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Abstract
We investigated the potential role of sleep-trait associated genetic loci in conferring a degree of their effect via pancreatic α- and β-cells, given that both sleep 
disturbances and metabolic disorders, including type 2 diabetes and obesity, involve polygenic contributions and complex interactions. We determined genetic 
commonalities between sleep and metabolic disorders, conducting linkage disequilibrium genetic correlation analyses with publicly available GWAS summary 
statistics. Then we investigated possible enrichment of sleep-trait associated SNPs in promoter-interacting open chromatin regions within α- and β-cells, intersecting 
public GWAS reports with our own ATAC-seq and high-resolution promoter-focused Capture C data generated from both sorted human α-cells and an established 
human beta-cell line (EndoC-βH1). Finally, we identified putative effector genes physically interacting with sleep-trait associated variants in α- and EndoC-βH1cells 
running variant-to-gene mapping and establish pathways in which these genes are significantly involved. We observed that insomnia, short and long sleep—but not 
morningness—were significantly correlated with type 2 diabetes, obesity and other metabolic traits. Both the EndoC-βH1 and α-cells were enriched for insomnia loci 
(p = .01; p = .0076), short sleep loci (p = .017; p = .022) and morningness loci (p = 2.2 × 10−7; p = .0016), while the α-cells were also enriched for long sleep loci (p = .034). 
Utilizing our promoter contact data, we identified 63 putative effector genes in EndoC-βH1 and 76 putative effector genes in α-cells, with these genes showing 
significant enrichment for organonitrogen and organophosphate biosynthesis, phosphatidylinositol and phosphorylation, intracellular transport and signaling, stress 
responses and cell differentiation. Our data suggest that a subset of sleep-related loci confer their effects via cells in pancreatic islets.

Key words:   sleep; pancreas; alpha cell; beta cell; chromatin conformation capture; epigenetics; metabolism; GWAS

© The Author(s) 2022. Published by Oxford University Press on behalf of Sleep Research Society. All rights 
reserved. For permissions, please e-mail: journals.permissions@oup.com

Statement of Significance

Altered glucose metabolism observed in sleep dysregulation contributes to obesity and type 2 diabetes risk. We investigated if known sleep genetic loci 
exert any effect via pancreatic alpha and beta-cells. Correlation analyses with GWAS data revealed genetic commonalities between sleep and metabolic 
disorders. We then intersected GWAS with 3D genomic data to assess enrichment of sleep trait SNPs within promoter-interacting open chromatin re-
gions in the human beta-cell line, EndoC-BH1, and sorted human alpha-cells. EndoC-BH1 and alpha-cells were enriched for chronotype, insomnia and 
short sleep loci, along with long sleep for just the alpha-cells. Subsequent ‘variant-to-gene mapping’ implicated effector genes for these sleep traits. Our 
data suggest that a subset of sleep-related genetic loci confer their effects via pancreatic islet cells.

XX

XX

XX

https://orcid.org/0000-0002-6850-8164
https://orcid.org/0000-0002-0954-7446
https://orcid.org/0000-0002-2927-2013
https://orcid.org/0000-0003-2025-5302
mailto:grants@chop.edu?subject=


2  |  SLEEP, 2022, Vol. 45, No. 8

Introduction

Sleep is a phylogenetic conserved state of reversible quies-
cence essential to many biological functions including metab-
olism [1]. There is a large body of evidence linking poor sleep 
to metabolic disorders, such as type 2 diabetes (T2D), obesity, 
and insulin resistance [2]. One hypothesis behind this link is 
that poor sleep promotes metabolic dysregulation and im-
mune responses, triggering appetite disruption and the onset 
of metabolic diseases [3].

In addition to metabolic traits impacting sleep patterns, in-
somnia is conversely gaining recognition as a key risk factor 
for T2D; indeed, people with insomnia are 28% more likely to 
present with T2D than those without insomnia symptoms [4], 
whereas 50% of individuals with T2D suffer from insomnia [5]. 
Furthermore, among individuals reporting short sleep (<7 hours 
per night), there is a high prevalence of higher body mass index 
(BMI) and obesity [6]. A bidirectional study on possible associ-
ations of actigraphic-assessed sleep patterns (total sleep time, 
sleep efficiency, sleep onset latency, and wake after sleep onset) 
with BMI and waist circumference (WC) showed that poor sleep 
was associated with higher BMI/WC and, conversely higher BMI/
WC was associated with decreased sleep duration [7]. Moreover, 
induced sleep deprivation in healthy individuals leads to 
changes in glucose metabolism, i.e. increased glucose release 
and insulin resistance, which can be reversed by restoring 
normal sleep cycles [8]. Sleep restriction also alters the release 
of hormones such as leptin and ghrelin and stimulates appetite, 
therefore promoting the intake of high-calorie food and weight 
gain [2].

There is a strong evidence for a genetic component to the 
pathogenesis of sleep-related traits. Recent GWAS efforts high-
light the complex polygenicity of sleep traits; 248 significant 
and independent signals have been reported for insomnia [9], 
351 for morningness (preference to wake up very early in the 
morning and being more active in the daytime) [10], 27 for short 
sleep (< 7 hours per 24 hours) [11] and 8 for long sleep (≥ 9 hours 
per 24 hours) [11]. Two-sample Mendelian Randomization (MR) 
analyses use GWAS summary statistic to infer statistically 
causal relations between risk factors and disease outcomes [12], 
estimating if genetic risk variants for a trait might predispose to a 
second trait. Several MR studies have shown that the underlying 
genetics of insomnia can be a predisposing factor for the onset 
of T2D [8, 9, 13] or for cardiovascular disease [14]. However, MR 
results on sleep duration have shown no clear significant causal 
relationships with T2D, BMI or cardiovascular diseases [11, 15, 
16]. MR studies of short sleep and metabolic traits are mixed, 
some showing that short sleep genetic is a predisposing factor 
for T2D [13] and cardiovascular disease [8], whereas others show 
that short sleep is not causal for glycemic-related traits, such as 
fasting glucose and insulin [16]. Finally, one MR study showed 
that sleep genetics is linked to human metabolism [17]; indeed, 
patients with insomnia showed a different global metabolic 
profile when compared to healthy controls, with elevated amino 
acid and energy metabolites suggesting that insomnia is associ-
ated with metabolic dysregulation [18].

Despite increasing evidence, the physiopathology under-
pinning the association between poor sleep and metabolic dis-
orders remains unclear. Going beyond the traditional research 
efforts in brain regions, the pancreatic islet represents an add-
itional tissue worth exploring further. The islets of Langerhans 

within the pancreas play a major role in glucose homeostasis 
and metabolism through the secretion of hormones in to the 
blood stream. α-cells release glucagon while β-cells release in-
sulin, δ-cells produce somatostatin to inhibit the release of both 
glucagon and insulin, and γ-cells release pancreatic polypeptide 
to modulate overall pancreatic secretory activity [19].

Given the clinical and genetic associations between sleep 
and metabolic disorders, and the functional role of pancreatic 
islets in the pathogenesis of T2D, we investigated a potential 
role for genetic variants associated with sleep traits in the con-
text of endocrine pancreatic islets. We leveraged both public 
GWAS reports and our own genomic data. We considered four 
different sleep traits, namely insomnia, morningness, short, 
and long sleep. Using published GWAS summary statistics, we 
calculated the genetic correlation between these sleep pheno-
types and metabolic traits, including T2D and obesity. We gen-
erated ATAC-seq and promoter-focused Capture C libraries 
from α-cells isolated from human pancreatic islet samples and 
from an established model for human β-cells (EndoC-βH1) [20]. 
We then intersected the GWAS data with these in-house gen-
erated genomic datasets to investigate potential enrichment 
of sleep-trait-associated loci within open chromatin regions 
of α-cells and of EndoC-βH1 via partitioned linkage disequilib-
rium score regression analyses (LDSR). We subsequently per-
formed a physical variant to gene mapping effort to implicate 
putative functional genes at GWAS sleep-trait-associated loci 
in these two cell types. Finally, we assessed the putative func-
tions of the newly implicated effector genes by running enrich-
ment pathways analyses.

Methods

Genetic correlation analyses

We performed Linkage Disequilibrium Score Regression ana-
lyses (LDSC) to calculate genetic correlations between pairs of 
traits using LD Score Regression v1.0.0 (https://github.com/bulik/
ldsc). The 1000 Genome project phase 3 were used to estimate 
the LD structure for European populations. We tested insomnia, 
morningness, short and long sleep against metabolism-related 
traits (Supplementary Table S1). Quality control of the inputted 
summary statistics and heritability analysis were automatic-
ally performed. We adjusted the p-values for multiple compari-
sons using the Benjamini–Hochberg false discovery rate (FDR) 
method and considered two traits to be significantly correlated 
with an adjusted p-value < .05. The genetic correlations were not 
biased by sample overlap [21].

Partitioned LD score regression

Partitioned LD score regression estimates heritability from GWAS 
summary statistics within a subset of regions of the genome 
after accounting for LD. Partitioned heritability was measured 
using LD Score Regression v1.0.0 (https://github.com/bulik/ldsc) 
to identify enrichment of GWAS signals among cis-regulatory 
elements (cREs) in α-cells and in EndoC-βH1 as previously per-
formed [22]. Briefly, the annotation and heritability estimates for 
α-cells and for EndoC-βH1 were generated using bed files con-
taining the position of the cRE (OCRs located proximal to a pro-
moter (−1500/+500bp of TSS) + OCRs located within overlapping 

https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
https://github.com/bulik/ldsc
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regions with ±500  bp buffers. hESC-derived hypothalamic-like 
neurons (HNs) were used as positive control, given the recog-
nized role of the hypothalamus in both circadian rhythms and 
metabolism [23]. We used the annotation and heritability esti-
mates for HNs had been previously generated by our team [22]. 
We tested insomnia, morningness, short and long sleep. The 
enrichment within the α-cells, EndoC-βH1 and HNs were com-
pared to the baseline model for the EUR ancestry, downloaded 
from https://github.com/bulik/ldsc/wiki/Partitioned-Heritability. 
The results were visualized as bubble plots using ggplot2, with 
circle size representing fold enrichment of cREs compared to the 
base annotation and the color indicating the statistical signifi-
cance (−log (p-value)). We tested insomnia [9], morningness [10], 
short and long sleep [11] in this context.

Cell models

Pancreata from deceased organ donors were obtained by 
Human Pancreas Analysis Program (HPAP) (https://hpap.pmacs.
upenn.edu), a Human Islet Research Network consortium. 
α-Cells were isolated based on the protocol originally pub-
lished by Dr. Grompe’s Llaboratory [24], and modified as de-
scribed here (https://hpap.pmacs.upenn.edu/explore/workflow/
islet-molecular-phenotyping-studies?protocol=2).

EndoC-βH1(20) were purchased from Univercell Biosolutions 
and cultured following manufacturer instructions, cells were 
kept in Matrigel (100 µg/mL)-fibronectin (2 µg/mL)-coated wells 
and fed with DMEM enriched with 5.6 mM glucose, 2% BSA frac-
tion V (Roche Diagnostics), 50  μM 2-mercaptoethanol, 10  mM 
nicotinamide (Calbiochem), 5.5  μg/mL transferrin (Sigma–
Aldrich), 6.7  ng/mL selenite (Sigma–Aldrich), 100 U/mL peni-
cillin, and 100  μg/mL streptomycin. Passages were performed 
when confluence was observed. From passage 14 onwards, a 2/3 
dilution passage was performed every week.

HNs were previously generated at Columbia University [25].

ATAC-seq

Three technical replicates of ATAC-seq libraries for the 
EndoC-βH1 cell-line were generated and analyzed using an es-
tablished protocol [22, 25]. Briefly 50 000 α-cells or EndoC-βH1 
were collected, washed in PBS and pelleted for 5 min at 550 rcf 
at 4°C. The pellet was resuspended in 50  µL of chilled ATAC-
seq lysis buffer (10  mM Tris–HCl, pH 7.4, 10  mM NaCl, 3  mM 
MgCl2, 0.1% IGEPAL CA-630 (NP-40)) and centrifuged again for 
10 min at 550 rcf at 4°C. The pelleted nuclei were tagged using 
Tn5 Transposase (Illumina, Cat #FC-121–1030) by incubating for 
45 min at 37°C. The DNA was purified using the MinElute Kit 
(Qiagen, Cat #28004) and eluted in 10.5 µL elution buffer. Purified 
tagged DNA fragments were PCR-amplified using Nextera pri-
mers and NEB-Next High-Fidelity PCR Master Mix (New England 
Labs, Cat #M0541). The generated libraries were cleaned with 
1.8X Agencourt AMPureXP beads (BeckmanCoulter, Cat # 
A63880) and quality was assessed using a bioanalyzer. The li-
braries were paired-end sequenced using the Illumina Novaseq 
6000 platform and 50 bp reads. Open chromatin regions were 
called using the ENCODE ATAC-seq pipeline (https://github.
com/kundajelab/atac_dnase_pipelines), selecting the resulting 
IDR optimal peaks (with all coordinates referring to hg19). We 
defined a genomic region as open if it had a 1-bp overlap with 

an ATAC-seq peak. ATAC-seq libraries for HNs were previously 
generated and analyzed in our lab [22, 25], whereas processed 
ATAC-seq data for α-cells were retrieved from the Diabetes 
Epigenome Atlas (accession number for replicates TSTFF310588, 
TSTFF447068, TSTFF559678) [26, 27].

Promoter-focused Capture C

We generated α-cells and EndoC-βH1 promoter-focused Capture 
C libraries as previously described [22, 25, 28]. Each generated 
library was sonicated using a QSonica Q800R to obtain 350 bp 
DNA fragments which were purified using AMPureXP beads 
(BeckmanCoulter, Cat # A63880) and measured via Qubit fluor-
ometer. Fragments quality and sizes were assessed using a 1000 
or HS DNA Chip on a Bioanalyzer 2100 (Agilent). DNA ends were 
repaired and adaptors were ligated using Agilent SureSelectXT 
Library Prep Kit (Agilent, G9611A). After a bead clean-up step, 
quality control of the DNA fragments was performed again on 
the Bioanalyzer 2100. A  custom-designed capture probe set 
(Agilent) [28] was hybridized to the adaptor-ligated DNA frag-
ments using the SureSelectXT capture kit (Agilent, 5190-4901) 
to generate high-complexity libraries, followed by a final QC 
on the Bioanalyzer 2100. Each captured library was paired-
end sequenced on the Illumina Novaseq 6000 on S2 flow cells 
(100 bp read length for α-cells, 50 bp read length for EndoC-βH1 
cells). Data were analyzed as previously described [22, 25, 28]. 
Promoter-focused Capture-C libraries from HNs were generated 
previously and analyzed in our lab [22, 25].

Genetic loci included in variant-to-gene mapping

We used 248, 351, 27 and 8 independent SNPs from published in-
somnia [9], morningness [10], short- and long-sleep [11] studies. 
To derive proxy SNPs, we used SNiPA with GRCh37 as human 
reference assembly; 1000 Genomes phase 1v3 as variant set; 
European population; Ensembl 87 for genome annotation and 
an LD threshold of r2 > 0.8. We intersected the genomic coordin-
ates (hg19) of the proxy SNPs with accessible regions defined by 
ATAC-seq and promoter interacting regions defined by Promoter 
Focused Capture C with α-cells or EndoC-βH1 separately to pin-
point those sleep-associated open proxies intersecting with the 
promoters of putative effector genes operating in each of the 
pancreatic cell settings. We focused on open proxies that con-
tacted open gene promoter regions with r2 > 0.8, as this value 
represents variants in strong linkage disequilibrium for each re-
ported sentinel SNP.

Enrichment pathways analyses

Enrichment pathway analyses were performed using the 
“Compute Overlaps” tool provided by Gene Set Enrichment 
Analysis (GSEA) website (https://www.gsea-msigdb.org/gsea/
index.jsp). Only genes with RPKM >1 in α-cells; and TPM >1 in 
EndoC-βH1 were considered. The Compute Overlaps tool first 
calculated the overlap of our selected genes with Molecular 
Signatures Database (MSigDB) annotated gene sets. Then it 
determined the statistical significance of the overlaps using a 
hypergeometric test. The p-values were corrected by the FDR 
method. We considered pathways with at least two overlapping 
genes and with an adjusted p < .05 as significant.

https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://hpap.pmacs.upenn.edu
https://hpap.pmacs.upenn.edu
https://hpap.pmacs.upenn.edu/explore/workflow/islet-molecular-phenotyping-studies?protocol=2
https://hpap.pmacs.upenn.edu/explore/workflow/islet-molecular-phenotyping-studies?protocol=2
https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/atac_dnase_pipelines
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Data and resource availability

The datasets generated during and/or analyzed during the 
current study are not publicly available due to their utilization 
in two other parallel manuscripts in preparation but are avail-
able from the corresponding author upon reasonable request 
and will be made publicly available once all three studies are 
published.

Results

Genetic correlation analyses

We ran linkage disequilibrium score regression analyses 
(LDSC) to estimate the genetic correlation between insomnia, 
morningness, short and long sleep with T2D, BMI, obesity 
class 1 (BMI ≥30 kg/m2), obesity class 2 (BMI ≥35 kg/m2), obesity 
class 3 (BMI ≥40 kg/m2), extreme BMI, and extreme waist to hip 
ratio, overweight, fasting glucose, fasting insulin, fasting pro-
insulin, Homeostatic Model Assessment for Insulin Resistance 
(HOMA-IR) and ß-cell function (HOMA-b), glycated hemoglobin 
(HbA1c), waist circumference, waist circumference adjusted to 
BMI, hip circumference, hip circumference adjusted BMI and 
waist to hip ratio.

Insomnia, short and long sleep were significantly cor-
related with T2D (genetic correlation coefficient (rg) 0.20 
and adjusted p =1.7 × 10−10, rg=0.2; padj = 1.2 × 10−9, rg = 0.22; 
padj = 2.6 × 10−8, respectively). As well as other metabolic traits 
commonly associated with T2D: fasting glucose (insomnia 
rg = −0.14; padj = 5.6 × 10−5, short sleep rg = −0.14; padj = 1.6 × 10−4, 
long sleep rg  =  −0.1; padj  =  3.3  ×  10−2) and Hba1c (insomnia 
rg = 0.17; padj = 2.6 × 10−3, short sleep rg = 0.21; padj = 1.2 × 10−3, 
long sleep rg = 0.10; padj = 4.1 × 10−2). Insomnia was also sig-
nificantly correlated with HOMA-IR (rg = 0.14; padj = 2.4 × 10−2), 
while short and long sleep showed a significant correlation 
with fasting insulin (short sleep rg = −0.12; padj = 4.3 × 10−2, long 
sleep rg  =  −0.25; padj  =  3.4  ×  10−4) [Figure 1A, Supplementary 
Table S2].

Insomnia and short sleep showed similar correlations with 
nine different obesity-related traits, obesity class 1, class 2 and 
class 3, overweight, BMI and extreme BMI, waist and hip cir-
cumference and their ratio. Short sleep was also significantly 
correlated with hip-circumference adjusted for BMI [Figure 1B, 
Supplementary Table S3]. Long sleep was significantly correl-
ated with seven obesity-related traits: obesity class 1, BMI, waist 
circumference, waist circumference adjusted for BMI, hip cir-
cumference adjusted for BMI, waist-to-hip ratio and extreme 
waist to hip circumference ratio adjusted for BMI [Figure 1B, 
Supplementary Table S3]. Finally, and in contrast, after correction 
for multiple comparisons, morningness revealed no significant 
correlation with any metabolic traits [Figure 1, Supplementary 
Table S2 and S3].

As such, the genetics of all sleep traits, with the notable 
exception of morningness, were significantly correlated with 
multiple metabolic traits. These results suggest that a portion 
of the genetic variation is shared between sleep duration and 
T2D associated metabolic traits. We then elected to investi-
gate deeper these shared genetics potentially functioning in a 
pancreatic context by running partitioned LD score regression 
(LDSR) on 3D genomic datasets we generated on α−cells and 
EndoC-βH1 cells.

Genome-wide ATAC-seq and promoter focused Capture C

Three ATAC-seq libraries derived from EndoC-βH1 cells were 
generated, sequenced and subsequently open chromatin 
regions were called following the ENCODE pipeline (see 
Methods Section), yielding 224  968 open chromatin peaks. 
Processed publicly available ATAC-seq data for α-cells were 
retrieved from the Diabetes Epigenome Atlas [26]. Peaks were 
filtered to those that were present in at least two libraries, 
which yielded 125  729 IDR peaks. Capture C libraries from 
α-cells and EndoC-βH1 were generated and analyzed fol-
lowing established protocols [22, 25, 28]. The Capture C li-
braries yielded high coverage (an average of ~1.4 billion reads 
per each library), with an average of 37.9% valid reads pairs 
and 75.8% capture efficiency. Using the CHiCAGO pipeline [29], 
we called 488 480 promoter interactions in EndoC-BH1s and 
245 310 promoter interactions in α- cells. We leveraged the α- 
cells and EndoC-βH1 ATAC-seq and Capture C libraries to call 
significant interactions between gene promoters and open 
chromatin regions and identified short- and long-distance 
interactions performing analyses at 1- or 4-fragment reso-
lution, and then merged the results.

Partitioned LD score regression

To assess for enrichment of sleep-trait associated SNPs within 
cells relevant to metabolic disorders, we ran partitioned LD 

Figure 1.  Genetic correlation estimates for sleep traits with T2D-related (A) or 
obesity- related (B) traits. Numbers indicate the genetic correlation coefficients 

(rg). Colors indicate the statistical significance (−log10 (adjusted p-value)) of the 

correlations. Asterisks (*) indicate adjusted p-value < .05.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
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score regression (LDSR). This approach intersected the ATAC-seq 
and promoter-focused Capture C dataset described above with 
insomnia [9], morningness [10], short and long sleep [11] GWAS 
summary statistics. Given the established role of the hypothal-
amus as master regulator of both circadian rhythms and me-
tabolism, we ran partitioned LDSR intersecting the same GWAS 
data with 3D genomic data previously generated from hESC-
derived hypothalamic-like neurons (HNs) [22, 25] as a positive 
control.

Promoter-interacting open chromatin regions of α-cells re-
vealed significant enrichment for all sleep traits, with a ~5-fold 
enrichment for insomnia loci (p = 7.61 × 10−3), a ~6-fold enrich-
ment for short sleep loci (p = 2.15 × 10−2), a ~7-fold enrichment 
for long sleep loci (p = 3.37 × 10−2) and a ~5-fold enrichment for 
morningness loci (p = 1.58 × 10−3) [Figure 2, Supplementary Table 
S4]. EndoC-βH1 open chromatin regions were significantly en-
riched for insomnia loci (~2-fold; p = 1.03 × 10−2), for short sleep 
loci (~2-fold; p = 1.72 × 10−2) and for morningness loci (~2-fold; 
p = 2.23 × 10−7) [Figure 2, Supplementary Table S4]. HNs showed 
significant enrichments for all the sleep trait-associated vari-
ants: insomnia loci (~3-fold; p  =  1.40  ×  10−3), short sleep loci 
(~3-fold; p = 4.17 × 10−5), long sleep loci (~3-fold; p = 3.06 × 10−3) 
and morningness loci (~3-fold; p = 6.88 × 10−6) [Supplementary 
Table S4].

The enrichment of sleep-traits associated variants within 
α-cells and EndoC-βH1 were comparable both in terms of fold 
increases and statistical significance to the enrichment ob-
served within hESC-derived hypothalamic-like neurons. These 
results implicate a subset of sleep-trait associated variants 
operating within α-cells and EndoC-βH1 cells. To identify genes 
putatively contacted/regulated by sleep-trait relevant variants, 
we next identified genes with promoters in contact with proxy 
SNPs of genome-wide significant sleep-trait loci located in open 
chromatin regions of EndoC-BH1 and α-cells.

Variant to gene mapping

We sought to implicate putative functional effector genes by 
intersecting sleep-traits associated SNPs with ATAC-seq and 
promoter-focused Capture C datasets. GWAS studies reported 
248, 351, 27, and 8 statistically significant independent sentinel 
SNPs for insomnia (9), morningness (10), short and long sleep 
(11). respectively. We identified proxy SNPs with an r2 > 0.8 for 
insomnia (7836), morningness (9536), short sleep (927), and 
long sleep (2187). To focus on putatively functional variants res-
iding within α-cells or EndoC-βH1 open chromatin regions, we 

overlapped these proxy SNPs with ATAC-seq peaks. In α-cells, 
we identified a total of 1551 open proxies (603 for insomnia, 862 
for morningness, 50 for short sleep, and 36 for long sleep). In 
EndoC-βH1 we found 1789 open proxies (752 for insomnia, 964 
for morningness, 56 for short sleep, and 17 for long sleep).

Implicated genes

EndoC-βH1. In the EndoC-βH1 setting, the above-described open 
proxies contacted the open promoters of 63 protein-coding-
genes (27 genes implicated by insomnia associated SNPs, 29 
genes implicated by morningness associated SNPs, 6 genes im-
plicated by short-sleep associated SNPs, and 1 gene implicated 
by long-sleep associated SNPs) [Supplementary Table S5]. Of 
these genes, 32 had previously reported circadian rhythm ex-
pression in murine β -cells [30] and 13 have already been im-
plicated functionally in diabetes, glucose homeostasis, insulin 
secretion and/or adipogenesis [Table 1]. Mutations in EIF2AK3 
result in the Wolcott–Rallison syndrome characterized by a 
permanent neonatal diabetes [31]. In vivo and in vitro ab-
lation of DOC2A in β-cells led to a marked impairment of in-
sulin secretion [32]. Overexpression of KLF7 in β-cells inhibits 
glucose-stimulated insulin secretion (GSIS) [33]. RFX3 encodes a 
transcription factor which regulates and maintains β-cells dif-
ferentiation and insulin secretion [34]. BMP5 signaling is neces-
sary for pancreas morphogenesis and promotes insulin-positive 
cells differentiation [35]. FOXP1 and FOXP4 gene products are 
both necessary for the development of α-cells [36]. IP6K1 en-
codes a hexakiphosphate kinase necessary for the generation of 
the diphosphoinositol pentakisphosphate (IP7), which is critical 
for β-cells exocytosis and basal insulin secretion [37]. Inhibition 
of the phosphodiesterase PDE1C increases GSIS [38]. SOX6 
overexpression decreases GSIS in β-cells [39]. The GNAO1 gene 
product is known to regulate insulin secretion [40]. The PAM2 
gene product is a monooxygenase involved in insulin secretion 
from β-cells [41]. SIM1 heterozygosity in mice leads to early-
onset obesity, with hyperinsulinemia and hyperleptinemia [42].

α-Cells. In α-cells, 76 protein-coding-genes were implicated 
by sleep-associated open proxies (36 genes implicated by in-
somnia loci, 35 genes implicated by morningness loci, and 5 
genes implicated by short-sleep loci) [Supplementary Table S6]. 
Of these genes, 41 are circadially expressed in α-cells of mice 
[30] and 8 have already been associated with T2D or implicated 
functionally in insulin and glucose metabolism or [Table 1]. 
MT2A expression is reduced by stimulation with glucose in hu-
mans and murine islets and its ablation in mice increases in-
sulin release [43]. MT2A expression is higher in adipose tissue 
of T2D subjects [44]. PLCXD3 expression is reduced in human 
diabetic islets, and when silenced in INS-1 cells inhibits insulin 
secretion and alters glucose sensing [45]. Two PLCXD3 variants 
are associated with increased risk of metabolic syndrome [46]. 
HDAC3 has been proposed as a novel diabetes drug target [47]. 
One variant of HMGA1 has been associated with an increased 
risk of T2D development [48] and its gene product is critical 
for insulin gene expression and β-cell function. Suppression 
of PTPMT1 in INS-1 cell line enhances insulin secretion [49]. 
In adipocytes, PACSIN3 overexpression enhances glucose up-
take [50]. NDUFS3 encodes for a component of the mitochon-
drial complex I which shows an aberrant hyperactivity in both 
type 1 and 2 diabetes [51]. CUGBP1 is expressed in the islets of 

Figure 2.  Heritability enrichment of sleep traits loci within α-cells or EndoC-βH1 
cells. Circles sizes represent fold enrichment of sleep traits associated open 

variants within α-cells or EndoC-βH1 cells promoter-interacting open chromatin 

regions. Colors indicate the statistical significance (−log10(p-value)) of the enrich-

ments. Asterisks (*) indicate p-value < .05.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
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diabetic mice, where its overexpression reduces insulin secre-
tion [52].

Common genetic architecture α-Cells and EndoC-βH1 cells shared 
14 common open insomnia proxy SNPs in LD with the same 
sentinel SNPs (r2 > 0.8). Six of these common proxies implicated 
the same genes in the two different cell settings. Three of these 
genes are protein-coding; MEIS1, PITPNM2, and SNAPC5. The 
MEIS1 and SNAPC5 observations were very close to the promoter 
(~18 bp), suggesting that they are directly affecting gene expres-
sion by altering binding of the basal transcriptional machinery.

Comparably, there were 10 shared morningness proxies in 
accessible regions in both α-cells and EndoC-βH1. Six of the 
common proxies contacted the same gene, three of which en-
code for proteins; RNF10, COQ5, and USP34. Finally, in α-cells and 
EndoC-βH1 four common short sleep proxies implicated two 
common coding-protein genes, namely PPIP5K2, GIN1.

Pathways analyses. We assessed the expression of the sleep-
implicated genes using RNA-seq generated in α-cells and 
EndoC-BH1. We then ran pathway enrichment analyses through 
the “Compute Overlaps” tool provided by Gene Set Enrichment 
Analysis (GSEA) website (https://www.gsea-msigdb.org/gsea/
index.jsp) to verify if the implicated genes were enriched for 
metabolic relevant terms.

First, we pooled all the genes from both cellular settings. 
We observed significant enrichment (padj < .05) for metabolic 
and catabolic process; for organonitrogen and organophos-
phate biosynthesis; for phosphatidylinositol and phosphoryl-
ation (e.g., phospholipid, phosphatidylinositol, phosphorylation 
and glycerophospholipid process); for response to endogenous 
stimulus, for organelle assembly and for intracellular signal 
transduction [Figure 3A; Supplementary Table S7].

We then analyzed the genes implicated within the two pan-
creatic cell types separately.

In α-cells, we observed enrichment of organonitrogen and 
organophosphate biosynthetic process; phosphatidylinositol 
and phosphorylation associated terms; intracellular signal 
transduction and transport; for kinase activity and for stress-
response [Figure 3b; Supplementary Table S8]. In EndoC-βH1, 
we found enrichment for cell differentiation and apoptosis, 
transcription regulation, Wnt signaling, endocrine pancreas de-
velopment and phosphatidylinositol-associated terms (inositol-
hexakisphosphate-5-kinase-activity, synthesis-of-pi) [Figure 3c; 
Supplementary Table S9].

Overall, the pathway enrichments showed that sleep-trait 
loci were contacting putative effector genes involved in cell me-
tabolism and catabolism, organonitrogen and organophosphate 
biosynthesis, stress responses, cell trafficking and signaling, 
phosphatidylinositol terms, and phosphorylation.

Conclusions
Poor sleep and metabolic disorders are tightly associated, 
but the pathophysiology of this association remains unclear. 
Genetic correlation analyses have revealed that insomnia, short 
and long sleep are significantly correlated with T2D, obesity and 
several other metabolic-related traits.

Our results are in agreement with other published genetic cor-
relation analyses except for T2D [11]. The different result might 
be due to the fact that we used a newer and larger T2D GWAS, 
highlighting the importance of statistical power when performing 
such analyses. Insomnia and short sleep yielded very similar 
correlations, suggesting that loss of sleep—rather than longer 
sleep and morning preference—are genetically intertwined with 
metabolic dysfunction [Figure 1; Supplementary Table S2 and S3]. 

Table 1. Variant-to-gene mapping implicated sleep traits putative effector genes in EndoC-βH1 or α-cells. Genes implicated leveraging publicly 
available insomnia, morningness, short and long sleep summary statistic and ATAC-seq and promoter-focused Capture C libraries generated in 
EndoC-βH1 or α-cells, and their reported known function

Cell setting Gene PubMed search (reference) 

EndoC-ßH1 EIF2AK3 Wolcott–Rallison syndrome characterized by a permanent neonatal diabetes [31]
DOC2A Marked impairment of insulin secretion [32]
KLF7 Glucose-stimulated insulin secretion inhibition [33]
RFX3 β-Cells differentiation and insulin secretion [34]
BMP5 Insulin-positive cells differentiation [35]
FOXP1 Development of α-cells [36]
FOXP4 Development of α-cells [36]
IP6K1 Cell exocytosis and basal insulin secretion [37]
PDE1C Increased glucose-stimulated insulin secretion [38]
SOX6 Decreased glucose-stimulated insulin secretion [39]
GNAO1 Regulation of insulin secretion [40]
PAM2 Insulin secretion [41]
SIM1 Early-onset obesity, with hyperinsulinemia and hyperleptinemia in mice [42]

α-cells MT2A KO ameliorates glucose tolerance increasing insulin release in mice [43]
PLCXD3 Reduced expression in diabetic islets of T2D subjects, inhibition of insulin secretion and regulation of glucose 

sensing [45]
Variants are associated with increased risk of metabolic syndrome [46]

HDAC3 Proposed as a novel diabetes drug target [47]
HMGA1 One variant associated with increased risk of T2D [48]
PTPM1 Increased ATP production and insulin secretion in β-cell line [49]
PACSIN3 Increased glucose uptake via GLUT1 in adipocytes [50]
NDUFS3 Aberrant mitochondrial hyperactivity in both type 1 and 2 diabetes [51]
CUGBP1 Inhibition of glucose- and GLP1-induced insulin secretion in mice [52]

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac109#supplementary-data
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Figure 3.  Pathways enrichment in α-cells and/or EndoC-βH1 cells. Enriched pathways for α-cells and EndoC-βH cells (A), only α-cells (B), or only EndoC-βH1 cells (C) 

implicated genes. Selection of significant enriched pathways (adjusted p-value < .05) are reported. Bars indicate the statistical significance (−log10 (adjusted p-value)) 

of the enrichments.
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Indeed, MR studies have shown that genetic variants underlying 
insomnia/short sleep is a predisposing factor for the onset of 
T2D and cardiovascular disease [8, 9, 13, 14], while long sleep-
associated risk variants are causal for lower BMI in children [15] 
but are unlikely to be causal for cardiovascular diseases [53]. In 
line with other published studies [10], we did not observe sig-
nificant correlation between morningness and any metabolic 
trait [Figure 1; Supplementary Table S2 and S3]. This result might 
be partially explained by the fact that in the current literature 
eveningness, rather than morningness, is related to metabolic 
dysfunctions and T2D [54]. Also, MR studies have shown that 
being a “morning person” predisposes to an increased intake of 
healthy foods [55], higher subjective well-being and decreased li-
ability of depression [10]; therefore, suggesting health benefits of 
adopting a more morning diurnal preference.

Partitioned LDSR analyses revealed that loci for insomnia, 
morningness, short sleep were significantly enriched in open 
chromatin regions of both α-cells and EndoC-βH1, while long 
sleep loci were significantly enriched only in α-cells [Figure 2, 
Supplementary Table S4]. The fold increase as well as the sig-
nificance of the enrichments in both cell settings were com-
parable with enrichments observed in hypothalamic neurons 
[Supplementary Table S4]. These results suggest that sleep gen-
etic variants have a regulatory function in the context of the 
pancreatic islets, enhancing/inhibiting the expression of genes 
via cis interactions.

Our variant-to-gene mapping analyses identified inter-
actions with putative effector genes, implicating a total of 76 
genes in α-cells and 63 gene in EndoC-βH1 [Supplementary 
Table S5 and S6]. Twenty-one of all the implicated genes have 
known functions in insulin secretion and resistance, glucose 
homeostasis, diabetes and/or obesity [Table 1], corroborating 
the notion that sleep-traits associated SNPs alter the expres-
sion of genes also important for glucose metabolism in the 
pancreatic cells.

Other implicated genes have not yet been functionally as-
sociated with metabolic disorders, but they are involved in 
pathways related to insulin and glucagon secretion or glucose 
uptake. CDIPT and PITPNM2 encode for proteins involved in the 
syntheses of phosphatidylinositol (PI) the precursor of all the 
phosphoinositides (PPIs). PPIs are essential in insulin signaling 
since they are involved in glucose uptake, insulin release and 
resistance, and in glycogen and lipid storage. The PITPNM2 tran-
script is also involved in exocytosis [56]. NDUFS3 encodes for a 
component of the mitochondrial complex 1; and mitochondrial 
oxidoreductase activity is essential for normal insulin release in 
β-cells [57] and for glucagon release in α-cells [58].

These results suggest that sleep-trait associated variants 
alter the expression of genes involved in insulin or glucagon se-
cretion in the pancreatic cells, impacting glucose homeostasis 
and favoring or exacerbating metabolic disorders.

Pathway analyses conducted on genes implicated by sleep-
traits associated variants in α- and EndoC-βH1 cells showed sig-
nificant enrichments for organonitrogen biosynthesis and stress 
responses which are functions normally regulated by mitochon-
dria. Mitochondrial dysfunction, ER stress and oxygen reactive 
species accumulation can indeed impair insulin/glucagon re-
lease [57, 58]. The implicated genes were also enriched for cell 
signaling and intracellular trafficking, which are mechanisms re-
quired for glucagon/insulin secretion [59]. Genes were enriched 
also for organophosphate biosynthesis, phosphatidylinositol 

(PI)-associated terms and phosphorylation; with PI and their 
phosphorylation status being key elements in glucose homeo-
stasis. Notably, genes implicated in EndoC-βH1 were specifically 
enriched for cell differentiation and endocrine pancreas de-
velopment. Taken together the pathways analyses support the 
hypothesis that sleep-trait associated variants influence the ex-
pression of genes relevant to metabolic disorders.

Our data implicate pancreatic α- and β-cells as effectors cells 
for insomnia, morningness, long and short associated variants. 
We propose that sleep-traits associated variants alter insulin/
glucagon secretion or ß-cells differentiation/development, thus 
impairing glucose homeostasis and predisposing to metabolic 
dysfunction. Our results therefore warrant functional follow-up 
to validate the interaction between the sleep-traits associated 
SNPs and their implicated genes, along with the effect of the 
novel implicated genes on insulin or glucagon release in both in 
vitro and in vivo settings.

Supplementary Material
Supplementary material is available at SLEEP online.
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