Skip to main content
. 2022 Jun 29;50(6):1284–1298. doi: 10.3758/s13421-022-01331-0

Table 3.

Summary of linear mixed effects models analyzed in Study 2

Lexical Recognition RT Semantic Processing RT
Model 1 Model 2 Model 3
Predictors Estimates p Estimates p Estimates p
(Intercept) 915.79 <0.001 977.62 <0.001 977.61 <0.001
Log Frequency (Year 2000) -63.55 <0.001 3.50 0.609 3.71 0.590
Word Length 28.14 <0.001 -21.36 0.002 -21.36 0.002
Age of Acquisition (AOA) 79.17 <0.001 10.53 0.105 10.48 0.107
Emotionality -3.50 0.075 -11.20 0.108 -11.47 0.102
Valence -6.49 0.001 -15.69 0.018 -15.83 0.017
Arousal -28.87 <0.001 1.27 0.855 1.45 0.835
Concreteness -7.59 0.001 -46.65 <0.001 -38.29 <0.001
Age (Continuous) 1.86 <0.001
Age (Middle-aged Adults = TRUE) 48.69 0.043 48.93 0.042
Semantic Stability btw 1970-2000 -2.48 0.218 -20.80 0.001 -11.46 0.091
Middle-aged:Semantic Stability -18.93 <0.001
Middle-aged:Concreteness -16.70 <0.001
Concreteness:Semantic Stability 0.38 0.956
Middle-aged:Concreteness:Semantic Stability -6.59 0.083
Random Effects
σ2 327530.75 142385.96 142216.83
τ00 17564.11 Word 33545.40 id 33545.82 id
6465.37 Word 6500.28 Word
ICC 0.05 0.22 0.22
N 5385 Word 237 id 237 id
180 Word 180 Word
Observations 3267383 42505 42505
Marginal R2 / Conditional R2 0.056/0.104 0.018/0.233 0.019/0.235

Age is coded as a categorical variable (Younger adults = 0, Middle-aged adults = 1) in the semantic decision task (Models 2 & 3) while it is a continuous variable in lexical decision task (Model 1). All continuous predictors are standardized.