Skip to main content
. 2022 Jul 25;7(31):27021–27037. doi: 10.1021/acsomega.2c02278

Table 3. Consolidated Kinetic Data Used in Oil-Dominated Systems.

no. type of equipment gas oil type oil volume water cut (%) inhibitor type conc. (wt %) T (°C) P (MPa) remarks ref
1 high-pressure cell CH4 diesel oil 285 mL 30 antiagglomerant 0 1.2 4 Different water cuts were studied (30, 60, and 90%) with and without the AA. They found that AA helped to increase the induction time by 25 min. (6)
285 mL 30 0 2 4.5
285 mL 30 0.5 2 4
285 mL 30 1 2 4
570 mL 60 0 1.2 4
570 mL 60 0 2 4
570 mL 60 0.5 2 4.5
855 mL 90 0 1.2 4
855 mL 90 0 2 4.5
855 mL 90 0.5 2 4
855 mL 90 1 2 4
2 rocking cell apparatus CH4 crude oil 0 100 pure water no KHI 0 0.1 1 Starch, chitosan, glycine, PVP, and mSA-RmAFP1 are the inhibitors in order. It has been discovered that mSA- RmAFP1 can reduce the rate of generation of SNG hydrates. (89)
0 100 brine water 3.5 wt % no KHI 0 0.1 1
0 100 pure water mSA-RmAFP1 2.25 0.1 1
0 100 pure water chitosan 2.25 0.1 1
0 100 pure water starch 2.25 0.1  
0 100 pure water PVP 2.25 0.1 1
0 100 pure water glycine 2.25 0.1 1
0 100 pure water mSA-RmAFP1 2.25 0.1 1
0 100 brine water 3.5 wt % chitosan 2.25 0.1 1
0 100 brine water 3.5 wt % starch 2.25 0.1 1
0 100 brine water 3.5 wt % PVP 2.25 0.1 1
0 100 brine water 3.5 wt % glycine 2.25 0.1 1
15% 85 no KHI 0 0.1 1
15% 85 mSA-RmAFP1 2.25 0.1 1
15% 85 chitosan 2.25 0.1 1
15% 85 starch 2.25 0.1 1
15% 85 PVP 2.25 0.1 1
15% 85 glycine 2.25 0.1 1
3 high-pressure sapphire autoclave CH4 paraffin oil 89% 11 antiagglomerant 2 3.17 5.78 In the autoclave, hydrate particles formed a moving bed, which was followed by full dispersion of water and oil, rapid hydrate growth, and deposition on the wall. (36)
89% 11 1.9 5.77
89% 11 5.9 5.88
89% 11 5.7 5.89
78% 22 6.3 5.99
78% 22 6.3 5.99
78% 22 4.9 5.94
78% 22 6.8 6.01
70% 30 1.9 5.83
70% 30 2.9 5.86
70% 30 2.7 5.86
70% 30 4.8 5.91
50% 50 1.2 5.73
50% 50 1.3 5.72
50% 50 6.4 5.91
50% 50 6.9 5.92
30% 70 1.2 5.66
30% 70 4.8 5.81
30% 70 3.3 5.76
30% 70 5.3 5.83
4 high-pressure sapphire autoclave CH4 conroe oil 95% 5 NA NA 4 3.98 The mass transfer of methane through hydrate shells appears to control hydrate formation in these water-in-oil dispersions. (45)
65% 35 NA NA
65% 35 NA NA
65% 35 NA NA
65% 35 NA NA
5 stirring autoclave CH4 diesel oil 209 mL 5 rhamnolipid 3 6 5.50 When Span 20, rhamnolipid, and compounding AAs were added in water/diesel oil systems, water cut affected not only the amount of dissociated methane hydrate but also the maximum dissociation rate of methane hydrate. (23)
198 mL 10 3
176 mL 20 3
198 mL 10 1
198 mL 10 0.5
198 mL 10 0
209 mL 5 Span 20 0.1
198 mL 10 0.1
209 mL 5 0.5
198 mL 10 0.5
198 mL 10 2.0
209 mL 5 Span 20:esters polymer 3.0
198 mL 10 3.0
209 mL 5 1:02
198 mL 10 1:02
176 mL 20 1:02
154 mL 30 1:02
6 high-pressure sapphire autoclave CH4 diesel oil 95 mL 5 antiagglomerant 3 4 0.2 The solubility of natural gas in an emulsion system grows practically linearly with pressure, while it decreases with water cut. There is an initial slow hydrate formation stage for systems with water cuts of 5, 10, and 15% vol, whereas rapid hydrate formation occurs and the process of the gas–liquid dissolving equilibrium does not appear in the pressure curve at 20 and 25 vol %. (87)
0.4
0.8
1.2
90 mL 10 0.2
0.5
0.8
1.2
1.35
85 mL 15 0.5
0.8
1
1.2
1.35
80 mL 20 0.3
0.6
0.9
1.2
1.35
75 mL 25 0.2
0.4
0.8
7 high-pressure sapphire autoclave CH4 diesel oil 481 mL 10 lubrizol 0 3 6.5 High water cuts with or without surfactants had a lower dissociation ratio (25%) than lower water cuts, resulting in enhanced self-preservation effects. (10)
428 mL 20 0
374 mL 30 0
428 mL 20 0.06
428 mL 20 TBAB 0.06
428 mL 20 0
0 100 0
530 mL 99 0
507 mL 95 0
530 mL 99 TBAB 0.06
530 mL 99 lubrizol 0.06
0 100 TBAB 0.06
0 100 lubrizol 0.06
8 high-pressure sapphire autoclave CH4 diesel oil 300 mL up to 30 Span20 with different promoters (SDS,L-1,TBAB) 0 3 7 SDS/L-l had a greater effect on increasing hydrate growth, which could significantly increase the kinetics of methane hydrate formation in the emulsion system, whereas Tween80 and TBAB prevented methane hydrate formation in the emulsion to some amount. (94)
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1
0.5
0.25
0.1
1
0.5
0.25
0.1
0.5
0.5 6.5
0.5 6
0.5 5.5
0.5 7
0.5 6.5
0.5 6
0.5 5.5
9 stainless steel (SS-316) cell CH4 mineral oil   40 PVP 2 4 8 In comparison to PVP, MEG is a better choice. l-Tyrosine is not a good choice in terms of hydrate formation induction time. (95)
MEG 20 7
10 high-pressure hydrate reaction system CH4 light oil and asphaltene 4 mL 90 PVP (K-15) 2000 ppm 2 5 Results demonstrated that light oil components mainly promote hydrate growth at the initial stage because of the enhanced methane solubility in the oil phase and the slight emulsification effect under mechanical stirring. (91)
luvicap EG
inhibex 501
11 autoclave CH4 seabed oil 10 mL (20–50) and (60–100) antiagglomerant 0.2 and 0.5 20 to 1 14 AA is less toxic than QAs. The T surfactant used in this study has the ability to reduce the risk of hydrate obstruction in offshore gas flowlines as well as capture oil from deep water spills. (88)