Skip to main content
. 2022 Aug 11;12:13648. doi: 10.1038/s41598-022-18028-8

Table 3.

Classification results for AutoML (using 4 and 7 features), neural network (using 6 features) and logistic regression (using 3 features).

AutoML (4 features) AutoML (7 features) Neural network Logistic regression
AUC 0.847 [0.642, 0.975] 0.849 [0.675, 0.978] 0.879 [0.716, 0.984] 0.900 [0.786, 0.976]
Accuracy 0.814 [0.667, 0.926] 0.821 [0.704, 0.926] 0.839 [0.704, 0.944] 0.881 [0.778, 0.963]
Kappa 0.450 [− 0.013, 0.786] 0.465 [0.087, 0.757] 0.491 [0.000, 0.847] 0.644 [0.348, 0.899]
Sensitivity 0.565 [0.000, 1.000] 0.578 [0.167, 1.000] 0.577 [0.000, 1.000] 0.692 [0.333, 1.000]
Specificity 0.885 [0.619, 1.000] 0.891 [0.737, 1.000] 0.914 [0.786, 1.000] 0.936 [0.857, 1.000]

All values calculated as means of 100 repetitions (100 cycles) using independent test data. Values in brackets: 95% confidence interval.