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Abstract.—Microbial population genetics models often assume that all lineages are constrained by the same population
size dynamics over time. However, many neutral and selective events can invalidate this assumption and can contribute to
the clonal expansion of a specific lineage relative to the rest of the population. Such differential phylodynamic properties
between lineages result in asymmetries and imbalances in phylogenetic trees that are sometimes described informally but
which are difficult to analyze formally. To this end, we developed a model of how clonal expansions occur and affect the
branching patterns of a phylogeny. We show how the parameters of this model can be inferred from a given dated phylogeny
using Bayesian statistics, which allows us to assess the probability that one or more clonal expansion events occurred. For
each putative clonal expansion event, we estimate its date of emergence and subsequent phylodynamic trajectory, including
its long-term evolutionary potential which is important to determine how much effort should be placed on specific control
measures. We demonstrate the applicability of our methodology on simulated and real data sets. Inference under our clonal
expansion model can reveal important features in the evolution and epidemiology of infectious disease pathogens. [Clonal
expansion; genomic epidemiology; microbial population genomics; phylodynamics.]

In a microbial population, a clonal expansion event
happens when a single individual (or clone) acquires
an advantage relative to the rest of the population. This
advantage could be selective, for example, a mutation
conferring antimicrobial resistance (Blair et al. 2015;
Holmes et al. 2016), or neutral, for example, a founder
effect when the clone reaches a new population of
susceptible hosts (Peter and Slatkin 2015). Whatever the
mechanism, clonal expansion causes a single lineage
to grow suddenly, leading to what were described as
“epidemic clones” based on bacterial genotyping data
(Maynard-Smith et al. 1993; Smith et al. 2003; Feil
et al. 2004; Fraser et al. 2005). Since the advent of
whole-genome sequencing, clonal expansions have often
been observed and described informally in pathogen
phylogenetic trees, when a branch suddenly seems to
split into multiple branches (Holden et al. 2013; McVicker
et al. 2014; Eldholm et al. 2015; Shapiro 2016; Stoesser et al.
2016; Ledda et al. 2017).

Phylodynamics can be used to infer past population
size changes given pathogen genetic data (Ho and
Shapiro 2011; Volz et al. 2013). However, most
phylodynamic methods assume that the same popula-
tion size function applies to the whole population, which
is inappropriate if a clonal expansion event affected
only a subset of the sampled population. Differences
between the branching observed in a phylogeny and the
branching expected in the absence of any population
structure can be used to test this assumption (Dearlove
and Frost 2015; Volz et al. 2020). This principle provides
a nonparametric approach to the detection of hidden
population structure, based on rejection of the null
hypothesis of an unstructured population. By contrast,

here we develop and apply an explicit phylodynamic
model for how structure arises through one or more
clonal expansion events.

We describe a phylogenetic model of clonal expansion
which is an extension of the coalescent framework
(Kingman 1982; Donnelly and Tavare 1995; Rosenberg
and Nordborg 2002), and more specifically an extension
of the dated coalescent with heterochronous sampling
and varying effective population size (Griffiths and
Tavare 1994; Donnelly and Tavare 1995; Drummond et al.
2002; Drummond et al. 2003; Biek et al. 2015). In brief, our
population model consists of several subpopulations,
including a “background” component of constant size,
plus an unknown number of additional components
each of which corresponds to a clonal expansion event,
with an associated time of emergence, growth rate,
and maximum population size (carrying capacity). We
also describe how to perform Bayesian inference under
this model, taking as input a dated phylogeny, such
that can be reconstructed using BEAST (Suchard et al.
2018), BEAST2 (Bouckaert et al. 2019), treedater (Volz
and Frost 2017), TreeTime (Sagulenko et al. 2018), or
BactDating (Didelot et al. 2018). In this inferential
setting, our methodology allows us to detect putative
clonal expansions, assess their statistical significance,
and estimate the specific parameters controlling their
growth. We performed inference on simulated data sets,
where the correct clonal expansions that took place
are known, in order to benchmark the specificity and
sensitivity of our methodology. We also analyzed several
real data sets from recent studies on infectious diseases,
and show that our new method can reveal important
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TABLE 1. Summary of parameters and priors used for Bayesian inference

Parameter description Prior

Number of clonal expansions �(M−1)=poisson(�)
Subpopulation membership probabilities �(���|M)=dirichlet(�)

Subpopulation membership �(f|���)=
M∏

j=1
�
|fj |
j

Background population size �(NM)=lognorm(�anc,�anc)

Carrying capacities �(Nj|NM)=lognorm(NM,�exp)

Times of clonal expansion emergence �(texp
j |NM)=gamma

(
�2

	2 ,
	2NM
�

)
Time to reach half of carrying capacity �(hj|NM)=exponential(
r/NM)

Origin of each clonal expansion �(dj|texp
1..M)=uniform({i∈{1,...,M} : texp

i > texp
j })

features in pathogen evolutionary epidemiology that
would otherwise be difficult to analyze.

MATERIALS AND METHODS

Mathematical Model Description
We consider the ancestry of a sample of N

individuals indexed by i∈{1,...,N}, with sampling
times denoted t={ti}i∈{1,...,N}. Here and elsewhere in
this article, time is measured backward in time so
that for example if t1< t2 then sample 1 is more
recent than sample 2. The population is structured
into M≥1 subpopulations indexed by j∈{1,...,M}:
the subpopulations j∈{1,...,M−1} correspond to
M−1 “clonal expansion” subpopulations whereas
the population j=M is called the “background”
subpopulation. Each individual has the same probability
�j of belonging to subpopulation j, with ���={�1,...,�M}
and

∑M
j=1�j =1. This population structure therefore

partitions the sampled individuals {1,...,N} into M

mutually disjoint subsets f={f1,...fM−1,fM} with
M⋃

i=1
fi =

{1,...,N}.
The background subpopulation (j=M) is assumed

to be ruled by the coalescent process with constant
population size NM (Kingman 1982). Each of the other
subpopulations (j=1,...,M−1) on the other hand is
ruled by a coalescent model with its own varying
population size function (Griffiths and Tavare 1994).
For each of these clonal expansion subpopulations, we
define a time of emergence texp

j , a carrying capacity Nj

and the time hj it takes to reach half of the carrying
capacity. Together these parameters determine the size
�j(t) of the subpopulation j at time t as follows:

�j(t)=
⎧⎨
⎩

Nj(t
exp
j −t)2

h2
j +(texp

j −t)2 if t≤ texp
j

0 otherwise
. (1)

Note that this function has the property �j(t
exp
j )=0

so that the population size reaches zero, when the

expansion begins at texp
j . This forces the coalescent rate

for a lineage to diverge to infinity as t→ texp
j . As such all

lineages from the subpopulation are forced to coalesce
before texp

j . From a modeling perspective, this can be
interpreted as the population being negligible at the
time of the lineage diverging. Furthermore, �j(t)→Nj
when t→−∞ in accordance with the definition of a
carrying capacity being the size reached in the long term.
Finally, we note that �j(t

exp
j −hj)=Nj/2, which means

that hj is indeed the time it takes to reach half of the
carrying capacity. This function represents a qualitative
approximation to the population dynamics of a clonal
expansion.

To complete the definition of the joint ancestral process
for all N individuals, we consider that each of the
clonal expansions originated from either the background
subpopulation or from one of the preexisting clonal
expansions. Let dj denote the population from within
which expansion j∈{1,...,M−1} originates. Therefore,
dj ∈{1,...,M} with the condition that if dj<M then texp

j <

texp
dj

(if the origin is not the background subpopulation,
it is another clonal expansion that must have emerged
beforehand). Since each expansion starts with a
negligible population size, this implies that the group
of leaves sampled from a subpopulation is either
monophyletic (if this subpopulation is not the origin
of another one) or paraphyletic (otherwise) in the
phylogeny of all N individuals.

Table 1 summarizes the parameters involved in this
model, and lists the priors which were used to perform
Bayesian inference under this model. The background
population size effectively acts as a scale parameter
on the entire process. First of all, we assume that
the final effective population sizes of the individual
expansions are in the same order of magnitude as the
background population size, as defined by the prior
probability �(Nj |NM). Furthermore, by affecting the
expected time to most recent ancestor of the phylogeny,
the background population size strongly determines
which clonal expansions will be detectable and which
will not. An expansion which occurred in the distant
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past, or whose growth rate is slow is very likely to fully
coalesce while its effective population size remains near
constant, making it undetectable. As such, we condition
both texp

j and hj on NM, leading to the prior distributions

�(texp
j |NM) and �(hj|NM).

Bayesian Inference
Performing inference under the clonal expansion

model above for a given dated phylogeny g requires
estimation of the value of all the underlying parameters
of this model, including the unknown number of
subpopulations M. We consider the prior distributions
summarized in Table 1. For convenience, let��� denote the
combination of the parameters NM for the background
population and (Nj,t

exp
j ,hj,dj) for each of the j=1,...,

M−1 clonal expansions. The joint prior on��� is therefore:

�(���|M)=�(NM)
M−1∏
j=1

�(Nj|NM)�(texp
j |NM)

×�(hj|NM)�(dj|texp
1..M) (2)

We can decompose the posterior probability of the
model parameters given the dated phylogeny as follows:

p(M,f,���,���|g)∝p(g|M,f,���)�(M,f,���,���)

=p(g|M,f,���)�(M−1)�(���|M)�(f|���)�(���|M).
(3)

All other terms correspond to prior densities given
in Table 1 and Equation 2, except for the first
term p(g|M,f,���) which is the likelihood of the dated
phylogeny when all parameters are known, including
which leaves belong to which subpopulations, the
population size function of each subpopulation, and
the origin of each clonal expansion subpopulation. In
these conditions, the likelihood is simply the product
of likelihoods of the coalescent process in each of the
subpopulations. Note that as M increases, meaning
that more clonal expansion events are introduced,
the probability �(f|���) decreases since the number of
possible membership assignment increases, but this
is compensated by an increase in the likelihood
p(M,f,���,���|g) since coalescent events between lineages in
different components become disallowed. Let gj denote
the part of the dated phylogeny that corresponds to
the subpopulation j. Knowledge of (M,f,���) allows us
to decompose exactly the genealogy g into each of the
gj components. Note in particular that a component gj
contains all the leaves indexed in fj plus a leaf dated at
texp
a for each subpopulation a such that da = j, meaning

that the origin of a is j. With these notations, the
likelihood is therefore decomposed as:

p(g|M,f,���)=p(gM|NM)
M−1∏
j=1

p(gj|Nj,t
exp
j ,hj) (4)

The first term corresponds to the coalescent process
in the background subpopulation, with constant
population size �M(t)=NM, and the remaining terms
correspond to the coalescent process in the clonal
expansion subpopulations, each with their own
population size function �j(t) as defined in Equation 1.
These terms can be computed using standard coalescent
theory (Griffiths and Tavare 1994; Donnelly and Tavare
1995; Drummond et al. 2002). Briefly, if a population
has size �(t) and A(t) extent lineages at time t, then the
probability of a dated phylogeny g with n−1 coalescent
events at times c1,...,cn−1 is given by:

p(g|�(t))=exp
(
−

∫ ∞

−∞
1[A(t)≥2]

(
A(t)

2

)
1
�(t)

dt
)n−1∏

i=1

1
�(ci)

.

(5)
Note the absence of the

∏n−1
i=1

(A(ci)
2

)
term as this is the

likelihood of the entire genealogy, meaning both the
branch lengths and the topology, so that this term from
the probability of the waiting times cancel out with its
reciprocal from the probability of the topology.

The computation in Equation 5 requires us to calculate
the integral of the reciprocal of the population size
function, for each interval of time in which A(t) is
constant and greater than one. This is straightforward
for the background subpopulation, and for each clonal
expansion subpopulation j with the population size
function given in Equation 1 we can use the primitive
function:

∫
1
�j(t)

dt= t
Nj

+
h2

j

Nj(t
exp
j −t)

. (6)

This completes the definition of the posterior
probability in Equation 3. In order to sample from
this posterior distribution, we use a Reversible jump
Markov Chain Monte-Carlo (Green 1995; Hastie and
Green 2012), since the dimensionality of the parameter
space depends on the unknown parameter M. The
details of the updates used in this procedure are given
in Supplementary material available on Dryad at
https://datadryad.org/stash/share/ixEVEZP4KS40Ze
gMZsDFSXATKhMRTEAEweau6zK8Qa4. Unless other-
wise stated, during inference on all real and simulated
data sets, we used the following hyperparameters: �=1,
�=1, �anc =3, �anc =3, �exp =1, �=1/2, 	=1/2, 
r =5.

Practical Considerations
Here, we provide a practical summary of the model

hyperparameters, with advice on how to elicit them,
as well as considerations for the input phylogeny.
The parameter � corresponds to the Poisson mean of
the prior placed on the number of expansions. The
parameter� corresponds to the concentration parameter
of a Dirichlet prior on subpopulation membership
probabilities, and therefore regulates how balanced the
number of tips assigned to individual subpopulations

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://datadryad.org/stash/share/ixEVEZP4KS40ZegMZsDFSXATKhMRTEAEweau6zK8Qa4
https://datadryad.org/stash/share/ixEVEZP4KS40ZegMZsDFSXATKhMRTEAEweau6zK8Qa4
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will be. �anc and �anc correspond to the log-normal
mean and standard deviation of the prior placed on
the effective population size NM of the background
population. The prior distribution on the expansion
parameters are set so that NM acts as a scale parameter
for the entire process. �exp corresponds to the log-
normal standard deviation for the effective population
size of expansions, with their log-normal mean being
NM. The parameters � and 	 determine the mean �NM
and variance (	NM)2 of the expansion emergence time
prior. Finally, the parameter 
r controls the mean NM/
r
of the prior distribution on the time it takes an expansion
to reach half of its carrying capacity.

An important practical aspect of Bayesian inference
is elicitation of priors. While we provide a set of
default values which should be a reasonable starting
point for most applications, we encourage to consider
the specificities of each application. The default
hyperparameter values are �=1,�=2,�anc =3,�anc =
3,�exp =1/2,�=1/2,	=1/2,
r =5. When considering a
specific application, particular attention should be given
to hyperparameters � and �exp. We advise starting with
�=1, and adjusting upwards if there is a reasonably
strong belief that the phylogeny may contain a large
number of clonal expansions, for example, if the samples
are clustered across several geographically disconnected
locations, as these processes are likely to give rise to
clonal expansions. To elicit �exp, one should consider
what the effective population size of clonal expansions
can be relative to the size of background population. In
general, �exp<1 to penalize unreasonably large carrying
capacities which could lead to identifiability issues.
Finally�anc and �anc can be adjusted to be make the prior
on NM more informative if we have prior knowledge
on the background population size. The concentration
parameter � can be adjusted upwards to discourage
expansion that consist of only a few tips.

Our model assumes that the input phylogeny is
correct, and inaccuracies will affect the inferences
on clonal expansions. In particular, it is important to
pay attention to unrealistic branch lengths. Negative
branch lengths outright invalidate our approach as they
are not consistent with the coalescent framework.
With maximum likelihood trees, unrealistically
short or zero branch lengths could lead to false
identification of expansions. When using a Bayesian
phylogenetic reconstruction, care should be taken that
the summarized phylogeny has all branch lengths
strictly positive. The computational time required per
iteration scales linearly with the number of tips in a
phylogeny. However, mixing properties and number of
iterations required to reach satisfactory results generally
depend on the complexity of the underlying population
structure, as well as the compatibility of the phylogeny
with our model. Posterior distributions under the
model are relatively complex and high-dimensional,
which makes their analysis a nontrivial task. The
posterior probability that a pair of tips belongs to
the same population partition block can be evaluated

and visualized as a heat map whose block structure
coincides with the posterior clonal expansion structure,
while also including information about the underlying
uncertainties. Combined with information from the
posterior marginal for the number of clonal expansions,
different expansion scenarios can then be formulated
and evaluated.

Simulation of Testing Data
The process characterized above represents a standard

Continuous Time Markov Chain (CTMC) and as such
can be simulated directly via Gillespie’s algorithm
(Gillespie 1976). The waiting times are sampled through
inverse transform sampling with the inverse of the total
process rate being approximated numerically. For the
simulation of the genealogy in the first illustrative data
set presented, we used the following hyperparameters:
�=1, �=2, �anc =4, �anc =1/2, �exp =1, �=1/2, 	=1/4,

r =5. For all other simulated genealogies, we used: �=
1, �=2, �anc =5, �anc =1/2, �exp =1/2, �=1/3, 	=1/4,

r =5.

Implementation
We implemented the simulation and inference

methods described in this paper into a new R
package entitled CaveDive which is available at
https://github.com/dhelekal/CaveDive . The
package uses ape (Paradis and Schliep 2019) as a
backend for handling phylogenies and ggtree (Yu et al.
2017) for handling the visualization of results. We also
used the coda package (Plummer et al. 2006) to assess
the convergence and mixing properties of our MCMC
sampler and found them to be satisfactory with Gelman–
Rubin statistics being less than 1.1 and the effective
sample sizes in excess of 200 for all parameters in the runs
presented below. All runs were performed on a single
core of Intel(R) Core(TM) i7-3770 CPU with 8GB RAM.

RESULTS

Illustration of the Clonal Expansion Model
In order to illustrate the concepts behind our clonal

expansion model, we simulated from it the scenario
shown in Figure 1. In this example the population
was made of M=4 components: a background
subpopulation (pink) and three clonal expansions (blue,
orange, green). Figure 1a shows the effective population
size of the four subpopulations as a function of time.
The background subpopulation remains of a constant
size throughout, whereas each of the clonal expansions
is characterized by a time when the expansion started,
a carrying capacity and a time to reach half of this
carrying capacity. The blue clonal expansion was the
first one to have emerged, it has a large carrying
capacity but this potential is almost fully realized. The
orange clonal expansion emerged next and very quickly
reached a relatively small carrying capacity. Finally, the
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FIGURE 1. A realization from the clonal expansion model. a) Effective population size functions for each of the subpopulations. Each
subpopulation is shown using a different color, with its size (x-axis) given as a function of time since present (y-axis). Note that the background
subpopulation (pink) has a constant size whereas the three other subpopulations (orange, blue, and green) are clonal expansions. b) Dated
phylogeny colored according to the four subpopulations as in part (a).

green clonal expansion emerged and at the present
time it is still growing and far from having reached its
capacity.

Figure 1b shows the corresponding dated phylogeny
with 200 tips that was simulated in this example. Each
point on this dated phylogeny belongs to one of the
subpopulations and is colored accordingly as in Figure
1a. A change of color therefore corresponds to the
emergence of a clonal expansion. The blue and orange
clonal expansions emerged out of the background
subpopulation, whereas the green expansion emerged
out of the preexisting blue expansion, as can be seen
from the transition from blue to green.

For each of the four subpopulations, the population
size function (Fig. 1a) determines the branching pattern
in the corresponding part of the phylogeny (Fig. 1b).
For example, the background subpopulation (pink)
had a constant population size and the corresponding
branches are therefore consistent with expectation under
the standard coalescent model. By contrast, the three
clonal expansions have been growing in size more or
less suddenly resulting in star-like branchings soon after
their times of emergence. The orange and blue clonal
expansions have almost reached their carrying capacities
so that recent branchings are similar to the expectation
under a constant population size as for the background
subpopulation. The green clonal expansion on the other
hand is still growing and remains very small giving it a
more linear structure.

Application to a Single Simulated Data Set

We attempted to reconstruct the clonal expansion
structure underlying the example shown in Figure 1.
In this inferential setting, the input data is therefore
the dated phylogeny shown in Figure 1b, without the
coloring or location of color changes that correspond to
the emergence of clonal expansions. The aim is to infer
the correct number of clonal expansions (three in this
case), their locations on the phylogeny (color changes in
Fig. 1b) as well as the demographic properties of each
subpopulation (Fig. 1a).

The priors used during the inference were the same
as used for the simulation of this phylogeny. The
MCMC sampler was run for 107 iterations with sampling
every 1000 iterations, which took approximately 1.5
hours. The results are shown in Figure 2 and Figure
S1 of the Supplementary material available on Dryad.
The correct number of three clonal expansions was
inferred with 67.5% of the posterior probability mass
concentrated there, and the majority of the remainder
of the posterior probability mass shared between four
and five clonal expansions (Fig. 2b). This suggests that
although the phylogenetic data is informative about the
three correct expansions, it is not possible to rule out the
existence of other expansions that would have left little
effect on the phylogeny, for example if they were very
recent and if they would have concerned only a small
number of leaves. The correct position for the clonal

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
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FIGURE 2. Application to the simulated data set shown in Figure 1. a) Posterior distribution of the background population size. b) Posterior
distribution of the number of clonal expansions. c,d) Posterior probabilities of having a clonal expansions on different branches of the tree,
with the indexes of three branches of interest shown. e) Posterior distribution of clonal expansion starting times, with prior shown in purple.
f–h) Posterior reconstruction of the expansion population dynamics. 95% credible intervals in gray. Median in solid orange for past population
dynamics and dashed blue for future prediction of the population dynamics. True population dynamics in dotted green.

expansions was inferred with high probability, although
it was not always possible to distinguish with certainty
between the correct branch or the ones directly above
or below (Fig. 2c,d). The demographic parameters of the
three clonal expansions (carrying capacity and time to
reach half of it) were also correctly inferred, resulting

in posterior distributions for the effective population
size of each expansion over time similar to the ones
used in the simulation (Fig. 2e–g). The only exception
concerned the carrying capacity parameter of the orange
expansion which was slightly overestimated (branch
49, cf Fig. 2f), because of the difficulty in correctly
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inferring such a sudden and self-limiting expansion. For
comparison purposes, we applied treestructure (Volz
et al. 2020) to the same data set, and found that only
the most recent clonal expansion was detected (Fig. S2
of the Supplementary material available on Dryad). We
also applied treeImbalance (Dearlove and Frost 2015)
which found several nodes with statistically significant
evidence of imbalance (Fig. S3 of the Supplementary
material available on Dryad).

Application to Multiple Simulated Data Sets
Firstly, we performed inference based on 100 simulated

dated phylogenies, in which no clonal expansion event
occurred, so that the whole phylogeny is ruled by a
single coalescent process with constant population size.
Each phylogeny had a number of tips uniformly sampled
between 80 and 300. This allowed us to evaluate the false
discovery rate of our methodology. For each data set
in this test, the MCMC was run for 106 iterations with
sampling every 100 iterations. We found that in 98% of
the replicates, the highest posterior probability was of
having no clonal expansion, corresponding to a 2% false
positive rate. Such occasional false positive detection of
clonal expansion events is to be expected due to the fact
that such events can leave little phylogenetic signature,
and therefore be difficult to rule out.

Secondly we performed inference based on 200
simulated dated phylogenies with 100 tips each, in which
a single clonal expansion event occurred, and the results
are shown in Figure 3. In this benchmark, the MCMC
was run for 107 iterations with sampling every 1000
iterations. For nearly 74.5% of the simulated datasets a
single clonal expansion was found to be most likely (Fig.
3a), as was indeed correct. In 15.5% of the replicates, no
clonal expansion was found to be most likely, indicating
a false negative case. This result reflects the fact that some
clonal expansion events are hard to infer if they left little
phylogenetic signature, for example if they occurred very
recently, were sampled only a small number of times, or
occurred so long ago that almost all coalescent events
occur before the period of rapid growth. Finally, in 10%
of the simulated data sets two clonal expansions were
found to be most likely, representing a relatively low
rate of false positive detection, for the same reasons as
in the previous simulations where no clonal expansion
had happened.

When a single clonal expansion was inferred, the
probability of having this inferred event on the correct
branch was typically high (Fig. 3b). However, when that
was not the case, the clonal expansion was almost always
inferred on a very closely related branch, as can be
seen when computing the Jaccard distance between the
correct and inferred expansion memberships (Fig. 3c).
The inferred effective population size of the background
population was highly consistent with the correct values
(Fig. 3d), and the same was true for the carrying capacity
of the clonal expansion (Fig. 3e). The time taken to
reach half of the carrying capacity was harder to infer,

with little correlation between the correct and inferred
values (Fig. 3f). The dating of the emergence of the
clonal expansion was often very precisely estimated (Fig.
3g), although in some cases the credible interval on
this parameter was larger, which would be expected for
example if the clonal expansion happened on a long
branch.

Finally, we performed inference based on 100
simulated dated phylogenies in which two or more
clonal expansion events occurred. We have simulated
four sets of 25 phylogenies, with each set having
two, three, four, and five expansions respectively.
These particular phylogenies were simulated using
a total number of tips equal to 60 plus 40 times
the number of expansions. In this benchmark, the
MCMC was run for 2×107 iterations with sampling
every 2000 iterations. The expected posterior (Fig.
4a) marginals for the number of expansions show a
clear trend in probability mass being located on a
greater number of putative clonal expansions as the
number of simulated expansions increases. We observe
a tendency to underestimate the number of expansions,
which increases with the true number of expansions.
In terms of the posterior expectation of the number
of expansions (Fig. 4b), we observe a clear increasing
trend in terms of the medians, which initially closely
follow the true number of expansions in the case of two
and three expansion phylogenies, and underestimates
the number of expansions for phylogenies with four
and five expansions. This result reflects our relatively
conservative prior on the number of expansions M∝
Poisson(1), and the fact that they become harder to
detect as more and more occur on the same phylogeny,
frequently with some expansions originating from
within another.

Application to Streptococcus pneumoniae Data Set Global
Pneumococcal Sequence Cluster 18

As the first real data set to demonstrate our method,
we used a global collection of genomes from the Global
Pneumococcal Sequence Cluster 18 (GPSC18) from a
previously published study (Gladstone et al. 2019). In
this study, the authors described increased invasiveness
in serotype 14 compared to the background genotypes
in the GPSC18 cluster. Indeed, serotype 14 is one of
the leading causes of invasive pneumococcal disease
(Song et al. 2013), and its prevalence was reported to
have increased in recent years, despite its inclusion
in pneumococcal conjugate vaccines (He et al. 2015).
This data set consists of 228 genomes collected between
1991 and 2015, for which a dated phylogeny has been
previously published (Gladstone et al. 2020). Running
our software for 108 iterations took approximately 15
h. The results are shown in Figure 5 and Figure S4
of the Supplementary material available on Dryad.
The posterior inferred under our model includes a
single clonal expansion with very high certainty (Fig.
5a), although other less certain expansions cannot be

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
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FIGURE 3. Application to 200 simulated trees containing one expansion. a) Histogram of posterior modes for the number of expansions. b)
Histogram of probability to have a clonal expansion on the correct branch. c) Histogram of Jaccard distances between the true expansion and the
expansion corresponding to the mode branch. d–g) Scatter plots showing posterior median and 95% credible interval for individual expansion
parameters, with correct values on the x-axis and inferred values on the y-axis. b–g) Only include simulations where the inferred mode of the
number of expansions was one.

completely ruled out. The model therefore separates
the genomes into two categories, with about 80% of
them belonging to the expansion and the remainder
belonging to the background population (Fig. 5b).
Notably, the expansion contains the vast majority of

serotype 14 isolates, while containing only very few
isolates corresponding to other serotypes (Fig. 5c).
Conversely, the background population contained few
isolates of serotype 14, with most of them being of
serotype 7C, 16F, 19A, or 19F (Fig. 5c). The inferred
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FIGURE 4. Application to 100 simulated data sets, with 25 per each scenario with 2, 3, 4, and 5 expansions. a) Expected posterior distributions
for the number of expansions for each scenario. b) Box plots of the posterior mean number of expansions for each simulation by scenario.

population size dynamics of clonal expansion suggests
that currently the expansion is of a slightly smaller size
than the background population of the GPSC18 cluster,
but that it is still growing and might increase beyond the
size of the background population in the future (Fig. 5d).
This result is consistent with the fact that more genomes
belonged to the clonal expansion than to the background
population: since serotype 14 is more associated with
disease, it would tend to be over-represented in isolate
collections (Didelot and Maiden 2010).

Application to Methicillin-Resistant Staphylococcus
aureus Data Set

We reanalyzed a previously published data set of
genomes of methicillin-resistant Staphylococcus aureus
(MRSA) from the USA300 lineage (Uhlemann et al. 2014).
This lineage was first reported in the early 2000s but
quickly spread throughout the United States to become
a leading cause of community-acquired skin infections
(Challagundla et al. 2018). The data set consists of 347
genomes isolated between 2006 and 2011, for which
we constructed a dated phylogeny using BactDating
(Didelot et al. 2018) under the additive relaxed clock
model (Didelot et al. 2021). The run time for our clonal
expansion analysis software was just under 19 h for 108

iterations. The results are shown in Figure 6 and Figure
S5 of the Supplementary material available on Dryad.
The posterior mean for the number of clonal expansions
was 3.04, with 28%, 42%, and 27% posterior probability
assigned to having 2, 3, and 4 clonal expansions,
respectively. The most probable posterior population
structure therefore consists of three expansions which

are nested into one another. The first expansion occurs
at branch 374, which then gives rise to an expansion
associated with branch 84 and which finally gives rise
to expansion starting from branch 217 (Fig. 6). The
first expansion on branch 374 is the most certain one,
and also the most significant one since it splits from
the background population which is of a constant
population size. This result therefore suggests that it
is not the whole of the USA300 MRSA lineage that
expanded, but rather a large subset of it which is
associated almost perfectly with the presence of the
arginine catabolic mobile element (ACME) (Fig. 6).
ACME provides polyamine resistance as well as other
functions (Joshi et al. 2011). An association between
ACME and the expansion within USA300 has been
suggested before (Uhlemann et al. 2014; Challagundla
et al. 2018) but here for the first time we have detected
it using a well-suited model of clonal expansion. A
previous phylodynamic analysis showed the temporal
association between the USA300 growth rate and the
consumption of �-lactams assumed that the whole
population followed the same dynamic function (Volz
and Didelot 2018). We show here that this is not correct
but this previous analysis remains approximately valid
since the vast majority of genomes are part of the ACME-
associated clonal expansion. The other two putative
expansions that are nested within the first one do not
seem associated with a clear genetic change that would
provide a selective advantage, but are more likely to
correspond to founder effects occurring as USA300
spread in different parts of the human population
(Challagundla et al. 2018).

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
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FIGURE 5. Application to GPSC18 Streptococcus pneumoniae phylogeny. a) Dated phylogeny with branches colored according to the inferred
probability of clonal expansion. The single branch with a high probability of clonal expansion is labeled. b) Pairwise matrix showing the
posterior probabilities of any two samples belonging to the same subpopulation. c) color map showing serotype values. d) Posterior summary
of the inferred effective population size functions. The colored regions represent 95% credible interval and the lines represent median. Solid
denotes past effective population size inference and dashed represents prediction of future effective population size.

Application to Streptococcus pneumoniae Data Set
GPSC9

We also analyzed a previously described global
collection of genomes from the Global Pneumococcal
Sequence Cluster 9 (GPSC9) (Gladstone et al. 2020).
This data set consists of 277 genomes collected between

1995 and 2016 for which a dated phylogeny has been
previously published (Gladstone et al. 2020). The MCMC
was run for 108 iterations and terminated within 18 h.
The results are shown in Figure 7 and Figure S6 of
the Supplementary material available on Dryad. The
posterior mean for the number of expansions was

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
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FIGURE 6. Application to methicillin resistant Staphylococcus aureus data set. a) Dated phylogeny with branches colored according to the
inferred probability of clonal expansion. Three branches with high probability of clonal expansion are labeled. b) Pairwise matrix showing the
posterior probabilities of any two genomes belonging to the same subpopulation. c) Color map showing the presence of relevant phenotypes.

approximately 3, with 56% of the posterior probability
mass on this number. Approximately 25% of the
probability mass rests on a two expansion scenario,
and the remainder is distributed between cases with
four or more expansions. The latter may be closer
to the truth given the previously noted tendency to
underestimate clonal expansion numbers (Fig. 4). The
most certain clonal expansion occurred on branch
389 and corresponds to isolates from all over the
world but are unique within GPSC9 in containing the
ermB1 erythromycin resistance gene and being of a
serotype not covered by the pneumococcal conjugate
vaccines (Fig. 7). This clade therefore represents a
clear example of vaccine escape by replacement of
the capsular locus (Mostowy et al. 2017), followed by
worldwide spread. Other identified groups of genomes
correspond to locally successful clades as previously
described (Gladstone et al. 2020). For example the
expansion on branch 288 corresponds to a clade that has
successfully established itself throughout the African
continent as well as India, with around 50% posterior
support to separate the Indian component within this
expansion. The background population corresponds
to the first South African clade previously identified

(Gladstone et al. 2020). These results showcase once
again how differences in the phylodynamic trajectories
of sublineages are not always caused by a selective
advantage of the pathogen, but often linked with the
structure of the host population.

DISCUSSION

Detecting emerging microbial populations is a
persistent and critical public health challenge.
However, robust solutions to this problem have
been little explored. In this work, we describe a novel,
computationally tractable Bayesian approach to finding
expanding populations within dated phylogenies.
Using simulated phylogenies, we estimated the false
positive rate of the approach, which was about 2%
in the simulations performed. We also estimated the
sensitivity of detection of clonal expansions, which was
of the order or 75%, with limited sensitivity attributable
to the limited phylogenetic signature left by expansions
occurring in antiquity, very recently, or with limited
sampling. Importantly, in an analysis of real data
from three separate microbial populations causing
high burdens of human disease, we identified clonal
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FIGURE 7. Application to GPSC9 Streptococcus pneumoniae phylogeny. a) Dated phylogeny with branches colored according to the probability of
clonal expansion. Three branches with high probability of clonal expansion are labeled. b) Pairwise matrix showing the posterior probabilities of
any two samples belonging to the same subpopulation. c) Color map showing geographical sampling location, erm gene presence, and whether
the serotype is covered by the vaccine. d–f) Posterior summary of the inferred effective population size functions. The grayed regions represent
95% credible interval and the lines represent median. Solid denotes past effective population size inference and dashed represents prediction of
future effective population size.

expansions associated with known virulent factors, drug
resistance loci, and absence from vaccine coverage, all
biologically credible determinants of clonal expansion.
Thus, the application of the approach on both simulated
and real world microbial populations indicate the
approach described may have wide application. To

allow widespread use of our new methodology, we
provide an implementation in the form of a R package.

Our methodology has a number of limitations,
inherent in the assumptions we have made in our model.
Firstly, we assume that the background population,
before any clonal expansion occurred, has a constant
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population size. This assumption would be invalidated
for example if the whole population under analysis has
been expanding. However, in this case a clonal expansion
event would be inferred close to the root. Furthermore,
the choice of a constant background population size
is convenient from a statistical point of view since it
allows scaling of many parameters against the size of
the background population (see Table 1). Another choice
we made concerns the form of the demographic function
after a clonal expansion occurs (Equation 1). Once again
this is a choice of convenience, since this function starts
at zero when the expansion starts, plateaus at a well-
defined carrying capacity value and its reciprocal has
an analytical primitive as needed (Equation 6). Our
function approximates well the logistic growth behavior
we seek to model and which arises for example in
a susceptible-infectious-susceptible (SIS) model (Allen
2008). Future work could seek to investigate other choices
of functions, but choosing another function with similar
properties would probably not make much difference
to inference results. Our model also assumes that clonal
expansions are the only type of phylodynamic events to
occur, disallowing for example the possibility for any
population size reduction. This is partly because the
effect of reduction on phylogenies is less dramatic than
sudden growth, so that such events would be harder
to detect, but also and mostly because our aim was to
provide a method for clonal expansion analysis rather.
Further work should seek to expand on our method and
develop a more complete framework for the analysis of
differential phylodynamic trajectories between lineages,
although attention should be given to the identifiability
of model parameters.

Biased sampling is a well described confounding
factor in phylodynamic studies (Dearlove et al. 2017).
To investigate this effect on our method, we simulated
standard coalescent trees with many leaves, and then
downsampled the leaves in one lineage by a factor that
varied between 0.2 and 1. When the bias was strong
enough, a clonal expansion event was often detected
(Fig. S7 of the Supplementary material available on
Dryad). However, this behaviour is to be expected,
since without any clonal expansion there would be no
structure in our model and therefore no explanation
for the difference in sampling intensity. Indeed biased
sampling can only be achieved if we consider some tree
structure, with at least one clade being biased sampled
compared to the others. Detecting a clonal expansion
event can then be thought of as revealing this underlying
structure in the phylogeny, even if in this case there is no
underlying difference in the phylodynamic properties
between clades.

There are few previous methods to which our
approach can be compared, as this is a first-in-class
principled approach to the key problem of detecting
clonal expansions, whereas the vast majority of existing
phylodynamic methods assumes that all lineages follow
the same demographic function (Ho and Shapiro 2011).
A recent study proposed a nonparametric test of this

assumption which can be used to split a phylogeny
into separate components but which does not allow
further analysis of the phylodynamic properties of
each component (Volz et al. 2020). Perhaps the closest
existing method is the recently proposed multitype
birth–death (MTBD) model (Barido-Sottani et al. 2020)
which is based on the birth–death model (Stadler
2010). In both cases, the aim is to model the effect
of population heterogeneities in dated phylogenies.
However, the model we present is based on a coalescent
process as opposed to a birth–death type process,
and as such makes fewer assumptions about sampling
(Volz and Frost 2014). Furthermore the scenario being
modelled is quite different and is underpinned by a
completely different set of assumptions. Since our focus
is specifically on clonal expansions, an equivalent to
birth–death changes only occurs when all members
of a given clonal expansion have coalesced, which is
not the case with the MTBD model (Barido-Sottani
et al. 2020). Instead, our model is more closely related
to the multispecies coalescent (Degnan and Rosenberg
2009), but with the key differences that we consider
the phylogeny of just a single locus, and that there
is an extreme bottleneck at speciation events. Some
comparison may also be drawn with genetic clustering
based on fitting a Markov-modulated Poisson process
(McCloskey and Poon 2017), although this method
focuses on detecting small scale outbreaks, whereas
we are interested in a phylodynamic behavior on a
significantly larger scale. Furthermore, the assumptions
are completely different: our model is phylodynamic and
does not represent an approximation of a transmission
tree. Finally, our method is related with approaches to
detecting structure which are not based only on the
phylogeny, but exploit integration with other type of data
(Baele et al. 2016), for example using the distribution of a
phenotype (Ansari and Didelot 2016) or the geographical
origin of the samples (Bloomquist et al. 2010).

The approach presented here should be applicable
to a wide range of microbes, as long as their
ancestral process can be summarized using a dated
phylogeny, and that the genomic data are sufficiently
informative to reconstruct such a tree with reasonable
accuracy. Our method was designed primarily to analyze
retrospectively the structure of microbial populations,
as illustrated in the three applications to real life data
sets we described. However, our method could also
be useful in a public health setting to detect, confirm
and analyze suspected outbreaks of infectious diseases,
or the emergence of new lineages with increased
transmissibility, bearing in mind that clonal expansion
events can also be associated with nonepidemic
factors.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://datadryad.org/stash/share/ixEVEZP4KS40Ze
gMZsDFSXATKhMRTEAEweau6zK8Qa4.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab095#supplementary-data
https://datadryad.org/stash/share/ixEVEZP4KS40ZegMZsDFSXATKhMRTEAEweau6zK8Qa4
https://datadryad.org/stash/share/ixEVEZP4KS40ZegMZsDFSXATKhMRTEAEweau6zK8Qa4
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