Skip to main content
. 2021 Dec 28;71(5):1255–1270. doi: 10.1093/sysbio/syab100

Table 1.

Performance of selected tree distance metrics against tests of tree distance behavior

Ranking Best 2 3 4 5 Worst
Length of move: mis-orderings (0–545) RF (0) CID (8) QD (94) Path (126) SV (188) KC (360)
No. leaves moved: inconsistent cases (0–289) Inline graphic CID (0) Inline graphic Path (0) SV (2) KC (11) QD (17) RF (289)
Saturation: 11-leaf trees with max score (1–100,000) Inline graphic CID (1) Inline graphic QD (1) Inline graphic Path (1) Inline graphic SV (1) KC (3) RF (86,336)
Sensitivity: distinct values (100,000–1) CID (28,939) KC (581) SV (541) Path (302) QD (200) RF (6)
Shape independence: Inline graphic (0–1) QD (10Inline graphic CID (0.0079) RF (0.024) SV (0.055) KC (0.35) Path (0.48)
Balance independence: Inline graphic (0–1) RF (0.0001) QD (0.0007) CID (0.0014) SV (0.004) Path (0.027) KC (0.375)
Cluster recovery: mean rank (1–25) CID (7.2) QD (9.8) RF (10.9) KC (14.1) Path (16.3) SV (16.9)
Bullseye subsampling successes (1000–0) CID (650) Path (633) QD (626) SV (588) KC (573) RF (410)
Bullseye miscoding successes (1000–0) CID (941) QD (809) RF (781) SV (709) Path (704) KC (598)
SPR rearrangement: Kendall’s Inline graphic (1–0) CID (0.771) RF (0.744) QD (0.739) SV (0.608) Path (0.536) KC (0.482)
Random distances interquartile range (Inline graphic of median) QD (1.6) CID (1.6) SV (2.2) Path (18.8) KC (35.2) RF (n/a*)

Note: Parentheses denote range of possible scores for each measure (best to worst). Note that random tree pairs obtain the maximum possible RF distance, resulting in a zero interquartile range (*). Full details and results in Smith (2020a) and Smith (2021).

CID Inline graphic clustering information distance; KC Inline graphic Kendall–Colijn distance; QD Inline graphic quartet distance; RF Inline graphic Robinson–Foulds distance; SV Inline graphic split size vector distance.