbKa9ojrSjh.

Archived copies of the code and final re-usable work products have been deposited in 

Zenodo as DOI 10.5281/zenodo.4721495, referenced here as (51). This archive also includes 

vg, toil-vg, and toil source code and Docker containers used in this work, as well as 

the giraffe-sv-paper orchestration scripts. “Final” versions of vg and toil-vg, including all 

features needed to reproduce this work, are 9907ab2 for vg and 99101f2 for toil-vg.
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The latest version of the vg toolkit, including the Giraffe mapper, is customarily distributed 

at https://github.com/vgteam/vg. The scripts used for the analysis presented in this study 

were developed at https://github.com/vgteam/giraffe-sv-paper, a git bundle of which is 

archived in Zenodo (51).

Data used in the Giraffe read mapping experiments, including the 1000GP, HGSVC, and 

yeast target graphs, the linear control graphs, the graphs used to simulate reads, and the 

simulated reads themselves, can be found at https://cgl.gi.ucsc.edu/data/giraffe/mapping/.

The SV pangenomes and SV catalogs annotated with allele frequencies are hosted at https://

cgl.gi.ucsc.edu/data/giraffe/calling/ and archived in (51). This repository also includes SVs 

with strong inter-super-population frequency patterns, SV-eQTLs, and SVs overlapping 

protein-coding genes.

To build the 1000GP and HGSVC graphs, we used the GRCh38 no-alt analysis 

set (accession GCA_000001405.15), and the hs38d1 decoy sequences (accession 

GCA_000786075.2), both available from NCBI, in addition to the variant call files 

distributed by the respective projects.

To train read simulation and evaluate speed, we used human read sets ERR3239454, 

ERR309934 and SRR6691663, and yeast read sets SRR4074256, SRR4074257, 

SRR4074394, SRR4074384, SRR4074413, SRR4074358, and SRR4074383, all available 

from SRA.

The public high-coverage sequencing dataset from the 1000 Genomes Project (31) 

is available at https://www.internationalgenome.org/data-portal/data-collection/30x-grch38, 

including ENA projects PRJEB31736 and PRJEB36890. The gene expression data was 

download from ArrayExpress E-GEUV-1

(GD462.GeneQuantRPKM.50FN.samplename.resk10.txt.gz). We downloaded the call sets 

from the ENCODE portal (52) (https://www.encodeproject.org/) with the following 

identifiers: ENCFF590IMH.

Individual whole-genome sequence data for TOPMed whole genomes are available through 

dbGaP. The dbGaP accession numbers for the Multi-Ethnic Study of Atherosclerosis 

(MESA) is phs001416. Data in dbGaP can be downloaded by controlled access with an 

approved application submitted through their website: https://www.ncbi.nlm.nih.gov/gap.
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Figure 1. 
Haplotype mapping. (A) A region of the CASP12 gene in the 1000GP graph (17), 

illustrating complex local variation. The observed haplotypes (the colored ribbons of width 

log-proportional to population frequency) represent only a subset of the possible paths 

through the graph. (B-F) An overview of Giraffe. (B) Input structures: Giraffe takes as input 

each read to map, the sequence graph reference to map against, and the GBWT of known 

haplotypes to restrict to. The input read is represented as a series of colored rectangles. The 

haplotype sequences in the GBWT are similarly represented as series of rectangles, split 
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according to the nodes they correspond to in the sequence graph. Nodes in the sequence 

graph and haplotypes in the GBWT are colored according to homology with the read. (C) 

Haplotype minimizer seeding: Seeds are identified using an index of minimizers (subsets 

of sequences of specified length k) (53) over the sequences of all the GBWT haplotypes. 

A matching minimizer between the read and the GBWT haplotypes constitutes a seed. 

The minimizers (black boxes) in the read are enumerated and the matching minimizers in 

the haplotypes are identified using the minimizer index. (D) Seed clustering: Minimizer 

instances in the graph are clustered by the minimum graph distance (t, measured in 

nucleotides) between them (54). (E) Seed extension along haplotypes: Minimizers in 

high scoring clusters are extended linearly to form maximal gapless local alignments. (F) 

Haplotype-restricted gapped alignment: Giraffe is designed on the assumption that, for most 

reads, it will be possible to gaplessly extend seed alignments all the way to the ends of the 

read, allowing the algorithm to stop at the previous step. However, any remaining gaps in the 

alignment between read and graph are resolved by gapped alignment in this final step.
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Figure 2. 
Simulated read mapping. Each panel shows recall vs. FDR (false discovery rate, or 1 

minus precision) for a simulated read mapping experiment, comparing Giraffe to linear 

genome mappers (BWA-MEM, Bowtie2, Minimap2) and other genome graph mappers 

(VG-MAP, GraphAligner, HISAT2). Reads were simulated to match ~ 150 bp Illumina 

NovaSeq (for human) or HiSeq 2500 (for yeast) reads, either as single-ended reads (A-C) 

or as paired-end reads (D-F) (17). Results for each mapper are shown stratified by reported 

read mapping quality; the size of each point represents the log-scaled number of reads with 

the corresponding mapping quality. Three different mapping scenarios are assessed: (A,D) 

Comparing mapping to a graph derived from the 1000GP data to mapping to the linear 

reference genome assembly upon which it is based (GRCh38). (B,E) Comparing mapping 

to a graph containing larger structural variants from the HGSVC project to mapping to 

the GRCh38 assembly upon which it is based. (C,F) Comparing mapping to a multiple 

sequence alignment based yeast graph to mapping to the single S.c. S288C linear reference, 

for reads from the DBVPG6044 strain. For mapping with Giraffe, we used the full GBWT 

containing 6 haplotypes to map to the HGSVC graph and the 64-haplotype sampled GBWT 
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to map to the 1000GP graph. “Giraffe primary” represents mapping with Giraffe to the linear 

reference.
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Figure 3. 
Runtime and memory usage. Total runtime (A,B) and peak memory use (C,D) for mapping 

~600 million NovaSeq 6000 reads using 16 threads. Reads were mapped (A,C) to the 

1000GP derived graph or (for linear mappers) the GRCH38 assembly, and (B, D) to the 

HGSVC graph or GRCh38 reference, respectively. HISAT2*: results are shown for the 

subset 1000GP graph (22). Giraffe full refers to mapping using the full GBWT of all 

haplotypes. Giraffe sampled refers to mapping using the 64-haplotype sampled GBWT.
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Figure 4. 
Evaluating Giraffe for genotyping. (A) The fraction of alternate alleles in reads detected for 

heterozygous variants in NA19239. Reads were mapped to the 1000GP graph with Giraffe 

and VG-MAP and to GRCh38 with BWA-MEM, and the fraction of reads supporting 

reference or alternate alleles was found for each indel length. (B) Assessing true positive and 

false positive genotypes made using the Dragen genotyper with mappings from Giraffe 

and other mappers. The line labeled Dragen represents the mapper included with the 

Dragen system itself. (C) Comparing Giraffe to VG-MAP for typing large insertions 

and deletions. “Presence” (lighter bars) evaluates the detection of SVs without regard to 

genotype; “genotype” (darker bars) requires the SV to be detected and its genotype to agree 

with the truth genotype. The y-axis shows the F1 score. For the HGSVC benchmark, we 

define high-confidence regions as regions not overlapping simple-repeats and segmental 

duplications. For the Genome in a Bottle consortium (GIAB) benchmark, we use the set 

high-confidence regions provided by GIAB.
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Figure 5. 
Structural variants in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. (A) 

Cumulative proportion of SV sites depending on the maximum number of alleles (x-axis) in 

the site. (B-C) illustrates an insertion site with 5 alleles. The alleles differ by 3 nested indels 

as shown by the multiple sequence alignment of the inserted sequences represented in (B). 

Only one allele is frequent in the population (AF=0.27) as highlighted by (C). (D) Allele 

frequency distribution of the major allele for each SV site. The y-axis, showing the number 

of SVs, is log-scaled. (E) Size distribution of the major allele for each SV site.
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Figure 6. 
Population-specific structural variant and SV-eQTL in the 1000 Genomes Project dataset. 

(A) Example of an insertion at appreciable frequency (~ 14%) in the AFR super population 

while rare (< 3%) in the other super populations. The variant is a 1,011 bp expansion of 

a VNTR in the coding sequence of the MUC6 gene. (B-C) Association between a 10,083 

bp insertion overlapping a predicted enhancer and the gene expression of the PRR18 gene. 

(B) Each allele is associated with an increase in gene expression. (C) shows the position 

of significant eQTLs (SNV/indels in green, insertions in blue). All the eQTLs are in the 

intergenic region downstream of the PRR18 gene. The y-axis represents the significance of 

the association, with the top eQTL being the highest point. Of note, the lead eQTL (the 

10,083 bp insertion) overlaps a region predicted to be an enhancer by ENCODE.
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