Table 3.
Classification results for AutoML (using 4 and 7 features), neural network (using 6 features) and logistic regression (using 3 features).
| AutoML (4 features) | AutoML (7 features) | Neural network | Logistic regression | |
|---|---|---|---|---|
| AUC | 0.847 [0.642, 0.975] | 0.849 [0.675, 0.978] | 0.879 [0.716, 0.984] | 0.900 [0.786, 0.976] |
| Accuracy | 0.814 [0.667, 0.926] | 0.821 [0.704, 0.926] | 0.839 [0.704, 0.944] | 0.881 [0.778, 0.963] |
| Kappa | 0.450 [− 0.013, 0.786] | 0.465 [0.087, 0.757] | 0.491 [0.000, 0.847] | 0.644 [0.348, 0.899] |
| Sensitivity | 0.565 [0.000, 1.000] | 0.578 [0.167, 1.000] | 0.577 [0.000, 1.000] | 0.692 [0.333, 1.000] |
| Specificity | 0.885 [0.619, 1.000] | 0.891 [0.737, 1.000] | 0.914 [0.786, 1.000] | 0.936 [0.857, 1.000] |
All values calculated as means of 100 repetitions (100 cycles) using independent test data. Values in brackets: 95% confidence interval.