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Cortical feedback loops bind distributed 
representations of working memory

Ivan Voitov1,2 ✉ & Thomas D. Mrsic-Flogel1

Working memory—the brain’s ability to internalize information and use it flexibly to 
guide behaviour—is an essential component of cognition. Although activity related  
to working memory has been observed in several brain regions1–3, how neural 
populations actually represent working memory4–7 and the mechanisms by which  
this activity is maintained8–12 remain unclear13–15. Here we describe the neural 
implementation of visual working memory in mice alternating between a delayed 
non-match-to-sample task and a simple discrimination task that does not require 
working memory but has identical stimulus, movement and reward statistics. 
Transient optogenetic inactivations revealed that distributed areas of the neocortex 
were required selectively for the maintenance of working memory. Population 
activity in visual area AM and premotor area M2 during the delay period was 
dominated by orderly low-dimensional dynamics16,17 that were, however, independent 
of working memory. Instead, working memory representations were embedded in 
high-dimensional population activity, present in both cortical areas, persisted 
throughout the inter-stimulus delay period, and predicted behavioural responses 
during the working memory task. To test whether the distributed nature of working 
memory was dependent on reciprocal interactions between cortical regions18–20, we 
silenced one cortical area (AM or M2) while recording the feedback it received from 
the other. Transient inactivation of either area led to the selective disruption of 
inter-areal communication of working memory. Therefore, reciprocally 
interconnected cortical areas maintain bound high-dimensional representations of 
working memory.

A task to isolate visual working memory
Cognition necessitates the construction of internal representations of 
the sensory world21–24. Working memory isolates internal representa-
tions from their sensory causes and enables their flexible coupling 
to motor output. The maintenance of sensory information in work-
ing memory has been linked to persistent sensory activity5,6,25 and 
low-dimensional population dynamics26,27, often modelled as attractor 
regimes within dynamical systems descriptions of the observed neural 
activity8,28–30. Recent studies, however, have implicated sparse bursts of 
activity or ‘activity-silent’ mechanisms for the maintenance of sensory 
information stored in working memory7,10,31,32. A key challenge in disam-
biguating the neural representations that underlie working memory 
is the presence of behavioural variables that are independent of the 
maintenance of sensory information, but are nevertheless present 
during decision-making tasks and recruit their own neural processes, 
such as timing, reward expectation and motor preparation. To address 
this issue, we designed a task-switching paradigm in which mice had 
to alternate, in blocks of several hundred trials, between performing a 
visual working memory (WM) task and a working memory-independent 
Discrimination task with matching delay, stimulus, and reward statis-
tics (Fig. 1a and Extended Data Fig. 1a). The WM task was a modified 
Go/No-go delayed non-match-to-sample task that required mice to 

infer the reward contingency of a visual stimulus from the previously 
seen stimulus, separated in time by a grey-screen delay period (delay). 
Sequences of delay and stimulus epochs were presented continuously 
(that is, no inter-trial intervals), with individual trials composed of a 
delay and stimulus pair, such that each trial’s stimulus served as a cue 
to the subsequent stimulus. In the WM task, a stimulus was rewarded 
(target) only if it was preceded by a stimulus of the mirrored orienta-
tion (cue; Fig. 1a). Cues and targets were gratings oriented at ±45°. By 
contrast, the identities of the rewarded stimuli (targets) during the 
Discrimination task were kept constant (±45°) and were independent 
of the preceding stimuli (0° oriented gratings). Mice had to respond to 
the rewarded stimulus by licking a spout, which delivered a liquid food 
reward (see Methods). In both tasks, the probability of the targets was 
10%, and the inter-stimulus delay period was sampled from an exponen-
tial distribution (that is, approximating a flat hazard rate) ranging from 
0.8 to 4 seconds. To gauge for any uncontrolled differences between 
the two tasks, such as lapse rate or arousal, we introduced a common 
unrewarded probe stimulus to both tasks, with the same presentation 
probability as the targets (10%).

The key behavioural difference observed between the two tasks 
was that correct responses in individual trials depended on the 
duration of the preceding inter-stimulus delay period only when 
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the mice were engaged in the WM task. Specifically, false alarms 
(responses to the cue stimuli) during the WM task increased after 
longer delay lengths (Fig. 1c and Extended Data Fig. 2a,b; average 
slope 11.9% per second, n = 9 mice, all P < 1 × 10−3). Consequently, the 
performance of the mice, measured by d′ (see Methods), decreased 

with increasing delay lengths (Fig. 1e), consistent with visual working 
memory duration in humans33. Crucially, this effect was specific to 
the maintenance of sensory information in memory, as responses 
to the probe stimuli during the WM task, despite having the same 
reward contingency as the cues, did not depend on the preceding 
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Fig. 1 | Visual working memory is maintained by distributed neocortical 
regions. a, Schematic of the task structure and transition probabilities 
between trial types (cues, probes and targets). Each trial was composed of a 
grey-screen delay period followed by a variably oriented grating stimulus. In 
the WM task, a stimulus was rewarded (target) only if it was preceded by a 
stimulus of the mirrored orientation (cue). In the Discrimination task, both 
+45° and −45° oriented stimuli were always rewarded (targets). b, Percentage  
of correct responses in −45° target and +45° target trials during the WM task 
(means are across mice; error bars are 95% CI; P = 0.65, n = 9, two-sided 
signed-rank test). c, Mean response probabilities, split by trial type, as a 
function of the preceding delay period length, binned at 100 ms (pooled from 9 
mice; n = 150,381 trials; shaded regions are 95% CI), for the Discrimination 
(blue) and WM (red) tasks. FA, false alarm. d, Responses to probe stimuli, as in c. 
e, Performance of individual mice as measured by d′ (see Methods), split  
into delay length quartiles (dashed lines; +∞, results from quartiles 
containing no miss trials). Thick lines represent trials pooled from all mice. 
Statistical tests between adjacent quartiles (n = 9 mice; P = 0.96, P = 0.23 and 
P = 0.98 for the Discrimination task, and P = 9.77 × 10−3, P = 1.95 × 10−3 and 
P = 3.91 × 10−3 for the WM task, two-sided signed-rank test). *P < 0.05, **P < 0.01; 
NS, not significant. f, Normalized reaction times to cues (top) and targets 
(bottom), binned at 16.67 ms. Trials pooled from all 9 mice. WM task 

engagement delayed peak reaction times to the cues by 163 ms and to the 
targets by 70 ms (P = 3.91 × 10−3 and P = 1.17 × 10−2, respectively, n = 9 mice, 
two-sided signed-rank test; see Extended Data Fig. 2c–f). g, Schematic of the 
cortical areas targeted for the optogenetic silencing (top), and optogenetic 
silencing protocol (bottom). Areas V1 and AM were identified by intrinsic signal 
imaging (see Methods). Areas M2 and S1 were identified by coordinates 
(millimetres anterior/lateral of bregma). The optogenetic silencing light was 
flashed for 400 ms, followed by a linear ramp down over 200 ms, at the onset of 
the delay or stimulus. h, Overview of silencing effects on performance, split by 
silencing onset (delay, left; stimulus, right), task (Discrimination, top; WM, 
bottom) and area (shaded circles). Performance was defined as [100% − FA rate 
(%) − miss rate (%)]. Shading represents the differences in performance 
between control and silencing trials. i, Effect of optogenetic silencing on 
responses to cues, probes and targets, for area AM (top) and area M2 (bottom), 
in either task (Discrimination, blue; WM, red), and two silencing onsets 
(labelled). Individual bars represent the difference of FA or miss rates between 
silencing and control trials (pooled from 9 mice, n = 173,432 trials). Error bars 
represent 95% CI of silencing trials. Statistically significant silencing effects 
(α = 0.05) are labelled (two-sided Fisher’s exact test). See Extended Data Fig. 4 
for analyses of all areas.
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delay length (Fig. 1d and Extended Data Fig. 2b; n = 9 mice, all 
P > 0.05).

Consistent with the engagement of working memory leading to 
longer reaction times in humans34, stimulus response latencies were 
longer when mice engaged in the WM task (Fig. 1f and Extended Data 
Fig. 2c–f). This was not linked to the response probabilities, as reaction 
times were longer for both false alarms to cues (higher in the WM task; 
n = 9 mice, average 163 ms lag, P = 3.91 × 10−3) and hits to targets (lower 
in the WM task; n = 9 mice, average 70 ms lag, P = 1.17 × 10−2).

Measures of movement and arousal during the inter-stimulus delay 
period, including running speed, halting rate and pupil diameter35,36, 
were stable and not different between the two tasks (Extended Data 
Fig. 3a–d; n = 9 mice, all P > 0.05). Early responses during the delay were 
rare (3.2% of trials), but slightly more frequent during the Discrimina-
tion task (Extended Data Fig. 3b; n = 9 mice, P = 3.91 × 10−3). Thus, by 
developing a task to isolate working memory in mice, we were able to 
identify two psychometric features of working memory engagement: 
the disruption of internally maintained sensory information by longer 
delay durations, and an increase in the reaction times when engaging 
in the WM task.

Working memory is maintained by distributed areas
The role of different brain regions in maintaining memory-related 
task variables has previously been examined by optogenetic inactiva-
tion experiments37–42. To assess which cortical areas were required for 
working memory and to distinguish between their sensory, mnemonic 
and motor functions, we transiently inactivated one of six different 
cortical areas during one of two epochs per trial by focal optogenetic 
stimulation of inhibitory neurons (see Methods). The silencing window 
(400 ms plus a 200 ms ramp down) was timed to either the onset of the 
inter-stimulus delay or the onset of the stimulus, chosen at random in 
8% of all trials. We tested six areas of the dorsal neocortex: visual area 
AM, premotor area M2, primary somatosensory area S1 and primary 
visual area V1 contralateral to the visual stimulus, and areas AM and 
M2 ipsilateral to the visual stimulus (Fig. 1g).

At the onset of the delay, the inactivation of any area other than S1 
increased incorrect responses during the WM task, but had no sig-
nificant effect on responses during the Discrimination task (Fig. 1h). 
Furthermore, delay-onset inactivation only affected the responses 
that were dependent on the delay length (that is, false alarms to 
the cues in the WM task; Fig. 1i), and did not affect responses to the 
memory-independent probe stimuli, even in the WM task (Fig. 1i and 
Extended Data Fig. 4). Therefore, transient cortical inactivation during 
the delay did not compromise the ability of the mice to follow the task 
structure, and indicates that the maintenance of sensory information 
in working memory depends on activity in distributed areas of the 
neocortex.

By contrast, inactivating the neocortex during the stimulus pres-
entation had effects that were dissociated by cortical area and task 
(Fig. 1i). Inactivation of the contralateral visual cortex (area AM or V1) 
at the onset of the stimulus led to (1) an increased miss rate to the target 
stimuli, more-so during the WM task; (2) an increased false alarm rate 
to cues during the Discrimination task; and (3) a paradoxical decrease 
in the false alarm rate to the cues during the WM task, revealing a 
divergence in the function of posterior cortical areas when engaged 
in working memory-guided sensory processing. On the other hand, 
inactivating anterior and ipsilateral cortical areas (contralateral M2 
and S1, and ipsilateral AM and M2) at the onset of the stimulus had no 
effect on the miss rates in either task, but instead led to an increase in 
the false alarm rate to the cues, with a stronger effect when the mice 
were engaged in the WM task (Fig. 1i and Extended Data Fig. 4).

The effect of cortical inactivation on behavioural performance could 
not be explained by changes in measures of movement or arousal, as 
there was no interaction between the effects on running speed or pupil 

diameter and the task that the mouse was performing (Extended Data 
Fig. 3e–h). A bright masking light, when presented on control trials, with 
the same dynamics as the optogenetic inactivation light, had no effect 
on mouse running or stimulus responses (see Methods). An overview of 
all optogenetic effects on task performance is presented in Extended 
Data Fig. 4. Together, these inactivation experiments indicate that 
distributed areas of the dorsal neocortex maintain sensory information 
in working memory during the delay period, and become dissociated 
in their contribution to action generation by working memory during 
sensory processing.

Working memory-agnostic neural dynamics
Previous studies of memory-guided decision making have reported 
persistent4–6,17,25,43 or sequential16,44,45 neuronal activity during the 
delay periods. We used two-photon calcium imaging (see Methods) 
to examine the neural activity recruited by working memory in two 
areas that are required for the maintenance of working memory infor-
mation during the delay period in the WM task: higher visual area AM 
and premotor area M2, contralateral to the visual stimulus. As the ori-
entations of the cue stimuli in the Discrimination and WM tasks were 
different, we rotated the orientations of all task stimuli +30° and −30° 
multiple times per session in blocks of several hundred trials, out of 
phase with the task blocks, to compare the neural activity elicited by 
common sensory input across the two tasks (see Extended Data Fig. 1b 
and Methods for details). Such stimulus rotations had no effect on 
behavioural performance (Extended Data Fig. 1c). For all subsequent 
comparisons of neural activity between the Discrimination and WM 
tasks, we limited our analyses to delay- and stimulus-evoked responses 
following identical sensory input.

Single cells in both AM and M2 were at least as likely to be responsive 
during the inter-stimulus delay periods as during the presentation of 
the stimuli (see Methods for selection criteria). The response profiles 
of individual cells were notably similar across the two tasks (Fig. 2a,c), 
and the cell-averaged delay period activity in either area did not signifi-
cantly differ between the two tasks (Fig. 2b,d; P = 0.67, n = 805 cells). 
Neural populations that were responsive during the inter-stimulus 
delay periods exhibited sequential activation patterns similar to those 
previously reported in short-term memory tasks16,44,45, whereby the 
population activity tiled the entire length of the delay (Fig. 2e,h). How-
ever, working memory engagement did not alter the temporal profiles 
of the trial-averaged activity of individual cells during the delay period 
(as compared to chance; Extended Data Fig. 5a,b; n = 805 cells, P = 0.43).

To identify representations specific to the WM task in the full 
recorded neural population, we performed dimensionality reduc-
tion on the trial-averaged responses of all active cells pooled across 
experiments (n = 5,589 cells from 16 area AM experiments, and n = 4,023 
cells from 11 area M2 experiments, from 7 mice). Consistent with pre-
vious reports that neural population dynamics are constrained to 
low-dimensional modes when animals perform short-term memory 
tasks46,47, most of the trial-averaged activity variance was captured 
within just the first three principal components (PCs; 83% in AM and 
78% in M2; Fig. 2f,i; see Methods). By projecting the population activity 
during the Discrimination and WM tasks separately onto the first three 
PCs, we observed no significant difference in the Euclidean distance 
between the resulting activity trajectories at any point during the delay 
or the stimulus epochs, in either area AM or area M2, compared to a null 
distribution of distances obtained by shuffling the task labels (Fig. 2g,j; 
n = 16 area AM experiments and n = 11 area M2 experiments, all time 
points P > α, two-sided t-test, Bonferroni-corrected α = 2.08 × 10−3). 
Furthermore, the eigenspectrum of the population activity covariance 
did not differ significantly between the tasks (Extended Data Fig. 5c–n).  
Therefore, low-dimensional neural dynamics reflected processes 
common to both the WM and Discrimination tasks, such as timing, 
reward expectation or motor preparation. Nevertheless, our results 
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can be seen as consistent with reports of persistent delay activity in 
short-term memory tasks that did not necessitate the maintenance 
of internal sensory representations, such as delayed reaching43 and 
oculomotor delay in non-human primates4,48, or T-maze alternation 
in rodents44. Notwithstanding, the removal of activity in areas AM and 
M2 by optogenetic inhibition affected behaviour in a manner that was 
highly specific to working memory maintenance, suggesting an alter-
native representational scheme.

High-dimensional embedding of working memory
Neural activity supporting sensory representations in working memory 
can be sparse in time and variable across trials7,10,49,50. We first confirmed 
that the distribution of single-cell differences in delay activity between 
the two tasks was greater than would be expected by chance, and could 
not be explained by confounding slow temporal factors correlated 
with the task blocks (for example, fluorophore bleaching or changes in 
motivational state; Extended Data Fig. 6). Although this analysis did not 
reveal distinct subpopulations of cells whose delay activity was selective 
to either task, we hypothesized that sparse and uncorrelated working 

memory representations could still be linearly separable in the full neu-
ral activity space even in the absence of informative low-dimensional 
dynamics.

We used linear discriminant analysis (LDA) to identify two dimen-
sions that capture working memory representations in the full neural 
activity space: a task coding dimension (CDTASK), which captures the 
activity introduced by working memory engagement by contrasting 
the delay activity in the two tasks after identical sensory input (Fig. 3a); 
and a cue coding dimension (CDCUE), which captures the particular 
stimulus information maintained during the delay by contrasting the 
two possible cue stimuli that precede the delay activity during the WM 
task (Fig. 3a; see Methods). By projecting the delay activity of all active 
cells (310 ± 41 cells per experiment) onto CDTASK, we were able to decode 
the task (Discrimination or WM) that the mouse was engaged in with 
high accuracy (average cross-validated test accuracy of 91%; Fig. 3b). 
Likewise, projections of delay activity onto CDCUE successfully sepa-
rated trials on the basis of the preceding cue (average cross-validated 
test accuracy of 84%; Fig. 3b). These results were similar across neural 
populations in areas AM and M2 (Extended Data Fig. 7), albeit with a 
higher decoding performance in area AM.
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Fig. 2 | Low-dimensional neural dynamics are independent of working 
memory. a, Example single-cell responses in area AM. Saturated lines are mean 
responses during the Discrimination (blue) or WM (red) tasks. Dim lines are 
responses from 40 trials with the longest delay durations. The first two cells 
have their responses aligned to the delay onset, and the third cell to the 
stimulus. b, Cell- and trial-averaged responses (ΔF/F0) of the delay-responsive 
cells (left) and stimulus-responsive cells (right) in area AM (see Methods for 
selection criteria) to the delay and stimulus onsets, respectively, split by task. 
Cells pooled from all experiments (n = 16 from 7 mice). Shaded regions are 95% 
CI. c,d, As in a,b, for cells recorded in area M2 (n = 11 experiments from 7 mice). 
e, Single-cell responses for all delay-responsive and stimulus-responsive cells 
(individual rows) recorded in area AM (n = 16 experiments from 7 mice), 
averaged from Discrimination task (left) and WM task (right) trials, sorted by 
response latency (see Methods). Responses were normalized for each cell.  
f, Trial-averaged projections of area AM population activity (n = 5,589 cells 
pooled from 16 experiments) onto its first three PCs (see Methods).  

The proportion of variance (var.) explained is shown along each axis. 
Projections were split by task (colour) and into three groups of delay duration 
(0.8–1.6 s, 1.6–2.4 s and 2.4–3.2 s), such that activity was plotted from trials with 
delays that were at least as long as the respective stimulus onset time. Arrows 
represent the direction of time, circles represent the minimum stimulus onset 
of each delay duration group. Unsaturated lines represent activity preceding 
stimulus onset; saturated lines represent activity after stimulus onset. 
 g, The Euclidean distance between Discrimination and WM task trajectories  
in f, averaged across experiments, is plotted over the course of the delay and 
stimulus (all time points P > α, Bonferroni-corrected α = 2.08 × 10−3, two-sided 
t-test). Shaded regions are 95% CI of a trial-shuffled null distribution of task 
trajectory distances. AU, arbitrary units. h–j, As in e–g, but for area M2.  
h, Delay- and stimulus-responsive cells pooled across n = 11 experiments  
from 7 mice. i,j, PCs calculated from n = 4,023 pooled active cells. j, All time 
points P > α, Bonferroni-corrected α = 2.08 × 10−3, two-sided t-test. NS, not 
significant.
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To examine the embedding of these representations in the neu-
ral activity space51, we systematically limited the population activ-
ity available for defining CDTASK and CDCUE, and used the resulting 
dimensions to decode the task and cue identities. By decoding from 
sequentially increasing numbers of randomly sampled active cells 
(see Methods), we observed that at least 100 cells were required to 

predict the task and cue identity in 85% and 80% of trials, respectively 
(Fig. 3b). To assess the sparsity of this population encoding and to 
dissociate the number of cells required for decoding from the total 
activity variance available, we performed a similar decoding sweep 
with each experiment’s population activity projected onto its first 
PCs (calculated independently per experiment, from the population 
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Fig. 3 | High-dimensional embedding of working memory representations. 
a, Schematic of two coding dimensions (CDTASK and CDCUE; see main text and 
Methods) used to identify working memory representations during the delay. 
CDTASK was identified from opposing rotation blocks for the two tasks, such that 
the preceding stimulus orientations were identical. b, Assessment of the 
embedding dimensionality of CDTASK (lilac), CDCUE (gold) and stimulus period 
CDCUE (see main text). Horizontal lines are mean test accuracies when decoding 
the task from CDTASK delay activity, the preceding cue from the CDCUE delay 
activity and the current cue from the stimulus period CDCUE stimulus-evoked 
activity (averages across n = 31 experiments; shaded regions are 95% CI; see 
Extended Data Fig. 7 for experiments split by area). Coloured incrementing 
lines are mean test accuracies when limiting the population activity available 
for decoding to a number of randomly sampled cells (left), the top PCs (centre) 
or excluding the top PCs (right). Dashed grey lines are the respective 
proportions of total population activity variance available for decoding.  
c, Single-trial population activity of an example experiment from area AM, 
aligned to the onset of the delay, projected onto CDTASK. Only trials with 
sufficiently long delays (≥2 s) are shown. d, z-scored single-trial area AM CDTASK 
activity in the second half (>1.6 s) of the delay plotted against the first half 
(<1.6 s) of the delay (that is, each point is one trial). Trials were split by task 
(colour) and the Discrimination task projections had their signs inverted. Only 

trials with sufficiently long delays (≥2 s) were included in this analysis (n = 2,921 
trials collected from 18 experiments). Solid and dashed lines represent the fits 
and 95% CI of a regression model. The models’ coefficients of determination 
(R2) and slopes, and their differences between tasks, are shown (P = 2.40 × 10−5 
and P = 3.08 × 10−4, respectively, difference greater than zero two-sided 
one-sample t-test). e, The proportion of cue trials in which CDTASK delay activity 
correctly classified the trials’ task, split by correct rejection (CR) or false  
alarm (FA) to the subsequent cue (P = 5.67 × 10−4, n = 3,577 trials for the WM  
task; P = 0.07, n = 5,781 trials for the Discrimination task; two-sided Fisher’s 
exact test). Error bars represent 95% CI. f–h, As in c–e, but for area M2 
experiments. g, Differences between R2 values and slopes (n = 1,882 trials 
collected from 13 experiments; P = 6.05 × 10−3 and P = 4.64 × 10−2, respectively, 
difference greater than zero two-sided one-sample t-test). h, Pre-CR and pre-FA  
difference (P = 1.71 × 10−2, n = 2,573 trials for WM task; P = 0.47, n = 3,669 trials 
for Discrimination task; two-sided Fisher's exact test). i–k, As in c–e, but for 
CDCUE. j, n = 2,210 trials collected from 18 experiments. Cue A projections had 
their signs inverted. k, Pre-CR and pre-FA difference (P = 9.56 × 10−9, n = 6,816 
trials, two-sided Fisher's exact test). l–n, As in i–k (CDCUE), but for area M2 
experiments. m, n = 1,600 trials collected from 13 experiments. n, Pre-CR and 
pre-FA difference (P = 2.84 × 10−2, n = 5,063 trials, two-sided Fisher's exact test). 
*P  < 0.05, **P <  0.01, ***P < 0.001; NS, not significant.
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activity of all trials concatenated in time; see Methods). Up to 20 
of the first PCs were required to reach a similar level of decoding 
accuracy to that of 100 randomly sampled cells, despite explain-
ing significantly more of the population activity variance (67% 
versus 39%, n = 31 experiments from 7 mice, P = 1.30 × 10−6; Fig. 3b).  
Furthermore, leaving out the first 100 PCs from the data available 
to the decoder—thus removing on average 95% of the variance in 
population activity—preserved a substantial decoding accuracy of 
the CDTASK (73%) and CDCUE (68%; Fig. 3b). By contrast, population rep-
resentations of the sensory stimulus (stimulus period CDCUE; Fig 3b), 
calculated similarly to the CDCUE but decoded from the respective 
stimulus-evoked responses of cues, were lower dimensional—the top 
4 PCs were sufficient to predict the stimulus identify of 90% of trials, 
and the removal of the first 100 PCs greatly reduced the stimulus 
decoding accuracy (predicting only 58% of trials). Together, these 
results indicate that working memory representations are embedded 
in a high-dimensional subspace of population activity, with most 
cells carrying working memory information that is distributed in 
uncorrelated modes of activity.

Single-trial dynamics of delay period activity have previously 
been used to inform mechanistic accounts of their persistence48,52,53.  
We projected single-trial population activity during the delay onto 
either the CDTASK (CDTASK activity) or the CDCUE (CDCUE activity), and found 
that activity in these subspaces was persistent, often spanning the 
full duration of the delay (Fig. 3c,f,i,l). We summarized the single-trial 
dynamics of this coding dimension activity by comparing it between 
the first and second halves of the delay, and calculating the slope and 
coefficient of determination (R2) of this relationship. The slope of this 
relationship is indicative of the persistence of working memory repre-
sentations over the course of the delay, and the R2 is indicative of their 
robustness over time. Notably, these measures are agnostic of whether 
the cue or the task identities of the trials were correctly predicted (that 
is, the classification accuracy; Fig. 3b). These analyses were restricted 
to trials with sufficiently long (≥2 s) delay periods pooled across all 
experiments (n = 2,921 trials collected from 18 experiments in area AM, 
and n = 1,882 trials collected from 13 experiments in area M2). We found 
that both the R2 and the slope of the CDTASK activity were higher when the 
mice were performing the WM task as compared to the Discrimination 
task (P = 2.40 × 10−5 and P = 3.08 × 10−4 for area AM experiments, and 
P = 6.05 × 10−3 and P = 4.64 × 10−2 for area M2 experiments, for R2 and 
slope, respectively; Fig. 3d,g). This suggests that CDTASK activity reflects 
neural activity that is integral to the maintenance of working memory, 
and supports the role of line attractor dynamics for the maintenance 
of working memory representations28,30.

A requisite for working memory representations during the delay 
is that they should be predictive of correct behavioural responses to 
the subsequent stimulus. We observed that in both areas AM and M2, a 
reduction of CDCUE activity or CDTASK activity during the WM task delays, 
as measured by the failure to correctly classify a given trial’s cue or task 
identity, anticipated incorrect responses to the subsequent stimulus 
(P = 5.67 × 10−4 and P = 9.56 × 10−9 for CDTASK and CDCUE activity, respec-
tively, from area AM experiments, and P = 1.71 × 10−2 and P = 2.84 × 10−2 
for CDTASK and CDCUE activity from area M2 experiments; Fig. 3e,h,k,n). 
Extended Data Figure 8 shows these results in terms of the CDTASK and 
CDCUE activity of individual experiments. A reduction of the delay period 
CDTASK activity did not predict incorrect responses during the Discrimi-
nation task, nor were incorrect responses associated with changes in 
the eigenspectrum of the population activity covariance during the 
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Fig. 4 | Maintenance of working memory representations by reciprocal 
cortical interactions. a, Schematic of the experiment. The activity of area M2 
axons in area AM (M2 → AM) was recorded while area AM was inactivated by 
optogenetic stimulation of local PV+ cells. Silencing occurred at the onset of the 
delay and lasted for 600 ms (as in Fig. 1g). b, Effect of optogenetic silencing of 
area AM on the z-scored ΔF activity of single M2 → AM axons, averaged over the 
delay. Significantly affected axons were identified by comparison with a 
bootstrapped null distribution (two-sided t-test, α = 0.05). c, M2 → AM axonal 
ΔF responses aligned to the onset of the delay, binned at 132 ms, split by 
preceding cue (top and bottom) and control and silencing trials (dashed and 
solid lines, respectively), z-scored and averaged across experiments (n = 19 
from 4 mice). Shaded regions are 95% CI of silencing trial responses.  
d, The responses in c, with the effects of optogenetic silencing, per experiment 
(n = 19), averaged separately for the early delay (<1.6 s; P = 0.81) and late delay 
(≥1.6 s; P = 0.84), two-sided signed-rank test. e, Activity shown as in c, but 
projected onto CDCUE. f, As in d, for activity projected onto CDCUE (n = 19, 
P = 9.67 × 10−4 and P = 1.12 × 10−3, for early and late delay activity, respectively, 
two-sided signed-rank test). Responses following cue A were inverted.  
g, Schematic as in a, showing the reverse experiment, silencing area M2 while 
imaging the AM → M2 axons. h–l, as in b–f, but for the reverse experiments 
(n = 19 experiments from 3 mice). j, Early delay silencing effect (P = 0.33), late 
delay silencing effect (P = 0.42), two-sided signed-rank test. l, Early delay 
silencing effect (P = 7.01 × 10−3), late delay silencing effect (P = 0.33), two-sided 
signed-rank test. **P  < 0.01, ***P  < 0.001; NS, not significant.
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delay (Extended Data Fig. 5c–n), which suggests that the relationship 
between delay period CDCUE and CDTASK activity and subsequent behav-
ioural responses was not explained by task-agnostic premotor activ-
ity. Notably, when the delay activity failed to predict the current task 
(that is, trials misclassified with CDTASK activity), the cue information 
encoded in the delay activity (measured as CDCUE classification accu-
racy) was concomitantly lower (Extended Data Fig. 9i–m), revealing a 
link between these two coding dimensions (Pearson’s r = 0.26 ± 0.18 
for area AM experiments and r = 0.18 ± 0.26 for area M2 experiments; 
mean ± 95% confidence interval (CI) across experiments).

To examine the specificity of working memory representations to 
the WM task, we investigated the maintenance of cue information dur-
ing the Discrimination task delay periods. Neural population activity 
encoding the preceding cues during the delay periods of the WM task 
(CDCUE activity) was largely absent during the Discrimination task, with 
only 58% of trials correctly classified in areas AM and M2 (compared 
with 89% and 80% classification accuracy in AM and M2, respectively, 
during the WM task; Extended Data Fig. 9a,e). As a negative control, 
we observed that the population activity that discriminated the cues 
during their presentation in the WM task (stimulus period CDCUE; 
Fig. 3b) was able to correctly predict the same stimuli during the Dis-
crimination task (95% and 79% classification accuracy for area AM and 
area M2, respectively; Extended Data Fig. 9a,e). Thus, unlike the delay 
representations of preceding cues, the sensory representations of 
the cues were encoded in a similar manner whether or not the mouse 
was engaged in the WM task. Furthermore, delay period CDCUE activity 
during the Discrimination task was less robust (measured as the R2 of 
the first and the second half of the delay period activity; P < 0.001 in 
both areas) and decayed faster (measured as the slope between the 
first and second half of the delay period activity; P < 0.05 in area M2 
and P < 0.001 in area AM) as compared to the delay CDCUE activity dur-
ing the WM task, and did not predict correct behavioural responses 
to the subsequent stimuli during the Discrimination task (P > 0.05 in 
both areas; Extended Data Fig. 9b–d,f–h). Thus, neural populations in 
areas AM and M2 maintained the delay representations of preceding 
cue stimuli selectively during the WM task.

Together, our results indicate that distributed areas of the neocortex 
maintained persistent representations of working memory throughout 
the delay periods, which were embedded within a high-dimensional 
subspace of population activity, the collapse of which led to work-
ing memory-specific behavioural deficits.

Role of cortical interactions in working memory
The integration of sensory input with internal representations, which is 
essential to theories such as predictive coding54, active inference23 and 
hierarchical Bayesian inference55, has been proposed to be mapped onto 
the reciprocal interactions between cortical areas, such that feedback 
from any one area is dependent on the concurrent input to it from 
the other19,20. To test whether such mechanisms could underlie the 
distributed maintenance of working memory in the neocortex, we 
used two-photon calcium imaging to measure the activity of axons 
originating from area M2 and projecting to area AM, while simultane-
ously optogenetically silencing the activity in area AM at the onset of 
the delay period (Fig. 4a; see Methods). We also repeated this experi-
ment with the areas reversed, recording area AM axonal activity in area 
M2 while inactivating area M2 (Fig. 4g). These experiments examine 
the functional feedback influences that areas AM and M2 have on each 
other, which may be mediated through direct corticocortical projec-
tions or indirect subcortical pathways.

Inactivating area AM at delay onset significantly affected the average 
delay activity of 30% of delay-active M2 axonal boutons in area AM (of 
n = 2,162 boutons from 19 experiments; Fig. 4b; α = 0.05; see Methods), 
whereas inactivating area M2 affected the delay activity of 36% of AM 
axonal boutons in area M2 (of n = 1,952 boutons from 19 experiments; 
Fig. 4h). Consistent with previous in vitro56 and in vivo19 characteriza-
tions, and reports of intracortical feedback being largely modulatory57, 
the net influence of inactivating either area AM or M2 on the respective 
feedback activity was neither inhibitory nor excitatory, and led to no 
significant change in the average or first PC (PC1) of the boutons’ delay 
activity (Fig. 4c,d,i–j and Extended Data Fig. 10).

By contrast, CDCUE activity during the delay was disrupted in area M2 
boutons when inactivating area AM (Fig. 4e), and similarly in area AM 
boutons when inactivating area M2 (Fig. 4k), revealing a co-dependence 
of the working memory representations maintained within these areas. 
Extended Data Figure 10 shows the effects of target area silencing on 
feedback activity averaged over the full delay period. Although feed-
back CDCUE activity was not completely eliminated after target area 
inactivation, this may reflect the partial deficits that are induced by such 
silencing on working memory-specific behaviour (Fig. 1i). To quantify 
the persistence of CDCUE disruption, we split the delay duration into 
halves and quantified the difference in CDCUE activity between inacti-
vation and control trials separately for each half of the delay. Area AM 
→ M2 boutons exhibited a transient reduction in CDCUE activity after 
inactivation of area M2, with this activity being disrupted in the first 
1.6 s of the delay (Fig. 4k,l; P = 7.01 × 10−3) but not in the subsequent 
1.6 s (P = 0.33), indicating that neural activity encoding the preceding 
cue recovered. Conversely, the CDCUE activity of M2 → AM boutons was 
disrupted for the full duration of the delay after inactivation of area AM 
(Fig. 4e,f; P = 9.67 × 10−4 and P = 1.12 × 10−3 for the first and second half of 
the delay, respectively), indicating that activity encoding the preceding 
cue in these axons failed to recover following delay-onset silencing.

We pooled data from all optogenetic inactivation experiments (that 
is, Figs. 1 and 4) to examine whether the difference in the recovery of 
CDCUE activity after delay-onset silencing was reflected in the persis-
tence of the induced working memory-specific behavioural deficits 
(Fig. 5a). As predicted by the recovery of AM → M2 CDCUE activity, inac-
tivation of area M2 led to an increase in incorrect responses in short 
delay trials (less than 1.6 s; P = 1.12 × 10−3), but not in long delay trials 
(greater than 1.6 s; P = 0.46). Delay-onset inactivation of area AM, on 
the other hand, increased incorrect responses in both short and long 
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delay duration trials (P = 2.36 × 10−2 and P = 1.14 × 10−2, respectively), 
mirroring the lack of recovery of CDCUE activity after such silencing. 
We defined a recovery index for the effect of optogenetic inactivation 
on behaviour and on CDCUE activity to summarize and contrast this 
relationship between areas (Fig. 5b).

Together, these results reveal first, that reciprocal corticocortical 
communication of working memory representations is dependent 
on simultaneous activity in both areas, and second, that the recovery 
(after inactivation of area M2), or lack of recovery (after inactivation of 
area AM), of these representations mirrors the delay length-dependent 
behavioural deficits that are induced by the inactivation.

Discussion
By contrasting a working  memory-dependent task with a work-
ing memory-independent task, with otherwise identical delay, stimulus 
and reward statistics, we were able to characterize key psychometric 
manifestations of working memory, such as slowed reaction times34 and 
delay duration-dependent maintenance33, and isolate their neural rep-
resentations from other covariates of task engagement. The presence 
of shared, dominant modes of neural activity in both the Discrimination 
and the WM tasks (Fig. 2) challenges the notion that persistent delay 
period activity, such as the sequential firing of neurons16,44,45, carries the 
sensory information that is maintained in working memory, and instead 
suggests that it reflects common task attributes such as the timing of 
the trial structure, motor preparation or reward expectation17,27,58–60. 
Our results provide support for an alternative representational scheme 
for the maintenance of working memory, in which dispersed cell popu-
lations encode working memory with trial-to-trial variable and uncorre-
lated patterns of activity. Such high-dimensional population codes have 
been associated with ‘hot-coal’9 or ‘activity-silent’10 theories of working 
memory maintenance, although further investigations with electro-
physiology and targeted causal network perturbations, respectively, 
will be necessary to draw direct comparisons. We further observed 
that this high-dimensional population activity nonetheless gave rise 
to working memory representations that were readily decoded by a 
one-dimensional subspace of population activity that was robust and 
persistent over variable delay durations. This working memory-specific 
subspace of neural population activity provides a reliable encoding for 
reading out unreliable single-cell working memory signals26,59,60, and 
may therefore determine how the network responds to and adjudicates 
subsequent sensory inputs31,32.

Neural inactivation studies have reported varying degrees to 
which different areas of the neocortex are required during delayed 
decision-making tasks37–42. Using our two-task design, we were able 
to isolate the inactivation effects that were specific to visual work-
ing memory, and this revealed the contribution of multiple cortical 
areas (Fig. 1g–i). Nevertheless, the presence of low-dimensional neural 
dynamics during the delay periods in either area AM or area M2 did not 
underlie correct responses to the subsequent stimuli, as the recruit-
ment of such activity (Fig. 2) and its removal by optogenetic inactivation 
(Fig. 1g–i) had no effect on mouse performance during the Discrimina-
tion task. Instead, errors in responses to the subsequent stimuli after 
optogenetic inactivation during the WM task were concomitant with 
the subspace-specific disruption of neural activity in cortical areas 
distal to the inactivated area (Fig. 5b). Our results therefore highlight 
the difficulty in interpreting the effects of optogenetic inactivation 
on behaviour61, and demonstrate the behaviourally causal role of the 
subspace-specific propagation of localized inactivations across recip-
rocally connected cortical areas.

Inactivating the neocortex at different epochs of the trial had dis-
tinct, sometimes opposing effects on behavioural responses, and the 
relationship between the area silenced and the trial epoch differed 
between the Discrimination and the WM tasks (Fig. 1i and Extended 
Data Fig. 4). Furthermore, the behavioural and neural consequences 

of inactivation differed in their transience, with different cortical areas 
showing varying degrees of recovery after inactivation (Fig. 5). The abil-
ity of behaviour and neural activity to recover after inactivation of area 
M2, but not area AM, during the early delay period can be contrasted 
with the timescales of activity patterns observed locally in these areas, 
which have been found to be slower in anterior regions62, but is consist-
ent with previous reports of the rebound of preparatory population 
activity in the frontal cortex after inactivation63.

The bidirectional and selective disruption of the working memory 
representations that are communicated between cortical areas follow-
ing the inactivation of local target area activity provides direct evidence 
for the mechanistic role of functional cortical feedback loops in the 
maintenance of internally generated cognitive representations. Such 
mechanisms have previously been proposed to account for the influence 
of latent variables, such as priors or contextual information, on sen-
sory processing in hierarchical models of visual perception23,54,55,64. Our 
results therefore suggest that common neural substrates—specifically, 
high-dimensional population codes—may implement internal models in 
the brain, independent of their sensory causes and motor consequences.
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Article
Methods

Mice and ethics
All experiments were performed under the UK Animals (Scientific Pro-
cedures) Act of 1986 (PPL PD867676F) following local ethical approval 
by the Sainsbury Wellcome Centre Animal Welfare Ethical Review 
Body. A total of 7 PV-Cre (ref. 65) × Ai32 and 2 × VGAT-Cre × Ai32 mice 
( JAX 017320, JAX 016962 and JAX 024109, Jackson Laboratory; ChR2 
expressed in inhibitory interneurons) were used for the behaviour 
and optogenetics experiments (Fig. 1). A total of seven mice—one wild 
type (Charles River), three Ai-148 (ref. 66) × Cux-creER ( JAX 030328 and 
JAX 012243, Jackson Laboratory; GCaMP6f expressed in most excita-
tory layer 2/3 cells under the control of tamoxifen) and three Ai-148 
(Cre-dependent GCaMP6f expression in all cells) mice—were used for 
the cell-body imaging experiments (Figs. 2 and 3). A total of seven PV-cre 
mice were used for the axonal imaging experiments (Figs. 4 and 5). Mice 
were of either sex (10 male and 13 female) and were between 8 and 16 
weeks old at the start of their experiments. Before the experiments, 
the three Cux-creER mice were administered tamoxifen (10 mg ml−1) 
by intraperitoneal injection (1 mg per 10 g body weight), three times, 
every other day. Mice were co-housed with littermates in IVC cages, in 
reversed day–night cycle lighting conditions, with the ambient temper-
ature and humidity set to 23 °C and 56% relative humidity, respectively.

Surgical procedures
Before all surgeries, the mice were injected with an analgesic (carprofen 
5 mg kg−1) subcutaneously. General anaesthesia was induced with 3% 
isoflurane, which was then reduced to maintain a breathing rate of 
around 1 Hz. A custom-designed stainless steel headplate was attached 
to the skull using dental cement (C&B Super Bond). In some of the 
older mice in the behaviour and optogenetics experiments (Fig. 1), the 
dorsal surface of the skull was carefully thinned with a dental drill. The 
exposed skull was then sealed with a thin layer of light-curing dental 
composite (Tetric EvoFlow).

For the cell-body calcium-imaging experiments (Figs. 2 and 3), after a 
minimum recovery time of three days and intrinsic signal imaging (see 
below), a second surgery was performed to make a cranial window over 
areas AM and M2, identified by intrinsic signal imaging and coordinates 
(0.5 mm lateral, 2.5 mm anterior of bregma), respectively. A 5 mm crani-
otomy was made over the dorsal surface of the skull and a 300 µm thick, 
5 mm diameter glass window was implanted with cyanoacrylate glue 
(Pattex). In the three Ai-148 mice, two 50 nl viral injections of AAV9.hSyn.
Cre.WPRE.hGH (Penn Vector Core) diluted to a low titre (5 × 1010 vg ml−1) 
in Ringer’s solution were made into areas AM and M2 with a Nanoject 
III microinjector (Drummond Scientific). In the wild-type mouse, two 
50 nl viral injections of AAV1.hSyn.GCaMP6f.WPRE.SV40 (Addgene, 
100837) diluted to 5 × 1012 vg ml−1 was likewise made into areas AM and 
M2. In four of the mice, a viral injection of AAVretro.hSyn1.mCherry-
2A-iCre.WPRE.SV40 (1 × 1012 vg ml−1; v147 Zurich Vector Core) was made 
into AM (one mouse) or M2 (three mice), to help localize the respective 
connected areas.

For the axonal imaging experiments (Figs. 4 and 5), following a mini-
mum recovery time of three days and intrinsic signal imaging, a second 
surgery was performed to make a cranial window over either area AM or 
M2 and perform the viral injections. In three of the mice, a 3 mm diameter 
craniotomy was made centred around area AM, and a smaller (less 
than 1 mm diameter) craniotomy was made over area M2 (identified 
with coordinates relative to bregma; 0.5 mm lateral, 2.5 mm anterior). 
Viral injections (100 nl) of AAV1.hSyn.DIO.ChrimsonR.tdTomato 
(3.9 × 1012; UNC Vector Core) and AAV1.hSyn.jGCaMP7b.WPRE (ref. 67)  
(2 × 1013; Addgene, 104489) were then made into areas AM and M2, 
respectively, with a Nanoject III microinjector (Drummond Scientific). 
Immediately afterwards, the larger area AM craniotomy was sealed with 
a 3 mm glass window. In the other four mice, the same procedure was 
done but with areas AM and M2 reversed.

Intrinsic signal imaging
We used intrinsic signal imaging68 of the dorsal cortex to identify the 
locations of cortical areas V1 and AM. Intrinsic imaging was performed 
on awake mice while they were head-fixed on top of a freely rotating 
Styrofoam cylinder. The visual cortex was illuminated with 700 nm 
light, a macroscope was focused 500 µm below the cortical surface, 
and the collected light was bandpass-filtered centred at 700 nm (10 nm 
bandwidth; 67905, Edmund Optics). The images were acquired at a 
rate of 6.25 Hz with a 12-bit CCD camera (1300QF, VDS Vosskühler), an 
image acquisition board (PCI-1422, National Instruments) and custom 
software written in LabVIEW (National Instruments). The visual stimuli, 
presented on a display 22.5 cm away from the left eye, were generated 
using Psychophysics Toolbox69 running in MATLAB (MathWorks), and 
consisted of square-wave gratings, covering a 40° visual angle, 0.08 
cycles per degree, drifting at 4 Hz in eight random directions, presented 
on an isoluminant grey background for 2 s, with 18 s inter-stimulus 
intervals. The gratings were presented alternatively at two positions, 
at 15° elevation and either 30° or 80° azimuth. Response maps to the 
grating patches at either position were used to identify the centres of 
V1 and AM, using a reference map70.

Behavioural shaping and apparatus
Mice were trained for 2–6 weeks before the initiation of data acquisition. 
Mice were food-restricted for the full duration of the behavioural training 
and data acquisition, with no scheduled breaks. The maximum weight 
loss was limited to 80% of their pre-restriction body weight. Food restric-
tion began at least three days after headplate implantation surgery. The 
mice were trained for approximately 2 h every day, once a day. For the 
first few days of training the mice were handled on a cloth and iteratively 
fed Ensure Plus strawberry milkshake (Abbott Laboratories) through 
a syringe to acclimate them to the behavioural training environment.

Over the next few days, the mice were trained to run on a freely rotating 
Styrofoam cylinder, while head-fixed, in front of the visual stimulation 
display (U2415, Dell; 60 Hz refresh rate), placed 22.5 cm away from their 
left eye and oriented at 32° relative to midline. A reward delivery spout 
was positioned under the snout of the mice from which a drop of Ensure 
Plus was occasionally delivered by the experimenter to encourage  
running. Licks were detected with a piezoelectric diaphragm sensor 
(Murata 7BB-12-9) placed under the spout.

Once the mice were running freely, they were trained to perform 
a simple visual detection task, in which the onset of a visual stimulus 
was associated with reward (a drop of Ensure Plus), delivered from the 
reward spout after the stimulus onset. The mouse running speed was 
recorded with a rotary encoder (05.2400.1122.1000, Kübler), and the 
mice had to run a specified distance between the stimulus presenta-
tions. This distance was variable and set such that the mice received 
roughly one reward per minute. Reward delivery was triggered when 
the mouse licked the spout any time during a response window of 1 s 
following the stimulus onset. If the mice failed to lick in response to the 
stimulus, an automatic reward was delivered at the end of the response 
window. The detection of licks, reward delivery, recording of data and 
the presentation of visual stimuli were controlled by a custom LabVIEW 
software (National Instruments). Visual stimuli were generated by 
custom software (https://github.com/Ivan-Voitov/Vizi) written in Unity 
(Unity Technologies). Hardware interfacing was conducted with a data 
acquisition board (PCIe-6321, National Instruments).

The visual stimuli were drifting square-wave gratings presented at 
100% contrast, 0.025 cycles per degree, covering 60° of the visual field 
of the mice, centred at 15° elevation and 45° azimuth, presented on an 
isoluminant grey background. The luminance of the monitor was set 
at 0 cd m−2, 22.5 cd m−2 and 45 cd m−2, at black, grey and white values, 
respectively. The grating stimuli were cycling in a closed loop with the 
mouse running speed for the first one to two weeks of training, and were 
then fixed at 3.5 Hz for the remainder of the experiments.

https://github.com/Ivan-Voitov/Vizi


Once the mice were running comfortably on the Styrofoam cylinder 
and licking in response to the presentation of grating stimuli (after 
one to four weeks of training), the task parameters were introduced to 
begin training either the Discrimination or the WM tasks. The order in 
which the two tasks were trained varied between mice.

Task training and design
Both the Discrimination and the WM tasks consisted of alternating 
delay (grey background) and stimulus (full contrast grating) periods 
(Fig. 1a). Delay period durations were sampled from an exponential 
distribution with a mean of 800 ms, and then had 800 ms added (that 
is, a 800 ms offset or minimum duration). The sampled delay periods 
durations were then capped at 4,000 ms by resampling the duration 
from a uniform distribution between 3,600 and 4,000 ms whenever 
this cap was reached (to ensure a minimal effect on the average dura-
tion of the delay). The resulting average delay duration was 1,600 ms.  
The duration of the stimulus period was proportional to the mouse 
running speed that is, was a distance to traverse), and was set to either 
100 cm or 80 cm depending on the average running speed of the mouse, 
such that the stimulus period took a similar time to traverse by all mice 
if they did not stop running. Forcing the mice to traverse a certain dis-
tance to get through the stimulus period promoted persistent run-
ning in mice over the course of each session, which in turn ensured 
stereotyped movement within the delay periods and reduced variability 
between mice. The resulting average stimulus duration was 1,967 ms.

In both the Discrimination and the WM tasks, the orientation of 
the grating stimuli classified them as either go or no-go (Fig. 1a and 
Extended Data Fig. 1a). The stimuli presented were cues (no-go; 80% 
of trials), probes (no-go, 10% of trials) or targets (go, 10% of trials). Cue 
stimuli were gratings oriented at 0° (vertical) in the Discrimination 
task and either +45° or −45° in the WM task; probe stimuli were grat-
ings oriented at 90° (horizontal) in both tasks; and target stimuli were 
gratings oriented at +45° or −45° in both tasks. The stimulus presented 
for each trial was sampled randomly with the aforementioned prob-
abilities, with the exception that after a probe or a target stimulus, a 
cue stimulus was mandatory (100% probability; Extended Data Fig. 1a). 
The only difference between the Discrimination and the WM tasks was 
that the cues were always vertical (0°) gratings in the Discrimination 
task, but the cues (oriented −45° or +45°) were mirrored in orientation 
relative to the current targets (+45° and −45°, respectively) in the WM 
task. Accordingly, in the WM task, the orientations of the cues were only 
switched after the presentation of a target, whereas in the Discrimina-
tion task the cues were always the same (vertical gratings). Because cues 
were more frequent than the other stimulus types (80% probability), 
most trials were consecutive cues of the same orientation. In addition 
to serving as common no-go stimuli in both tasks, the probes ensured 
that the mice were not using an odd-ball detection strategy to perform 
either task (that is, responding to rare stimuli), as the probe presenta-
tion probability was the same as the target probability.

Sequences of delay and stimulus epochs were presented continuously 
(that is, no inter-trial intervals), with individual trials composed of a 
delay and stimulus pair, such that each trial’s stimulus served as a cue to 
the subsequent stimulus. If mice licked the spout during a 1 s response 
window after the onset of the target stimuli (that is, go trials), the trials 
were classified as hit trials; otherwise, they were classified as miss trials. 
In the miss trials, the mice received an automatic reward at the end of 
the response window, consisting of half of the normal reward amount. 
The same 1 s response window was used to classify responses to the cue 
and probe stimuli (that is, no-go trials) as false alarms (FAs) or correct 
rejections (CRs). Licking during the no-go trials was not punished.

Once the mice were trained in both tasks (sequentially, with the order 
varying between mice), the blocked task structure was introduced, with 
the Discrimination and WM tasks alternating every 415 trials over the 
course of each session in the behavioural and optogenetic experiments, 
and a similar but variable number of trials (300–600) in the imaging 

experiments (to accommodate a variable number of trials between the 
rotation blocks; see below). Mice performed between three and eight 
task blocks per session. Mice switched task blocks quickly (within a few 
trials), as the presence or absence of the Discrimination task cue stimu-
lus (a vertical grating) was informative of the task block. Similar two-task 
designs have previously been used to disambiguate the neural correlates 
of specific cognitive processes by isolating neural representations of 
interest from ‘condition-independent’ neural activity29,71. One potential 
drawback of the two-task design is that neural activity may be recruited 
that would otherwise be absent if the mice were only trained on one task. 
Nevertheless, ethological behaviour is characterized by flexible switch-
ing between a vast repertoire of previously learned behaviours, and 
two-task designs therefore impose a reasonably conservative control 
for investigating neural correlates of cognitive processes.

For the imaging experiments (Figs. 2–5), the ±45° oriented gratings 
(that is, cues in the WM task and targets in both tasks) were instead 
oriented at ±30°, and the rotation block structure was introduced. The 
goal of the rotation blocks was to match the cue stimulus grating orienta-
tions between the Discrimination and WM tasks (Extended Data Fig. 1b). 
The rotation blocks consisted of blocks of several hundred trials, out 
of phase with the task blocks described above, during which all stimuli, 
except for the 90° oriented probes, were rotated either 15° clockwise or 
15° counter-clockwise. As such, the resultant stimulus orientations for 
the cues and targets were −45°, −15° and +15°, and −15°, +15° and +45°, 
in the clockwise and counter-clockwise rotation blocks, respectively. 
In between two rotation blocks, the stimulus orientation angles were 
changed slowly in a continuous fashion (averaging around 10 min for a 
full 30° rotation), such that the mouse performance was not disrupted. 
No previous training was required for the mice to perform these rota-
tion blocks, and there was minimal interference with the ability of the 
mice to alternate task blocks as the sudden presence or absence of a 
stimulus in between the two cues in the WM task remained an abrupt 
indicator of a task block switch. A typical session involved alternating 
between switching the task that the mice were performing and rotat-
ing the stimuli that the mice were seeing, such that the −15° and +15° 
oriented stimuli served as either the cues or the targets in both the 
Discrimination and the WM tasks, being matched in orientation across 
rotation blocks.

Optogenetic inactivation of multiple cortical areas
To silence neuronal activity during behaviour (Fig. 1), we optoge-
netically activated ChR2-expressing inhibitory interneurons using 
a 473 nm laser (OBIS, Coherent) with a galvanometer scanning pho-
tostimulation system37. In brief, laser light was reflected off of two 
galvanometer scanning mirrors to target the light, expanded by two 
plano-convex lenses (5× magnification; LA1951-A and LA1384-A, Thor-
labs) and then focused onto the brain with a 200 mm focal-length lens 
(AC508-200-A, Thorlabs). A polarizing beamsplitter was placed in the 
light path, enabling us to simultaneously image the surface of the skull 
(camera, 22BUC03, ImagingSource) to identify and select locations 
for cortical inactivation. The photostimulation and image acquisition 
were controlled by custom LabVIEW software and a data acquisition 
card (PCIe-6321; National Instruments). The laser light was pulsed at 
50 Hz, with a 50% duty cycle. The laser power was set to 3 mW average 
(6 mW peak power) for the first 400 ms of stimulation and then linearly 
tapered off to 0 mW over 200 ms to minimize activity-rebound effects.  
The propagation of reflected light to the eyes of the mouse was blocked by 
either a cement wall around the visible skull or a custom 3D-printed plastic 
lightshield implanted during the headplate surgery. Silencing occurred 
in 12% of trials, at one of three epochs; the onset of the delay, the delay 
end (600 ms before stimulus onset) or the onset of the stimulus. Because 
silencing at the end of the delay was difficult to interpret, as the mice could 
use the silencing to predict the stimulus onset and respond pre-emptively, 
we discarded delay end silencing trials from all of our analyses.  
The cortical area to be silenced was chosen randomly trial-to-trial, and 
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was identified either by the coordinates relative to bregma for areas M2 
and S1, or by intrinsic signal imaging for areas V1 and AM.

A 470 nm masking light, emitted from an optical fibre (FT400EMT; 
Thorlabs) coupled to an LED (M470F3; Thorlabs), placed 20 cm above 
the mouse (roughly in line with the laser light path), diffusely illumi-
nated the head of the mouse (2 mW at the fibre tip). The masking light 
was flashed on each trial in the same manner as the optogenetic silenc-
ing light (400 ms plus 200 ms ramp down), at one of the three onset 
times (delay onset, delay end or stimulus onset), chosen randomly 
on control trials and at a matched onset to the optogenetic silenc-
ing light in silencing trials. This masking light therefore had the same 
dynamics as the laser light, and was used to both mask the presence of 
the laser light during the silencing trials and as a negative control for 
possible light-onset-induced behavioural changes during the control 
trials. The masking light alone (that is, during the control trials) had 
no effect during the 600 ms of masking light presentation, in either 
the Discrimination or the WM task, and at either of the onset times, 
on running speed (n = 9 mice, P > 0.05 for all onset times and tasks, 
two-sided signed-rank test) or stimulus responses (n = 9 mice, P > 0.05 
for all onset times and tasks, two-sided signed-rank test).

Two-photon calcium imaging of cell-body populations
For the cell-body imaging experiments (Figs. 2 and 3), we imaged the 
calcium dynamics in layer 2/3 cells of areas AM and M2 simultaneously 
using a wide field of view two-photon microscope72. The surface blood 
vessel pattern above the imaging sites was compared with the blood 
vessel pattern from the intrinsic signal imaging maps to confirm the 
location of area AM. Fields of view over each area were 600 µm × 600 µm 
and spread over four axial planes 50 µm apart. Frames from all eight 
fields of view were acquired at 4.68 Hz. The image acquisition software 
was ScanImage73. Two cameras (22BUC03, ImagingSource) were posi-
tioned to acquire greyscale videos of the body and left pupil at 30 Hz. 
The visual stimulation display was turned off during the linear phase of 
the resonant scanners corresponding to the image acquisition (12 kHz), 
so as to avoid display light spill-through into the imaging frames.

The imaging data were pre-processed using modified CaImAn soft-
ware74. In brief, cell masks were identified as point-seeds at individual 
cell locations by the experimenter, using the registered mean frame 
image as well as a pixel-surround correlation image. The CaImAn cell 
segmentation and neuropil demixing algorithms (based on constrained 
non-negative matrix factorization) were then applied to the seeds to 
define the mask boundaries and extract the calcium time series from 
individual masks. A second round of experimenter-mediated cura-
tion was performed on these masks, and the calcium time series were 
re-extracted. The calcium time series were then detrended, normal-
ized (ΔF/F0) and deconvolved using the standard CaImAn algorithms 
(FOOPSI75). For all data for which the raw ΔF/F0 activity is shown, the 
underlying statistical analyses (for example, estimating the latencies 
of delay responses for Fig. 2e,h and Extended Data Fig. 5a,b) were done 
on the deconvolved calcium activity. For all other statistical and popu-
lation analyses, only deconvolved calcium activity was used. Imaging 
frames with low correlations to the average image (putative movement 
artefacts), or significant pupil movements (greater than five standard 
deviations from the mean), were discarded. Finally, individual cells were 
further curated using local neuropil correlations, signal-to-noise ratio 
and the number of calcium events, to identify cells with sufficient levels 
of activity for analysis, resulting in an average of 311 ± 57 active cells per 
area AM experiment, and 309 ± 69 active cells per area M2 experiment.

Two-photon calcium imaging for axonal imaging and 
simultaneous optogenetic silencing
For the feedback imaging and local silencing experiments (Figs. 4 and 5), 
we imaged the axonal calcium signals with a custom-built two-photon 
microscope. We acquired two planes 25 µm apart in layer 1 of area AM 
(n = 4 mice) or area M2 (n = 3 mice), with a field of view of 400 × 400 µm 

at a frame rate of 22.78 Hz. Two cameras (22BUC03, ImagingSource) 
were used to record the pupil and body positions at 30 Hz. For each 
imaging site, we also recorded a volumetric image stack to confirm 
the location of tdTomato-ChrimsonR transduced PV+ cells directly 
underneath the recorded axons.

The imaging data were registered and pre-processed using a modi-
fied Suite2p pipeline76. The data were registered, bouton masks were 
extracted, and their calcium traces were baseline-subtracted. F0 normali-
zation was not performed owing to the very low baseline levels of fluo-
rescence. Frames with low correlations to the registered average image 
or frames with significant eye movements were discarded. The boutons’ 
time-series data were then clustered into putative axons using custom 
scripts written in MATLAB (MathWorks). In brief, we used independent 
component analysis (ICA) to extract a 40-dimensional temporal feature 
space from the full dimensional time series. The activity of all boutons, 
projected into this feature space, was then clustered using a Gaussian 
mixture model. The number of clusters was chosen by minimizing an 
adjusted Akaike information criterion error. Boutons with significant dis-
tances from their allocated cluster centre were not clustered, and all other 
boutons were clustered together by simply averaging their signals. This 
clustering procedure returned the activity time series of putative axons, 
each averaging eight boutons, which were then used for all analyses.

Optogenetic silencing of the area targeted by the feedback axons 
was achieved by stimulating the PV+ ChrimsonR-expressing cells imme-
diately underneath the imaging site. A 637 nm laser (OBIS, Coherent) 
was relayed through a 400 µm-diameter optical fibre to a 100 mm 
focal-length lens, which then relayed the light onto the back aperture 
of the objective. The optogenetic laser power, measured immediately 
in front of the objective, was 6 mW (average, 12 mW peak power), pulsed 
at 60 Hz with a 50% duty cycle. Optogenetic silencing occurred in 15% 
of trials, during which the light was introduced at the onset of the delay 
period at full power for 400 ms, and then linearly ramped down to 0 mW 
over the following 200 ms. The optogenetic laser and the visual stimu-
lation display were turned off during the linear phase of the resonant 
scanner (12 kHz), so as to avoid light spill-through during ongoing imag-
ing frame acquisition.

Data analysis
Trials in which mice stopped running or licked during the inter-stimulus 
delay period (Extended Data Fig. 3b), trials following either targets 
or probes (that is, the trials that were 100% probable to be cues), and 
trials in which optogenetic silencing occurred at the end of the delay 
period (see above) were excluded from all analyses. All optogenetic 
silencing trials were excluded from analyses that characterized the 
behaviour (Fig. 1b–f and Extended Data Fig. 2). For the d′ analyses of 
per-mouse delay duration effects (Fig. 1e), positive infinities (that is, 
when no misses occurred) were treated as non-existent data points for 
statistical analysis. d′ was defined as:

d φ φ′ = − ,(Hit rate)
−1

(FA rate)
−1

in which φ is the Gaussian cumulative distribution function.
Statistical analyses of optogenetic inactivation effects (Fig. 1i and 

Extended Data Fig. 4) were done by pooling trials from nine mice (n = 173,432 
trials) and performing a Fisher’s exact test, separately for cue, probe and 
target trials, and split by task. Significance levels were accordingly adjusted 
for multiple comparisons. Bar plot values were the trial-averaged optoge-
netic silencing effects subtracted from the averages of the control trials (in 
which no silencing occurred), and error bars represent the 95% CI of the 
silencing trials (that is, binomial confidence intervals).

For the imaging experiments (Figs. 2–5), although the inter-stimulus 
delay periods ranged from 0 to 4 s as in the behaviour and optogenetics 
dataset (Fig. 1), the lower numbers of trials available within each indi-
vidual imaging session led to there being too few long delay duration 
trials to be used for neural activity analysis (owing to the exponential 



distribution of delay durations). As such, all analyses were limited to 
delay durations ranging from 0 to 3.2 s.

As comparisons of neural activity between tasks were made across 
rotation blocks (Extended Data Fig. 1b), if both rotation blocks were 
present in both tasks within a single session, individual experiments 
consisted of the Discrimination and WM task blocks with the matched 
task stimuli (+15° or −15°) that occurred during opposite rotation blocks 
(that is, there were up to two experiments per session). If only one task 
stimulus was common to both tasks (for example, if only one task switch 
and stimulus rotation occurred), experiments were simply the full 
imaging sessions. All subsequent analyses of neural activity (Figs. 2–5) 
were conducted on such experiments. For depictions of single-cell 
responses (Fig. 2), if there were two experiments within a single ses-
sion, the second experiment within the session was discarded so as to 
not depict the same cells multiple times.

In the cell-body imaging experiments, for analyses limited to delay- or 
stimulus-responsive cells (Fig. 2b,d,e,h and Extended Data Fig. 5a,b), we 
defined delay or stimulus responsiveness as exceeding an effect size 
threshold (0.2 deconvolved ΔF/F0 difference post- versus pre-delay or 
-stimulus) and being significantly different post- versus pre-delay or 
-stimulus onset (two-sided paired-sample t-test; α = 0.01). For axonal 
imaging data, we likewise restricted analyses to axons that had a signifi-
cant amount of delay-evoked activity, defined as 0.2 z-scored ΔF more 
in any one second of the delay than the last second of the preceding 
stimulus with a α = 0.01 significance difference. For the analyses of the 
latency of single-cell responses during the delay (Fig. 2e,h and Extended 
Data Fig. 5a,b), all odd-numbered trials were taken out and used to esti-
mate the response latencies (by taking the mean of Gaussian curves fit 
to the trial-averaged responses), and all of the remaining (even) trials 
were split by task and averaged for display.

For the analysis of low-dimensional neural dynamics (Fig. 2f,g,i,j), the 
activity (deconvolved ΔF/F0) of all cells was pooled across all experi-
ments. First, we trial-averaged the delay and stimulus responses of all 
active cells in all experiments, concatenated the resulting delay and 
stimulus responses and calculated the PCs of these responses (that is, of 
the pooled pseudo-population of cells). We then separately projected 
the trial-averaged Discrimination task and WM task activities of all cells 
into the first three PCs. To plot the resultant activity dynamics (Fig. 2f,i), 
we further separated trials by the length of their delay period, and then 
interpolated and smoothed the resulting activity projections with a 
half-normal filter (that is, causal; σ = 100 ms) to help with visualization. 
The respective statistical analyses (that is, the Euclidean distances 
between projections; Fig. 2g,j) were performed using all trials with no 
interpolation or smoothing.

For all of the population analyses (Figs. 3 and 4), we identified the task 
or cue coding dimensions (CDTASK and CDCUE, respectively) by fitting a 
simple linear model (using LDA) to the condition-specific (condition being 
the task or cue identity of each trial) delay-averaged population activity 
(deconvolved ΔF/F0) within each experiment (that is, a cells × trials matrix 
describing the activity of each cell averaged over each trial’s delay period). 
The coding dimensions were defined as the vectors that separated the 
population activity during the delay periods of the Discrimination and 
WM tasks (CDTASK), or the delay periods after the two cues in the WM task 
(CDCUE). The coding dimensions were not orthogonalized. Incorrect trials 
and trials with optogenetic silencing were excluded when calculating 
these coding dimensions. We used the following formula to identify the 
discrimination vectors:

∑ μ μCD = ˆ ( − )
ab a b→

−1

∑ ∑ Iγˆ = +

in which a and b are the trial conditions (the task or cue), Σ is the 
cells’ covariance matrix (that is, of the cells × trials matrix) and γ is a 

regularization parameter. γ was set to a low value (1 × 10−4), and served 
to stabilize matrix inversion; changing the value of γ did not change 
the results significantly. Using other linear binary classifiers (for exam-
ple, logistic regression) to identify these coding dimensions achieved 
very similar results. For Fig. 3b and Extended Data Figs. 5c–n and 7, the 
PCs were calculated from single trials, concatenated in time, from all 
data that were nominally used for analysis (that is, the first trial after a 
probe or a target and trials during the stimulus rotation periods were 
excluded; see above).

All reported task or cue decoding accuracies were the average 
cross-validation (leave-one-out) test accuracies, calculated by aver-
aging each trial’s prediction of task or cue given the coding dimensions 
derived from the respective experiment’s remaining trials (that is, one 
classification accuracy was derived per experiment). All projections of 
the neural population activity onto the respective coding dimensions 
(for example, Figs. 3c,f,i,l and 4e,k) are likewise the projections of the 
activity of left-out single trials onto the coding dimensions calculated 
from their respective experiment’s remaining trials. The decoding 
accuracies of the training sets are reported in Extended Data Fig. 7. 
Importantly, the reported decoding accuracies for incorrect trials 
(Fig. 3e,h,k,n), optogenetic silencing trials (Fig. 4e,f,k,l) and Discrimina-
tion task CDCUE trials (Extended Data Fig. 9a–h), which were excluded 
from the training sets, were calculated using the same models as those 
used for the reported decoding accuracies of the (left-out) correct and 
non-silenced CDTASK and CDCUE trials.

For the analyses decoding the task or cue before correct or incor-
rect behavioural responses (Fig. 3e,h,k,n), instead of projecting the 
average delay activity of a trial onto the coding dimensions to identify 
that trial’s score, we instead averaged five randomly sampled imaging 
frames (1,068 ms of data) from the delay. This was done to eliminate any 
potential confounds introduced by the fact that longer delay period 
trials have a higher signal-to-noise ratio (that is, more frames to average) 
as well as a higher probability of preceding a false alarm during the WM 
task (Fig. 1c). Similar results were attained without this procedure, or 
by averaging the first five frames of each trial’s delay period.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request. Source data are pro-
vided with this paper.

Code availability
The analysis code is publicly available at www.github.com/ivan-voitov/
loops.
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Extended Data Fig. 1 | Alternative behavioural task schematic and rotation 
block design. a, A schematic of the task design in the style of a finite-state 
machine. Each transition between stimuli is accompanied by a delay period 
(0.8 s to 4 s in length) sampled from a flat hazard rate distribution. Note that 
the transitions following probes and targets are non-probabilistic (are 100% 
likely), and were therefore excluded from analysis. b, A schematic of the 
rotation block design (related to Figs. 2–4). Over the course of each session,  
all cue and target stimuli were rotated 15° clockwise or 15° counter-clockwise in 

blocks of several hundred trials. Rotation blocks were staggered relative to 
task blocks, such that trials from each task coincided with each rotation. Such 
stimulus rotations made the cues in the Discrimination task identical in 
orientation to one of the cues in the WM task that was in the opposing rotation 
block (e.g. 0° → +15° and +30° → +15°). c, Percentage of correct responses in the 
two rotation blocks (error bars are 95% CI, p = 0.78, n = 43 sessions from 7 mice, 
two-sided signed-rank test).



Extended Data Fig. 2 | Psychometric consequences of working memory 
engagement. a–b, Performance of each mouse as a function of the preceding 
delay length, as in Fig. 1c,d, as measured by responses to the cues and targets 
(a), and probes (b) in the Discrimination (blue) and WM (red) tasks. Responses 
to cues and probes are false alarms (FAs) and responses to targets are hits. 
Plotted curves are fits with a linear delay length dependence and a logit link 
function to the response probabilities. Shaded regions represent the ± 95% CI 
for the slope and intercept of each fit. Only responses to the cue stimulus in the 
WM task showed a significant relationship with the delay length (i.e. a non-zero 
slope, p = 3.91 × 10−3, n = 9 mice, two-sided signed-rank test). For the remaining 
response types: p = 0.73, p = 0.57, and p = 0.91 for the Discrimination task cues, 
targets, and probes, respectively, and p = 0.91 and p = 0.91 for the WM task 
targets and probes, respectively. c, Left, cumulative probability of false alarms 
(FAs) to cues at different time lags from the stimulus onset for the 

Discrimination (blue) and WM (red) tasks. Data from all mice were pooled 
together, and binned at 16.67 ms. Arrows represent inflection point times for 
the two tasks (maxima of bin-to-bin differences). Right, differences between 
the two tasks for inflection point times, calculating separately for each mouse 
(n = 9, p = 3.91 × 10−3, two-sided signed-rank test). Horizontal bars represent 
medians. d, As in c, for hits to targets, p = 1.95 × 10−2, two-sided signed-rank test. 
e, Left, proportion of FAs to cues at different time lags from the stimulus onset 
for the Discrimination (blue) and WM (red) tasks. Data from all mice were 
pooled together, and binned at 16.67 ms. Arrows represent the times with the 
largest proportion of responses in each task (i.e., peaks of histograms). Right, 
differences between the two tasks for peak reaction times, calculating 
separately for each mouse (n = 9, p = 3.91 × 10−3, two-sided signed-rank test). 
Horizontal bars represent median peak reaction times. f, Same as e, for hits to 
targets. p = 1.12 × 10−2, two-sided signed-rank test.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Effects of working memory engagement and 
optogenetic inactivation on movement and arousal. a, Left, running speeds 
for the Discrimination (blue) and WM (red) tasks, averaged across mice in the 
behaviour and optogenetic silencing dataset (Fig. 1; n = 9 mice), during the 
delay and stimulus periods, binned at 16.67 ms. Shaded regions are ±  95% CI. 
Right, running speed differences between the tasks, split by animal, averaged 
over the duration of each delay (0 to 4 s) and stimulus (0 to 2 s) periods, p = 0.25 
and p = 3.91 × 10−3, respectively, two-sided signed-rank test. No adjustments  
for multiple comparisons were made. Horizontal bars are the medians.  
b, Percentage of trials with responses during the delay period (left) or halts 
 in running during the delay period (right), averaged for each mouse in the 
behaviour and optogenetic silencing dataset. Early responses and halts, 
compared between tasks, p = 3.91 × 10−3 and p = 0.16, n = 9 mice, two-sided 
signed-rank test, respectively. Horizontal bars are the medians. c, Same as in  
a, but for the imaging (Figs. 2 and 3) dataset, binned at 214 ms, averaged across 
experiments (n = 20, from 7 mice), p = 0.05 and p = 0.07 for the delay and 
stimulus periods, respectively, two-sided signed-rank test, no adjustments for 
multiple comparisons. d, Pupil diameter for the two tasks over the course of the 
delay and stimulus periods, as in c, for the imaging dataset (n = 15 experiments 
from 7 mice, p = 0.56 and p = 0.85, two-sided signed-rank test, no adjustments 
for multiple comparisons). Pupil diameters were mean-subtracted (means 
calculated from the full session) to better identify systematic differences 

between the two tasks. e, The effect of optogenetically silencing area AM on 
mouse running speeds, during the 600 ms window of the silencing light and 
ramp down, at the onset of the delay (left column) and at the onset of the 
stimulus (right column), for the Discrimination (top row) and WM (bottom row) 
tasks, in the behaviour and optogenetics dataset (i.e., Fig. 1, n = 9 mice, two-
sided signed-rank test). Horizontal bars are medians. A three-way ANOVA with 
the silencing, silencing onset, and task conditions found a significant effect of 
silencing onset (p = 7.25 × 10−12) and an interaction between the silencing onset 
and silencing conditions (p = 3.76 × 10−2), but no significant effect of silencing 
(p = 0.16), task (p = 0.64), or task and silencing condition interaction (p = 0.06). 
f, As in e, when silencing area M2. A three-way ANOVA with the silencing, 
silencing onset, and task conditions found a significant effect of silencing 
onset (p = 7.20 × 10−22) and silencing conditions (p = 8.27 × 10−11), but no 
significant effect of task (p = 0.18) or task and silencing condition interaction 
(p = 0.19). g, The effect of optogenetically silencing area AM at the onset of the 
delay in the axonal imaging dataset (i.e., Fig. 4, n = 13 sessions from 4 mice), on 
mouse running speeds (left; p = 0.11, two-sided signed-rank test) and pupil 
diameters (right; p = 0.57, two-sided signed-rank test), during the 600 ms 
window of the silencing light and ramp down. Pupil diameters were mean-
subtracted (means calculated from the full session). h, As in g, when silencing 
area M2 (n = 15 sessions from 3 mice), running speed (p = 0.17) and pupil 
diameter (p = 0.70), two-sided signed-rank test.
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Extended Data Fig. 4 | Optogenetic silencing effects. a, Schematic of the 
optogenetic silencing design, as in Fig. 1g. b, Average optogenetic silencing 
effect on responses to cues (FAs), probes (FAs), and targets (hits) for all areas 
silenced (labels), during both tasks (Discrimination, blue, and WM, red), and for 
the two silencing onsets (at the onset of the delay, left, and at the onset of the 
stimulus, right). Individual bars represent the differences in mean FA or miss 
rate between silenced and control trials (n = 173,432, pooled from all 9 mice). 

Error bars represent 95% CI of silencing trials. Shaded background regions 
group the areas silenced into contralateral, ipsilateral, and visual cortical 
areas. c, Statistical significance of optogenetic silencing effects (p values) for 
each effect shown in b, two-sided Fisher’s exact test, with statistically 
significant effects in bold font. Significance thresholds were adjusted for 
multiple comparisons (36 comparisons, Bonferroni correction, α = 0.0014).



Extended Data Fig. 5 | Temporal profiles and dimensionality of neural 
responses are not influenced by working memory engagement. 
 a, The Discrimination task (blue) and the WM task (red) trial-averaged 
single-cell response latencies of delay-responsive cells (see Methods), binned 
at 400 ms, for the delay (left, n = 805 cells) and stimulus (right, n = 465 cells) 
evoked responses. Mean latencies outside of the delay or stimulus periods 
represented ramping responses and were binned separately. b, Same as in  
a, but comparing the response latencies of areas AM (teal) and M2 (orange).  
a–b, A two-way ANOVA with task and area conditions did not identify a 
significant difference in response latencies across tasks in their delay 
responses (p = 0.43) or stimulus responses (p = 0.07), a small but significantly 
later response latency for area M2 for the delay responses (p = 0.01), no 
significant difference between areas for stimulus responses (p = 0.66), and no 
significant interaction between the area and task conditions in either the delay 
(p = 0.86) or stimulus responses (p = 0.50). c–e, The eigenspectrum of the 
covariance of the population activity during the inter-stimulus delay period, 
shown as the variance explained by the first 20 PCs. PCs were calculated 
separately for individual experiments similarly to Fig. 3b (see Methods). Thick 
line is the average and shaded region is the 95% CI across experiments (n = 18). 
c, Trials split by task (Discrimination task in blue, WM task in red). There was no 
significant difference between tasks in the variance explained by the first PC 
(p = 0.46, two-sided signed-rank test). d–e, Trials split by behavioural response 

to subsequent stimulus during the Discrimination (d) and WM (e) tasks (CR 
grey, FA black). CR trials were randomly selected to match the number of FA 
trials per experiment, and this was permuted 100 times and the results 
averaged per experiment. There was no significant difference between tasks in 
the variance explained by the first PC in either task (p = 0.33 and p = 0.54 for 
Discrimination and WM task, respectively, two-sided signed-rank test). f–h, as 
in c-e, but for area M2 experiments (n = 13, p = 0.16, p = 0.19, and p = 0.77, for 
differences between task, behavioural response during Discrimination task, 
and behavioural response during WM task, respectively). i-k, as in c-e, but for 
population activity during the stimulus (n = 18 experiments, p = 0.68, p = 0.64, 
p = 0.85, differences between task, behavioural response during 
Discrimination task, and behavioural response during WM task, respectively). 
l–n, as in f–h, but for population activity during the stimulus (n = 13 
experiments, p = 0.85, p = 0.42, p = 0.42, differences between task, behavioural 
response during Discrimination task, and behavioural response during WM 
task, respectively). c–n, Delay activity was significantly lower dimensional than 
stimulus activity in area AM (26% variance versus 19% variance explained, 
respectively, by the first PC, averaged across 18 experiments, p = 1.83 × 10−4, 
two-sided signed-rank test) and area M2 (20% variance versus 14% variance 
explained by the first PC, respectively, averaged across 13 experiments, 
p = 2.44 × 10−2, two-sided signed-rank test).



Article

Extended Data Fig. 6 | Dispersed populations of cells are modulated by 
working memory. a, A schematic for generating the null distribution of 
trial-averaged delay period activity in the Discrimination and WM tasks.  
The task labels of all trials (top row) were shifted halfway through to the next 
task block (bottom row), such that the shifted identities maintained the 
temporal structure of the blocked task design but abolished the task-related 
changes in activity. b, Deconvolved and delay-averaged single-cell activities of 

all active cells from area AM (n = 5,168 pooled from 7 mice), split by task. Solid 
lines encompass 95% of the cells in different delay activity bins (binned into 20 
equal portions of cells). Shaded regions encompass a similar 95% of cells but 
with their activities calculated with the shifted task labels. c, Same as in b, for 
area M2 (n = 3,794 cells from 7 mice). d–e, Same as in a–c, but contrasting the 
average delay activity in the WM task following a left leaning cue A or right 
leaning cue B stimulus.



Extended Data Fig. 7 | High-dimensional embedding of working memory 
representations. a, The embedding dimensionality of the CDTASK averaged 
over all area AM experiments (n = 18 from 7 mice). Red horizontal lines are the 
mean cross-validation test accuracies of decoding the task identity from the 
CDTASK using population activity during the inter-stimulus delay period, and 
grey horizontal lines are the corresponding training accuracies (>98% for all 
data shown). Black lines are the mean test accuracies of decoding while limiting 
the data available to the decoder to a number of randomly sampled cells (left), 
the top principal components (centre), or having the top principal components 

excluded (right). The CDTASK was recalculated for each data point (i.e. addition 
or removal of a cell or PC). Shaded regions are the 95% CI across experiments.  
b, As in a, but for area M2 experiments (n = 13 from 7 mice). c–d, As in a–b, but 
for the CDCUE. e–f, As in c–d, but for the CDCUE calculated from the neural activity 
during the stimulus presentation (i.e. sensory responses). g–h, As in a–b, but 
showing the variance explained by the data made available to the decoders in 
the previous plots (i.e. 100% corresponds to the data used for the horizontal 
grey and red lines above).
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Extended Data Fig. 8 | Working memory subspace activity predicts correct 
behavioural responses during the WM task. a, Z-scored CDTASK delay activity 
of individual experiments from area AM (n = 18), split by behavioural outcome 
(CR and FA), and averaged across Discrimination task (blue) and WM task (red) 
trials (p = 6.29 × 10−4 for the WM task, p = 0.21 for the Discrimination task, 
two-sided signed-rank test). Horizontal bars represent medians. b, Proportion 
of trials with their task correctly classified using CDTASK delay activity prior to 
CRs or FAs, as in Fig. 3e, plotted for individual experiments from area AM 
(n = 18, p = 5.68 × 10−3 for the WM task, p = 0.79 for the Discrimination task, 
two-sided signed-rank test). c–d, as in a–b, for area M2 experiments (n = 13; 
z-scored CDTASK delay activity differences p = 4.79 × 10−2 and p = 0.79 for WM and 

Discrimination task trials, respectively, and task classification accuracy 
differences p = 1.34 × 10−2 and p = 0.91 for WM and Discrimination task trials, 
respectively, two-sided signed-rank test). e–h, As in a–d, for CDCUE activity 
during the WM task. e–f, For area AM experiments (n = 18; z-scored CDCUE delay 
activity differences p = 2.47 × 10−3 and p = 7.30 × 10−3 for cue A and cue B trials, 
respectively, and cue classification accuracy difference p = 2.13 × 10−3, 
two-sided signed-rank test). g–h, For area M2 experiments (n = 13; z-scored 
CDCUE delay activity differences p = 2.44 × 10−4 and p = 0.19 for cue A and cue B 
trials, respectively, and cue classification accuracy difference p = 1.22 × 10−3, 
two-sided signed-rank test).



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Cue representations during the delay are selective to 
the WM task. a, The percentage of trials which had their task (left column) or 
cue (middle and right columns) correctly classified using CDTASK and CDCUE 
activity, respectively. Classification was performed using activity from the 
trials’ delay periods (black) or stimulus periods (turquoise). Trials for task 
classification were taken from both the Discrimination and WM tasks, as in 
Fig. 3, and trials for cue classification were split into left-out Discrimination 
task trials (right column) and the orientation-matched WM task trials (middle 
column) classified using the same training trials to identify CDCUE during the 
WM task. Average classification accuracy is shown for area AM experiments 
(n = 18). Error bars represent 95% CI across experiments. b, Single-trial 
population activity of an example experiment from area AM, aligned to the 
onset of the delay, and projected onto the CDCUE. Trials are split into 
Discrimination task trials (blue lines) and the orientation-matched WM task 
trials (red lines). Only trials with sufficiently long delay periods (≥ 2 s) are 
shown. c, Z-scored single-trial CDCUE projections of area AM activity in the 
second half (>1.6 s) of the delay period plotted against the first half (<1.6 s)  
of delay period (i.e. each point is one trial). Trials were split by task 
(Discrimination task trials in blue, orientation-matched WM task trials in red). 
Only trials with sufficiently long delay periods (≥ 2 s) were included in this 
analysis (n = 2,921 trials collected from 18 experiments). Solid and dashed lines 
represent the slopes and 95% CI of a fit regression model. The models’ 
coefficients of determination (R2) and slopes, and their differences between 
the two tasks (p = 9.18 × 10−10 and p = 2.80 × 10−7, respectively, difference greater 
than zero, two-sided one-sample t-test), are printed in the top left. d, The 
proportion of cue trials in which the delay CDCUE activity correctly classified the 
preceding cue stimulus, split by task. Delay periods were split based on 
whether they preceded a correct rejection (CR) or false alarm (FA) to the 
subsequent cue (p = 2.43 × 10−8, n = 3,580 trials for the WM task, p = 0.25, 

n = 9,649 trials for Discrimination task, two-sided Fisher’s exact test). Error bars 
represent 95% CI. e–h, As in a–d, but for area M2 experiments. g, n = 1,882 trials 
from 13 experiments. Model coefficients of determination (R2) and slopes 
differences between the two tasks (p = 2.88 × 10−4 and p = 2.30 × 10−2, 
respectively, difference greater than zero, two-sided one-sample t-test). h, Pre-
CR and pre-FA difference, p = 3.04 × 10−2 for Discrimination task and p = 2.10 × 10−2  
for WM task, n = 6,961 and n = 2,575 trials from 13 experiments, two-sided 
Fisher’s exact test. i, Delay period averaged population activity, per WM task 
trial, from an example experiment in area AM, projected onto the CDTASK 
(horizontal axis) and CDCUE (vertical axis). Black points represent individual 
trials’ delay period activity prior to CRs and red points prior to FAs. CDTASK and 
CDCUE were identified independently for each trial using all remaining trials (i.e. 
leave-one-out cross-validated). Points below zero correspond to trials in which 
the task (horizontal axis) or cue (vertical axis) was incorrectly classified. j, The 
prediction of preceding cues from the population activity during the delay 
(measured as classification accuracy, i.e. the percentage of trials below zero on 
the vertical axis of i), when the Task was incorrectly (left column) or correctly 
(right column) classified, for all trials pooled from area AM experiments 
(n = 3,452 CR trials and n = 405 FA trials pooled from 18 experiments; p = 3.15 × 10−7  
and p = 1.74 × 10−3 for CR and FA trials, respectively, two-sided Fisher’s exact 
test). Error bars represent 95% CI. k, The Pearson’s correlation coefficient (r) 
between CDTASK and CDCUE delay activity, per area AM experiment (n = 18; 
greater than zero, p = 2.80 × 10−4, two-sided one-sample signed-rank test). 
Horizontal bar represents median. l, As in j, but for area M2 experiments 
(n = 2,378 CR trials and n = 395 FA trials pooled from 13 experiments; p = 2.07 × 10−7  
and p = 2.21 × 10−3 for CR and FA trials, respectively, two-sided Fisher’s exact 
test). m, as in k, but for area M2 experiments (n = 13, p = 1.71 × 10−2, two-sided 
one-sample signed-rank test).



Extended Data Fig. 10 | Effects of target area optogenetic silencing on 
feedback axonal activity. a, Area M2 → AM boutons’ z-scored average delay 
activity (left column), delay activity projected onto the first principal 
component of the trial-averaged population activity (middle column), and the 
delay activity projected onto the CDCUE (right column), averaged from the 
control trials (black circles) and the trials following delay-onset optogenetic 
inactivation of area AM (red circles). Horizontal bars are the medians across 

experiments. Average delay activity p = 0.72, first principal component activity 
p = 0.09, and CDCUE activity p = 1.32 × 10−4, two-sided signed-ranked test, n = 19 
experiments from 4 mice. b, As in a, but for experiments recording area AM → M2  
bouton activity while silencing area M2. Average delay activity p = 0.10, first 
principal component p = 0.31, and CDCUE activity p = 1.00 × 10−2, two-sided 
signed-ranked test, n = 19 experiments from 3 mice.
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