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Pre-admission RT-qPCR based RSV screening reduces n

Gheck for

nosocomial RSV infections during epidemic outbreaks &
Dear Editor,

We read with interest the manuscript “Sensitivity and speci-
ficity of surveillance case definitions in detection of influenza
and respiratory syncytial virus among hospitalized patients, New
Zealand, 2012-2016" by Davis et al,! on the importance of the
surveillance of respiratory infections in children. In our experience,
a similar method proved effective in preventing respiratory syncy-
tial virus (RSV) nosocomial infections.

RSV is the most common respiratory agent to cause acute lower
respiratory infections (ALRI) in infants and young children.?:> RSV
is a nosocomial hazard for patients of any age and is the most fre-
quent cause of nosocomial infection in pediatric wards during the
autumn and winter seasons.* The reported rate of nosocomial RSV
infection during epidemics is highly variable, ranging from 2.6% to
13.8%, depending on the entity of the seasonal outbreak and on the
efficacy of the prevention measures.”*5 Nosocomial RSV infections
can cause significant morbidity in fragile and very young children,
but they also impact the length of hospitalization and the total cost
of treatment,%” making preventing strategies a primary concern.

During an early and unexpected RSV epidemic occurring in the
autumn of 2021, we introduced a widespread pre-admission quan-
titative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)
based RSV screening program at our tertiary hospital. Before the
24th of November 2021, the RSV testing was performed at any
time during the hospital stay, whenever the patient developed
symptoms consistent with ALRI. After the 23rd of November 2021,
the pre-admission SARS-CoV-2 testing was combined with the RSV
testing. As in the pre-screening period, patients with symptoms
consistent with ALRI and a negative RSV and SARS-CoV-2 test were
screened for other respiratory pathogens, using a PCR panel. Also, a
combined SARS-CoV-2 and RSV test was performed every 4th day
in long-term hospitalized patients.

RSV season was defined as the period between the first diag-
nosis of RSV infection (September 20th, 2021) and the last case
diagnosed (February 28th, 2022). Within the RSV season, the epi-
demic period was defined as the period in which the weekly
incidence of RSV cases/total patients-days/week was higher than
0.5 x 102 (from the 13th of October 2021 to the 18th of January
2022) (Fig. 1). RSV infection was considered nosocomial if the pa-
tient tested negative for RSV on a first nasal swab collected pre-
admission or within 96 h from admission and positive thereafter.
Although nosocomial infection usually is defined as an infection
that occurs after at least 48 h from hospital admission,® we choose
a wider cut-off (96 h) to be more conservative on the incubation
period of RSV infection.” In patients admitted before November
24th in which the diagnosis of RSV infection was made after 96 h

https://doi.org/10.1016/j.jinf.2022.11.002

from hospital admission, the swab performed before admission for
SARS-CoV-2 infection screening was retested by RT-qPCR for RSV
to confirm or exclude a nosocomial infection (Supplementary Figure
1). Details on the laboratory methods are reported in the Supple-
mentary Methods.

One hundred and sixty patients tested positive for RSV between
the 20th of September 2021 and the 23rd of November 2021. Of
them, eight were excluded because they were hospitalized for less
than 48 h, and one because the SARS-CoV-2 swab had not been
performed at our center and therefore it was not available for
retesting to exclude a nosocomial infection. Therefore, 151 patients
were included in the pre-screening study group, while 227 patients
were enrolled in the screening group. No significant differences
were found in terms of sex, median age, and ICU admission be-
tween the two groups, but we found a significantly higher number
of patients older than six years (p = 0.002, Chi-square test) and
a slightly lower duration of hospital stay in the screening group
(p = 0.001, Mann Whitney test) (Table 1). In 80 out of 310 RSV-
infected patients evaluated with an RT-qPCR for ALRI (25.8%) the
nasal swab tested positive for other respiratory viruses. Among
them, the most frequent coinfections consisted of Bocavirus in 38
(12.3%), Rhinovirus in 13 (4.2%), SARS-CoV-2 in 10 (3.2%), and Ade-
novirus in nine (2.9%) (Table 1).

In the pre-screening group, 137 patients tested positive for RSV
within 96 h from admission and were therefore considered com-
munity infected. The pre-admission nasal swab of the remaining
14 patients was retested and resulted positive in three, while 11
were confirmed negative. Therefore, in the pre-screening group,
140/151 (92.7%) were considered as community-acquired infections
while 11/151 (7.3%) were defined as nosocomial RSV infections. In
the screening group, 222 out of 227 patients (97.8%) were found
positive for RSV at admission (n = 183) or within 96 h (n = 39)
from admission and were considered community infected, while
five patients (2.2%) tested positive during hospitalization but had a
negative RSV test performed before admission and were therefore
considered nosocomial infected (Supplementary Figure 1).

The rate of nosocomial RSV infections significantly dropped
from 7.3% (11/151) to 2.2% (5/227) after the introduction of the
screening protocol (p = 0.016; OR 3.49, 95% CL 1.19-10.25, Chi-
square test) (Supplementary Figure 1). When comparing the two
periods including only symptomatic patients (n = 334), the rate
of nosocomial infections in the screening group remained signif-
icantly lower (1.6%, 3/189), compared to the pre-screening group
(7.3%, 11/151; p = 0.009; OR 4.87, 95% CL 1.33-17.79, Chi-square
test). During the epidemic phase (Fig. 1), the incidence of noso-
comial RSV infection dropped from 0.17 x 102%/total patients-days
(11/6490) in the pre-screening period to 0.05 x 102/total patients-
days (4/7740) in the screening group (p = 0.038, Fisher’s exact
test).

0163-4453/© 2022 The British Infection Association. Published by Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.jinf.2022.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jinf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinf.2022.11.002&domain=pdf
https://doi.org/10.1016/j.jinf.2022.11.002

Letters to the Editor/Journal of Infection 86 (2023) 66-117 67

RSV incidence*

screening introduction
8

nosocomial RSV incidence*

1

0,875

0,75

0625

05

0,375

025

0,125

Fig. 1. Incidence of RSV infections during the 2021-2022 RSV season. The overall incidence of RSV infections is represented by the continuous line, while the dotted line
represents the incidence of nosocomial RSV infections. * incidence is calculated as x102/total patients-days. RSV: respiratory syncytial virus.

Table 1
Patients’ characteristics.
Total Pre-screening Screening
n =378 n =151 n =227 p-value
Female sex, n (%) 171 (45.2) 71 (47.0) 100 (44.1) 0.599
Age at diagnosis, median (IQR) - months 9 (2-28) 9.5 (2-23) 8.5 (2-30) 0.659
Age groups, n (%)
0-3 months 151 (39.9) 55 (36.4) 96 (42.3) 0.284
4-12 months 65 (17.2) 30 (19.8) 35 (15.4) 0.268
1-6 years 141 (37.3) 64 (42.3) 77 (33.9) 0.104
>7 years 22 (5.8) 2 (13) 20 (8.8) 0.002
Coinfections, n/n tested (%) 80/310 (25.8) 36/150 (24.0) 44/160 (27.5) 0.517
Rhinovirus 13 (4.2) 7 (4.6) 6 (3.8) 0.780
Bocavirus 38 (12.3) 16 (10.6) 22 (13.8) 0.489
Adenovirus 9 (2.9) 7 (4.6) 2 (1.3) 0.095
PIV3 8 (2.6) 5(3.3) 3(19) 0.489
SARS-CoV-2 10 (3.2) 1(0.7) 9 (5.6) 0.020
Hospital stay, median (IQR) - days 6 (3-9) 6 (4-11) 5 (3-8) 0.001
ICU admission, n (%) 68 (18.0) 29 (19.2) 39 (17.2) 0.682

IQR: interquartile range; ICU: intensive care unit; PIV3: parainfluenza virus 3; SARS-CoV-2: severe acute respiratory syndrome coronavirus.

In our experience, the early identification of RSV before admis-
sion allowed the isolation of patients and the optimization of pre-
vention measures for nosocomial infections during an unexpected
RSV epidemic. Indeed, the combined, RT-qPCR-based pre-admission
screening for SARS-CoV-2 and RSV resulted in a significant de-
crease in nosocomial RSV infections. The COVID-19 pandemic rad-
ically changed our approach to preventive measures for the diffu-
sion of viral infections in hospital settings. The screening of SARS-
CoV-2 has proven to be an effective measure to prevent nosoco-
mial diffusion.’® The same approach has been successfully used to
face an unexpected RSV outbreak but is likely to be extended to
other pathogens in the future.
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Clinical experience with use of oral Tecovirimat or R

Intravenous Cidofovir for the treatment of Monkeypox in &
an Italian reference hospital

Dear Editor,

We read with interest the manuscript by Li D. and colleagues,
recently published in this Journal, in which the authors revealed
the potential binding mode for tecovirimat with a poxvirus phos-
pholipase from monkeypox (MPX) virus [1].

Tecovirimat and cidofovir are potential options for severe cases
of MPX, but limited data on their efficacy and safety are available
[2-6].

Here we retrospectively describe clinical presentation, evolu-
tion, management and viral kinetics of the first 19 MPX cases
treated with antivirals at the INMI Lazzaro Spallanzani IRCCS in
Rome, Italy. The decision regarding treatments was based on in-
ternational medical consensus and availability of drugs.

Viral DNA was extracted by the automatic extractor QIAsym-
phony (Qiagen, Hilden, Germany), and amplified using the real-
time PCR method targeting the tumor necrosis factor receptor
gene, G2R. Monkeypox virus (MPXV) DNA concentration was mea-
sured using threshold cycles (Ct) values of the MPXV-specific PCR.
To obtain an absolute quantification of MPXV DNA in the clinical
samples, the PCR assay was adapted to run in digital droplet PCR
(ddPCR). The nucleic acid extracted from each sample was loaded
into specific nanoplate and distributed, amplified and read in each
one of the 26,000 partitions of each well, with a detection limit of
the assay of 5 copies/pL.

The study was conducted as a part of biological studies on
emerging infections approved by the Ethical Committee of the Laz-
zaro Spallanzani Institute (approval number 14/2015 and amend-
ments). Patients provided written informed consent.

As of September 19, 2022, 19/128 (15%) diagnosed cases of
MPXV infection at INMI L. Spallanzani received antiviral treatment.
All patients were males aged between 27 and 50 years, all but one
patients self-identified as men who have sex with men or bisexual
and seven patients (37%) were HIV-positive. Systemic symptoms
were reported in all but one patient. Muco-cutaneous lesions were
observed in all patients (skin lesions in 89% and mucosal lesions in
95%) and in half of them preceded systemic symptoms.

The majority (79%) of patients complained of a painful lym-
phadenopathy. Patients were admitted to hospital within a median
of 8 days (IQR 5-10) from date of symptoms onset (OD), mainly
for mucosal inflammation caused by MPXV and/or superinfection
of the lesions and/or management of severe pain due to the le-
sions. Specifically, proctitis was diagnosed in four patients (21%)
and severe pharyngo-tonsillitis in six patients (32%). One patient
presented ocular localization complicated by periorbital edema and
conjunctival hyperemia. Nine patients (47%) presented with super-
infection of the soft tissues, one of which was complicated by ab-
scess of a finger. Finally, one patient was admitted and treated for
worsening of genital lesions.

Antiviral treatment was started with a median time of 11 days
(IQR 8-12) from OD with oral tecovirimat in 15 (79%) patients and
intravenous (IV) cidofovir in 4 (21%) patients All patients treated
with oral tecovirimat completed a 14-day course of therapy. Simi-
larly, IV cidofovir was well tolerated. Symptoms improvement and
no new lesion appearance were observed 72 hours after the start
of treatment in all but one patient treated with cidofovir.

No significative alterations of blood tests were observed, apart
from a transient increase of alanine aminotransferase after cido-
fovir. Complete recovery was observed in all patients with a me-
dian of 15 days (IQR 11-19) from treatment start. Three patients
had still persistence of signs of MPX-mucosal involvement after the
resolution of lesions (Table 1).

Finally, viral kinetics have been evaluated in 12 patients (Fig. 1).
In all of them, MPXV-DNA was detected in at least one sample
from at least one compartment. Particularly, during the follow-
up, MPXV-DNA was detected by real-time PCR in: 10/12 patients
on oropharyngeal swab (OPS), including 9 at the start of antiviral
treatment, with a median Ct of 36 (IQR 33-41); 8/9 patients on
blood samples with a median Ct of 41 (IQR 37-41); 6/6 patients on
feces with a median Ct of 41 (IQR 36-41); 3/3 patients on saliva
with a median Ct of 38 (IQR 32-40); 3/3 patients on seminal fluids
with a median Ct of 39 (IQR 37-41). In almost all patients, a pro-
gressive decline in viral load was observed over the course of treat-
ment. Most biological samples were negative at the last available
observation. DAPCR results approximately mirrored the viral shed-
ding expressed with real-time PCR. It is worth noting that, given
the low threshold used for the ddPCR, several samples with high
Ct values in real-timePCR, resulted negative in ddPCR.
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Table 1

Patients’ characteristics and clinical course.

PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10 PT 11 PT 12 PT13 PT 14 PT 15 PT 16 PT 17 PT 18 PT 19
Gender/Age/ M/28 y/ M/33y/ M/35y/ M/46y/ M/33y/ M/33 M/42y/ M/40y/ M/47y/ M/27y/ M/36y/ M/38y/ M/48y| M/[45y/ M/35y/ M/50y/ M/36y/ M/38y/  M/47y/
Ethnicity Cau- Caucasian Caucasian Caucasian Caucasian y/Hispanic Asian Caucasian Caucasian Caucasian  Caucasian Hispanic Cau-  Caucasian Caucasian African Hispanic Caucasian Caucasian
casian casian
Sexual Bisexual MSM MSM MSM MSM MSM MSM MSM MSM MSM MSM MSM MSM  MSM MSM Hetero- MSM MSM MSM
orientation sexual
HIV status Neg Neg Neg Pos(BIC/  Pos Pos* Neg Neg Pos Pos**(BIC/  Neg Neg Neg Neg Neg Neg Pos(TAF/ Pos(TDF/ Neg
(ART; last TAF/FTC; (3TC/DT; (TDF/FTC (3TC/DTG; TAF/FTC;140/ FTC/DRV/ FTC/EFV;
CD4 (cell/ 1622/ND) 872 IND) +DTG;526/ 828 IND) <30cp/mL) c+DTG; 1323;
mm3)/VL) 26 cp/mL) 253/22 ND)
Cp/mL)***
HbsAg/ Neg/Neg Neg/Neg Neg/Neg Neg/Neg Neg/Neg NA/Neg  Neg/Neg Neg/Neg Neg/Neg Neg/Neg Neg/Neg Neg/Neg Neg/NA Pos/Neg NA/NA  Neg/Neg Neg/Neg NA/Neg  Neg/Neg
HCVADb
PREP No Yes Yes No No No No Yes No No No Yes No No No No No No No
Smallpox  No No No No No No No No No Yes No No Yes No No No No No No
vaccination
Systemic Fever, Fever, Fever Fever, Fever, Fever Fever, sore Fever, sore Fever, sore No Fever, Fever, Fever, Fever Fever Fever, fever, fever, fever,
symptoms headache sore myalgias, headache, throat, throat, throat, headache rectal pain, sore myalgias  sore headache, sore
throat, rectal pain sore odynopha- odynopha- odynopha- discharge throat; throat rectal throat,
myalgias, with throat gia gia, gia, and odynopha- myalgias, pain headache
diarrhoea discharg, myalgias, diarrhoea bleeding gia headache,
bleeding headache rectal
pain,
diarrhoea
Cutaneous Head,  Trunk, Head, Trunk, legs Head, Head, Head, Head, No Head Head, Head, No Trunk Upper lip Head Head, Feet, Head
lesion trunk,  limbs trunk, trunk, trunk, trunk, trunk, including trunk, trunk, including trunk, trunk including
right leg, including limbs limbs limbs limbs, limbs eyelids, limbs limbs scalp, legs upper lip
suprapu- hands including trunk, limbs trunk, and scalp,
bic and palms and including arms limbs,
perineal soles palms and including trunk
soles hands
Mucosal Eyelids  Penis Penis, Perianal ~ Oropha- Penis, Oropha- Orophar- Oropha-  Penis, Penis Penis, Penis; Penis No Penis Perianal, Perianal Penis,
lesion scrotum, and ryngeal oropharyn- ryngeal yngeal ryngeal scrotum, scrotum, oropha- scrotum oropha-
perianal oropharyn- geal penis and perianal perianal  ryngeal ryngeal
geal perianal

(continued on next page)
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Table 1 (continued)

PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10 PT 11 PT 12 PT13 PT 14 PT 15 PT 16 PT 17 PT 18 PT 19
Number of 11-20 11-20 11-20 <5 <5 11-20 >20 11-20 <5 >20 5-10 >20 <5 5-10 <5 >20 >20 <5 5-10
lesions
Systemic Yes Yes Yes No No Yes Yes Yes No - No Yes Yes Yes No No Yes No Yes
symptoms
onset after
lesions
Lymphad- Inguinal Inguinal Inguinal No Neck Inguinal  Inguinal Neck Neck Inguinal Inguinal  No Neck  Axillary No Yes Inguinal, Inguinal Neck
enopathy neck
Localized  Ocular No No Proctitis ~ Phary-  No Phary- Phary- Phary- No No Proctitis ~ Phary- No No No Proctitis Proctitis Phary-
disease ngoton- ngoton- ngoton-  ngoton- ngoton- ngoton-
sillitis sillitis sillitis sillitis sillitis sillitis
Type of Cidofovir Teco- Teco- Teco- Teco- Teco- Cidofovir  Cidofovir Teco- Cidofovir Teco- Teco- Teco- Teco- Teco- Teco- Teco- Teco- Teco-
treatment virimat  virimat  virimat virimat  virimat virimat virimat virimat virimat virimat virimat  virimat virimat  virimat  virimat
Reason for Ocular  Super- Soft- Proctitis ~ Phary-  Soft-tissue Phary- Compli-  Phary- Super- Pain man- Compli- Phary- Super- Soft- Super- Super- Proctitis  Soft-
treatment  involve- infection tissue ngotons- superinfec- ngotons-  cated ngoton-  infection of agement cated ngoton- infection tissue infection infection tissue
ment of superin- illitis tion illitis, pain pharyn-  sillitis cutaneous proctitis  sillitis  of cut- superin- of cut- of cut- superin-
cutaneous fection manage-  goton- lesions, pain aneous fection aneous aneous fection
lesion ment sillitis management lesions (upper  lesions lesions/ (upper
(right peri- lip) Proctitis lip)
tonsillar
abscess)
Days from 5/12 10/18 7/10 9 11/13 6/7 3/6 9/12 4/11 8/11 11/12 10/11 9/10  7/9 5/6 9/9 10/12 7/8 57
OD to
admission/
treatment
Days from 13 10 21 9 12 11 14 4 7 18 6 21 14 20 7 18 17 27 15

treatment to
recovery

* HIV diagnosis 2 months before MPX; ** AIDS presenters with HIV/AIDS diagnosis six months before MPX (multidrug resistant disseminated tuberculosis on treatment);

onset date.

*#* recent virological failure. Abbreviations: M, male; y,
years, MSM men who have sex with men; Neg, negative; Pos, positive; Unk, unknown; ART, antiretroviral therapy; VL, viral load; ND, not detectable, PREP, pre-exposure prophylaxis; BIC, bictegravir; TAF, tenofovir alafenamide
fumarate; FTC, emtricitabine; 3TC, lamivudine; DTF dolutegravir, TDF, tenofovir disoproxil fumarate; DRV/c, darunavir/cobicistat; EFV, efavirenz; NA, not available; STD, sexual transmitted disease; CT computed tomography; OD,
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Fig. 1. Kinetics of MPXV DNA shedding in different biological samples from starting of the antiviral therapy. A) MPXV DNA levels detected in different longitudinal samples
are shown for the 12 MPX patients followed up during infection. B) MPXV DNA levels detected in the different type of samples: blood, oropharyngeal swabs (OPS), stool,
sperm and saliva. MPXV DNA levels are expressed as cycle threshold (Ct) values. In grey are shown digital droplet PCR (ddPCR) results express as Logio copies/uL with a

detection limit of the assay of 5 copies/uL.

Limited data on clinical effectiveness of tecovirimat are avail-
able, however, several recent reports on its use has shown good
tolerability and no evolution versus severe disease in treated sub-
jects [2-4,7]. Additionally, preliminary results from the first 549
MPX-positive patients treated with tecovirimat in United States
(US), showed median time to subjective improvement of 3 days
[7]. To the best of our knowledge, this is the first report of the use
of antivirals for MPX with both clinical and virological results in
this current outbreak. One case series of patients treated in 2018-
2021 reported viral decay in one patient during tecovirimat treat-

ment showing a shorter duration of viral shedding compared to
the other patients [2]. Additionally, in a pre-print publication, out-
comes, including viral kinetics, of 14 patients treated before Febru-
ary 2022 with tecovirimat were reported [8]. In contrast to that
report, where rate of appearance of lesions decreased during treat-
ment with a median of 5 days from treatment start [8], in our pa-
tients clinical improvement and no new lesions were reported in
almost all patients 72 hours after tecovirimat initiation. The longer
time elapsed from symptoms onset to treatment start (21 days)
compared to our study (12 days) might partially explain this differ-
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ent result. Of note, in our case series, 15% of MPX cases diagnosed
received antiviral treatment, consistently with US data [9].

Concerning viral kinetics, it should be noted that low viral loads
were observed. Additionally, some patients had all available sam-
ples negative in ddPCR since antiviral starting, in line with pre-
vious evidence showing that viral shedding occurs mainly during
the first two weeks of the disease [10]. Due to the median time of
12 days from symptoms onset to starting treatment in this series,
we cannot exclude a reduced impact of antiviral therapy on viral
shedding or clinical resolution.

The main limitations of this study was the lack of control group,
so that any conclusions on the effectiveness of antiviral therapy
cannot be drawn, the small number of patients included, the het-
erogeneity of samples and the impossibility to collect samples for
all the patients at each timepoint.

Data collected on observational studies such as this can help
improve our knowledge of the use of antivirals for MPXV, waiting
more robust results from the placebo-controlled randomized trial
of tecovirimat for MPX.

Funding

This study was supported by Ricerca Corrente Linea 1 and 2,
funded by the Italian Ministry of Health.

Conflicts of interests
The authors declare no conflict of interest for the present study.
Acknowledgments

INMI Monkeypox Study Group: Isabella Abbate, Alessandro
Agresta, Camilla Aguglia, Alessandra Amendola, Andrea Antinori,
Francesco Baldini, Tommaso Ascoli Bartoli, Alessia Beccacece, Rita
Bellagamba, Giulia Berno, Aurora Bettini, Nazario Bevilacqua, Licia
Bordi, Marta Camici, Priscilla Caputi, Fabrizio Carletti, Angela Cor-
polongo, Stefania Cicalini, Francesca Colavita, Alessandra D’Abramo,
Angela D’Urso, Gabriella De Carli, Patrizia De Marco, Federico De
Zottis, Silvia Di Bari, Lavinia Fabeni, Francesca Faraglia, Valeria Fer-
raioli, Carla Fontana, Federica Forbici, Concetta Maria Fusco, Marisa
Fusto, Roberta Gagliardini, Anna Rosa Garbuglia, Saba Gebremeskel
Teklé, Maria Letizia Giancola, Giuseppina Giannico, Emanuela
Giombini, Enrico Girardi, Giulia Gramigna, Elisabetta Grilli, Su-
sanna Grisetti, Cesare Ernesto Maria Gruber, Eleonora Lalle, Si-
mone Lanini, Daniele Lapa, Gaetano Maffongelli, Fabrizio Maggi,
Alessandra Marani, Andrea Mariano, Ilaria Mastrorosa, Giulia Ma-
tusali, Silvia Meschi, Valentina Mazzotta, Sabrina Minicucci, Clau-
dia Minosse, Klizia Mizzoni, Martina Moccione, Annalisa Mondi,
Vanessa Mondillo, Giorgia Natalini, Nicoletta Orchi, Sandrine Ot-
tou, Jessica Paulicelli, Elisabetta Petrivelli, Maria Maddalena Plazzi;
Carmela Pinnetti, Silvia Pittalis, Gianluca Prota, Vincenzo Puro, Sil-
via Rosati, Alberto Rossi, Gabriella Rozera, Martina Rueca, Laura
Scorzolini, Eliana Specchiarello, Maria Virginia Tomassi, Massimo
Tempestilli, Francesco Vaia, Francesco Vairo, Beatrice Valli, Alessan-
dra Vergori, Serena Vita.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:doi:10.1016/j.jinf.2022.11.001.

References

1. Li D, Liu Y, Li K, Zhang L.. Targeting F13 from monkeypox virus and variola virus
by tecovirimat: Molecular simulation analysis. J Infect 2022;85:e99-e101.

2. Adler H, Gould S, Hine P, et al. Clinical features and management of human
monkeypox : a retrospective observational study in the UK. Lancet Infect Dis
2022;3099:1-10.

. Desai A, George T, Neumeister S, Arutyunova A, Stuart C.. Compassionate Use of
Tecovirimat for the Treatment of Monkeypox Infection. JAMA 2022:1-3.

4. Matias WR, Koshy JM, Nagami EH, et al. Tecovirimat for the Treatment of Hu-
man Monkeypox: An Initial Series From Massachusetts, United States. Open fo-
rum Infect Dis 2022;9:0fac377.

5. Tarin-Vicente E], Alemany A, Agud-Dios M, et al. Clinical presentation and vi-
rological assessment of confirmed human monkeypox virus cases in Spain: a
prospective observational cohort study. Lancet 2022;400:661-9.

6. Mailhe M, Beaumont A-L, Thy M, et al. Clinical characteristics of ambulatory and
hospitalised patients with monkeypox virus infection: an observational cohort
study. Clin Microbiol Infect 2022 Available at. doi:10.1016/j.cmi.2022.08.012.

7. O’Laughlin K, Tobolowsky FA, Elmor R, et al. Clinical Use of Tecovirimat (Tpoxx)
for Treatment of Monkeypox Under an Investigational New Drug Protocol —
United States. MMWR Morb Mortal Wkly Rep May-August 2022. ePub: 9 Septem-
ber 2022. DOI: http://dx.doi .

. Festus Mbrenga, Emmanuel Nakouné, Christian Malaka, Josephine Bourner, ] ake
Dunning, Guy Vernet, Peter Horby PO. Monkeypox treatment with tecovirimat
in the Central African Republic under an Expanded Access Programme Author.
medRxiv Prepr doi:10.1101/2022.08.24.22279177.

. Https://www.cdc.gov/poxvirus/monkeypox/response/2022/
demographics-TPOXX.html accessed 26 September 2022.

10. Peiro-Mestres A, Fuertes I, Camprubi-Ferrer D, et al. Frequent detection of mon-
keypox virus DNA in saliva, semen, and other clinical samples from 12 pa-
tients, Barcelona, Spain, May to June 2022. Eurosurveillance 2022;27. Available
at http://dx.doi.org/10.2807/1560-7917.ES.2022.27.28.2200503 .

w

e}

[{=)

Annalisa Mondi*, Roberta Gagliardini*, Valentina Mazzotta,
Serena Vita

Clinical and Research Infectious Diseases Department, National
Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome,
Italy;

Fabrizio Carletti
Laboratory of Virology, National Institute for Infectious Diseases
Lazzaro Spallanzani IRCCS, Rome, Italy;

Carmela Pinnetti, Maria Letizia Giancola

Clinical and Research Infectious Diseases Department, National
Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome,
Italy;

Eliana Specchiarello
Laboratory of Virology, National Institute for Infectious Diseases
Lazzaro Spallanzani IRCCS, Rome, Italy;

Simone Lanini, Francesca Faraglia

Clinical and Research Infectious Diseases Department, National
Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome,
Italy;

Claudia Minosse
Laboratory of Virology, National Institute for Infectious Diseases
Lazzaro Spallanzani IRCCS, Rome, Italy;

Jessica Paulicelli, Andrea Mariano

Clinical and Research Infectious Diseases Department, National
Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome,
Italy;

Gabriella Rozera
Laboratory of Virology, National Institute for Infectious Diseases
Lazzaro Spallanzani IRCCS, Rome, Italy;

Carla Fontana
Laboratory of Microbiology and Biological Bank, National Institute
for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy;

Paolo Faccendini
Pharmacy Unit, National Institute for Infectious Diseases Lazzaro
Spallanzani IRCCS, Rome, Italy;

Fabrizio Maggi
Laboratory of Virology, National Institute for Infectious Diseases
Lazzaro Spallanzani IRCCS, Rome, Italy;


https://doi.org/10.1016/j.jinf.2022.11.001
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00643-0/sbref0005
https://doi.org/10.1016/j.cmi.2022.08.012
http://dx.doi
https://doi.org/10.1101/2022.08.24.22279177
https://www.cdc.gov/poxvirus/monkeypox/response/2022/demographics-TPOXX.html
http://dx.doi.org/10.2807/1560-7917.ES.2022.27.28.2200503

Letter to the Editor/Journal of Infection 86 (2023) 66-117 73

Enrico Girardi
Scientific Direction, National Institute for Infectious Diseases Lazzaro
Spallanzani IRCCS, Rome, Italy

Francesco Vaia
General Direction, National Institute for Infectious Diseases Lazzaro
Spallanzani IRCCS, Rome, Italy.

Emanuele Nicastri, Andrea Antinori

Clinical and Research Infectious Diseases Department, National
Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome,
Italy;

#Corresponding author: Dr. Roberta Gagliardini, Clinical and
Research Infectious Diseases Department, National Institute for
Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292,
00149 Rome, Italy, 0039 3331045103, 0039 0655170368

E-mail address: roberta.gagliardini@inmi.it (R. Gagliardini)

* A.M. and RG. contributed equally to the manuscript.
Accepted 2 November 2022

Available online 5 November 2022

https://doi.org/10.1016/].jinf.2022.11.001

© 2022 The British Infection Association. Published by Elsevier
Ltd. All rights reserved.

Multidrug-resistant infection in COVID-19 patients: A R

cccccccc

meta-analysis =S
Dear Editor,

Yeonju La et al. reported the most problematic multidrug-
resistant microorganisms (MDROs) increased after the Coronavirus
disease 2019 (COVID-19) pandemic in South Korea, suggesting ac-
tive and continuous monitoring of the increase in infections with
MDROs.! We had a valuable opportunity to carefully read this in-
teresting manuscript and additional published studies to further
explore the infection rate of multidrug-resistant (MDR) in patients
with COVID-19.

COVID-19 is a newly emerging disease in the human popula-
tion. The World Health Organization classified COVID-19 as a pan-
demic on March 11, 2020. The disease is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Some affected
patients need hospitalization in the intensive care unit (ICU) for
critical care and mechanical ventilation, increasing the risk of sec-
ondary infection. The cause of this secondary infection may be
MDR bacterial infection.

MDROs are defined as those resistant to one or more classes
of antimicrobial drugs, including methicillin-resistant Staphylococ-
cus aureus, vancomycin-resistant enterococci, and certain Gram-
negative Enterobacteriaceae, which produce ultra-broad-spectrum
beta-lactamase or carbapenemase resistance. Antimicrobial resis-
tance is recognized as a public threat of increasing urgency. By
2050, an estimated 10 million people will die annually from MDR
infections (resistant to three or more antimicrobial drugs). De-
creased effectiveness of antibiotics may exponentially increase the
risk of medical and surgical procedures and immunosuppressive
treatments such as cancer chemotherapy.

In the post-pandemic era, antibiotic resistance might become a
bigger challenge. In view of the great danger posed by MDR bac-
teria, we tried to explore the prevalence of MDR bacteria in pa-
tients with COVID-19 to provide timely and effective prevention
programs.

We found that some published studies explored the situation of
patients with COVID-19 who acquired MDR bacteria during hospi-
talization. Fernandez? et al. compared the colonization of MDROs
in patients infected and uninfected with COVID-19 admitted to
the ICU during the COVID-19 epidemic. It was concluded that the
non-COVID-19 group in the ICU had a lower rate of MDR bacte-
rial infections after admission than the COVID-19 group. Not only
in the ICU, the use of mechanical ventilation also aggravated the
secondary respiratory tract infection of patients with COVID-19.
Patients with COVID-19 admitted to the ICU and requiring me-
chanical ventilation had a high rate of secondary infections dur-
ing their hospital stay.> Moreover, within late secondary infections,
one third of the isolated bacteria were MDR.

For this reason, PubMed, Web of Science, Embase, and Cochrane
Library databases were extensively searched for all compliant stud-
ies published from January 1, 2020, to October 10, 2022. The in-
clusion criteria were as follows: (1) adult patients with COVID-19
confirmed by reverse transcriptase-polymerase chain reaction; (2)
peer-reviewed original studies in English; (3) MDR-infected strains
measured by the number of strains; and (4) the infection statistics
of MDR based on the number of people. In total, 8 studies with
1423 patients were identified. Eight studies reported MDR bacte-
rial infections in patients with COVID-19 pneumonia. General in-
formation about the included studies is summarized (Table 1).29
We focused on collecting some of the most common strains, such
as Enterobacter, S. aureus, and Klebsiella pneumoniae. The results of
eight studies were showed that 42% of the patients with COVID-19
were infected with MDR (95% confidence interval (CI), 0.23-0.61;
P < 0.01) (Fig. 1). Also, the heterogeneity (I2) was 97.9% and the
Egger value was 0.174, indicating no publication bias. We also col-
lected data on common strains for collation to further investigate
the specific strain distribution of MDR bacteria. Among the MDR
strains, the K. pneumoniae rate in five studies was 21% (95% (I,
0.09-0.32; P < 0.01), the Enterobacter spp. rate in another five was
8% (95% CI, 0.04-0.12), and the S. aureus rate in five studies was

Table 1

The basic information of the included literature.
Author Year Country Total MDR  MDR strains K. pneumoniae  Enterobacter spp.  S. aureus
Maria 2022 Chile 71 22 71 4(5.6%) 5(7%) 4(5.6%)
Junya L 2022 Brazil 43 28 38 11(28.9%) 2(5.3%) 6(15.8%)
Marie 2022 Europe 840 598 N N N N
Ashish 2021  America 39 16 16 N 2(12.5%) 11(68.8%)
Prayudi 2022 Indonesia 182 74 74 14(18.9%) N 1(1.4%)
Elisa 2020  Belgium 72 24 31 8(25.8%) 3(9.7%) N
Fernindez =~ 2021  Spain 24 9 13 5(38.5%) 3(23.1%) 2(15.4%)
Priya 2020  America 152 24 N N N N

Total: number of COVID-19 patient included in the study.
MDR: Number of people infected with MDR.
N: no data.
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Fig. 1. a. Forest plot of MDR infection rate in COVID-19 patients.
b. Forest plot of the enterobacter spp. rate among multidrug-resistant strains.
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c. Forest plot of the s. aureus rate among multidrug-resistant strains.

d. Forest plot of the k. pneumoniae rate among multidrug-resistant strains.

16% (95% CI, 0.05-0.28; P < 0.01). These are the main bacteria iso-
lated from endotracheal aspirate and blood.

During the COVID-19 pandemic, medical care systems world-
wide became overwhelmed, and the shortage of beds and per-
sonal protective equipment (PPE) in ICU also contributed to the
rapid growth of MDR bacteria. Also, the reasons for the high in-
fection rate of MDR bacteria in patients with COVID-19 might be
as follows'?: (i) Cough, sore throat, and fever, which were the
most common symptoms of COVID-19, were independent factors
associated with overuse of antibiotics in hospitals and commu-
nities. (ii) Antimicrobial drug use was common in patients with
COVID-19, and more than 70% of the patients with COVID-19 re-
ceived antimicrobial treatment despite less than 10% having bac-
terial or fungal coinfections. (iii) At the beginning of the pan-
demic, some broad-spectrum antimicrobial agents were suggested
as treatments against COVID-19 and were tested for a possible ef-
ficacy against SARS-CoV-2, for example, teicoplanin, azithromycin,
and tetracycline.

In a word, this study draws attention to the necessity of mon-
itoring drug resistance/multidrug resistance and proper use of an-
tibiotics, especially for patients with COVID-19 hospitalized for a
long time. Nonpharmacological behavioral changes implemented
during the COVID-19 pandemic to drop the spread of SARS-CoV2
may also reduce the prevalence of MDR infection in patients with
COVID-19. For example, hospital hygiene habits, the improvement
of PPE, and the use of antibacterial soap and disinfectant were
adopted to a great extent. These practices may reduce the spread
of MDR. In addition, restrictions on the number of hospital visits,
the availability of nucleic acid testing, and distance policies imple-
mented for inpatients may lead to future reductions in bacterial
circulation.
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In vitro activity of imipenem/relebactam, )
meropenem/vaborbactam and comparators against 2
Pseudomonas aeruginosa in Taiwan: Results from the

Study for Monitoring Antimicrobial Resistance Trends
(SMART) in 2020

Dear Editor,

We read with great interest the article by La et al. in which it
was reported that bacteremia due to difficult-to-treat Pseudomonas

aeruginosa, in which the isolates are not susceptible to carbapen-
ems, antipseudomonal B-lactams, or fluoroquinolones, increased
after the COVID-19 pandemic in Korea.! A similar trend has been
observed in Taiwan.

Pseudomonas aeruginosa characteristically causes nosocomial in-
fections but has also been found in serious community-acquired
infections.> P. aeruginosa were reported to make up 5-15% of
gram-negative pathogens isolated from intraabdominal infections
(IAls) and urinary tract infections (UTIs).> As a result of increased
expression of B-lactamases (including carbapenemases), the pres-
ence of multiple efflux pumps, decreased expression of porin pro-
teins, and changes in penicillin-binding proteins, treatment of re-
sistant P. aeruginosa infections has become clinically challeng-
ing.*> Imipenem-relebactam and meropenem-vaborbactam, both
of which were recently approved by the U.S. FDA, contain novel 8-
lactamase inhibitors and carbapenems. However, data on the sus-
ceptibility of P. aeruginosa to these two new agents are lacking in
Taiwan.

The Study for Monitoring Antimicrobial Resistance Trends
(SMART) is a network of surveillance systems that track the
in vitro antimicrobial susceptibility of clinically significant gram-
negative bacteria nationwide.5 Eight participating hospitals in Tai-
wan provided susceptibility data for P. aeruginosa isolated from IAIs
and UTIs in 2020. Matrix-assisted laser desorption ionization-time
of flight mass spectrometry was used to determine the presence
of P. aeruginosa. At International Health Management Associates
(IHMA, Schaumburg, IL, USA), antimicrobial susceptibility was de-
termined by a broth microdilution method using frozen panels.
Except in the case of meropenem-vaborbactam, MICs were inter-
preted according to the Clinical and Laboratory Standards Insti-
tute (CLSI) guidelines (M100-S31). The EUCAST 2021 standard was
used to determine the susceptibility to meropenem-vaborbactam
due to a lack of CLSI standards. The Institutional Review Board
of National Taiwan University Hospital approved the study (NTUH
9561709108).

A total of 111 P aeruginosa isolates from 8 hospitals in Taiwan
were gathered in 2020. The part of the body from which the bac-
teria were isolated and the time of collection are shown in Table
S1. Fifty-eight (52.3%) of the isolates were obtained from UTIs, and
53 (47.7%) of the isolates were obtained from IAls. Most of the
P. aeruginosa were isolated from patients who had been admitted
for 48 h or more. Seventy-four (66.7%) of the P. aeruginosa infec-
tions in the current report were nosocomial infections in which
specimens were obtained > 48 h after admission, and 37 (33.3%)
infections were community-acquired infections. The incidence of
nosocomial infection was 60.3% among UTIs and 73.6% among IAls.
Most of the isolates obtained from IAls were from peritoneal fluid
or from the gall bladder.

The antimicrobial susceptibility patterns of P. aeruginosa are
summarized in Table 1. The two carbapenem-f-lactamase inhibitor
combinations imipenem/relebactam and meropenem/vaborbactam
were highly effective against P aeruginosa. The susceptibil-
ities were 97.3% and 96.4% for imipenem/relebactam and
meropenem/vaborbactam, respectively. However, the suscepti-
bilities to imipenem and meropenem alone were lower at 62.2%
and 82.1%, respectively. Amikacin susceptibility (98.2%) was ex-
cellent, and P. aeruginosa exhibited fair susceptibility (85.6%) to
cefepime. A small percentage of the isolates displayed colistin
resistance (0.9%). In contrast, the susceptibility of the isolates to
other traditional anti-P. aeruginosa agents, including aztreonam,
cefepime, ceftazidime, levofloxacin, and piperacillin/tazobactam,
was inferior, ranging from 72.1% to 78.4%. The incidence of an-
timicrobial resistance was higher in people with nosocomial
infections caused by P. aeruginosa compared with that associ-
ated with community-acquired infections (Fig. 1A). There was a
statistically significant reduction in susceptibility to imipenem, lev-
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Table 1
Antimicrobial susceptibility patterns of 111 Pseudomonas aeruginosa isolates collected from patients in the Study
for Monitoring Antimicrobial Resistance Trends (SMART) in 2020.

Agent MIC (mg/L) % of isolates in each susceptibility category
Range MICso MICgg S I R
Imipenem/relebactam 0.12-4 0.5 1 97.3 18 0.9
Meropenem/vaborbactam 0.25-16 0.5 4 9.4 0 3.6
Imipenem 0.25-32 2 16 62.2 171 20.7
Meropenem 0.25-16 0.5 4 80.1 8.1 9.9
Amikacin 4-32 4 8 98.2 0 1.8
Aztreonam 1-16 8 16 721 279 0
Cefepime 1-32 2 16 856 99 4.5
Ceftazidime 1-32 4 32 784 72 144
Colistin 1-4 1 1 - 99.1 0.9
Levofloxacin 0.5-4 0.5 4 74.8 91 16.2
Piperacillin/tazobactam 4-64 8 64 76.6 234 0

S, susceptible; I, intermediate; R, resistant.
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Fig. 1. Rates of in vitro susceptibility to antimicrobial agents of (A) Pseudomonas aeruginosa collected from patients in Taiwan during the period 2018-2020 and (B) Pseu-
domonas aeruginosa isolates collected from patients hospitalized for <48 or >48 h in 2020. Two-sided chi-square tests were conducted. Asterisks indicate that the differences
in susceptibility rates in different years are significant. *p < 0.05; *** p < 0.001.

ofloxacin, and piperacillin/tazobactam. Only imipenem/relebactam, of levofloxacin (Fig. S1). Compared to the surveillance studies con-
meropenem/vaborbactam, amikacin, and colistin were effective ducted in 2018 and 2019 in Taiwan, current study in 2020 in Tai-
against more than 90% of nosocomial P. aeruginosa infections wan revealed lower susceptibility rates of P. aeruginosa to multiple
(Fig. 1A). agents (Fig. 1B).”-8 Its susceptibility to levofloxacin, imipenem, and

The antimicrobial susceptibility profiles of P. aeruginosa isolated meropenem decreased significantly (Fig. 1B).”-8
from patients with IAls and UTIs were similar, except in the case
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A total of 45 P aeruginosa isolates were found to be nonsus-
ceptible to meropenem or imipenem (MIC > 4 mg/L). The sus-
ceptibility patterns of these carbapenem-nonsusceptible P. aerugi-
nosa (CNPA) isolates are shown in Fig. S2. These CNPA were highly
susceptible to amikacin (95.6%), imipenem/relebactam (93.3%), and
meropenem/vaborbactam (91.1%). Only one CNPA isolate (2.2%)
was resistant to colistin. CNPA displayed moderate susceptibility
(711%) to cefepime. The susceptibility to aztreonam, ceftazidime,
levofloxacin, meropenem, and piperacillin/tazobactam ranged from
55% to 60%.

Twenty-three isolates were resistant to meropenem or
imipenem (MIC >8 pg/ml). The susceptibility profiles of these
carbapenem-resistant P. aeruginosa (CRPA) strains are shown in
Fig. S3. Amikacin is highly effective against CRPA (95.7%). No
colistin-resistant strain was detected among the CRPA strains.
The susceptibility of CRPA strains to imipenem/relebactam and
meropenem/vaborbactam was fair (87.0% and 82.6%, respectively).
Moderate (65.2%) susceptibility to cefepime was observed in CRPA;
susceptibility to levofloxacin and ceftazidime was approximately
50%, and susceptibility to aztreonam, imipenem, meropenem, and
piperacillin/tazobactam was less than 50%.

Teo et al. collected clinical isolates of CNPA in Singapore be-
tween 2006 and 2020 and reported that these isolates exhibited
high resistance to imipenem, meropenem, aztreonam, cefepime,
piperacillin/tazobactam, and levofloxacin.® According to Teo'’s re-
port, less than 20% of CNPA isolates were sensitive to these agents.
The susceptibilities of CNPA to ceftazidime, piperacillin-tazobactam
and levofloxacin were 47.1%, 35.3%, and 37.2%, respectively, accord-
ing to a report on clinical specimens collected from 2016 to 2017
in the US.!° In contrast, we found a less resistant profile of CNPA
in Taiwan. The CNPA we examined displayed moderate suscep-
tibilities (greater than 50%) to meropenem, aztreonam, cefepime,
piperacillin/tazobactam, and levofloxacin. Monitoring the antimi-
crobial susceptibility of CNPA in different regions of the world is
essential since the resistance profiles of bacteria vary greatly.

In summary, we report here that clinical isolates of P. aerug-
inosa isolated in Taiwan display outstanding susceptibility to
two carbapenem/f-lactamase inhibitor combinations, imipenem-
relebactam, and meropenem-vaborbactam. We observed that both
CNPA and CRPA isolates remain highly susceptible to these two
agents. Continuous surveillance in which the trends of resistance
to these two agents are monitored is vital.
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Regdanvimab improves disease mortality and morbidity in )
patients with COVID-19: Too optimistic and too early to k-
say?

Dear Editor,

We have read with great interest the recently published meta-
analysis by Yang, M. et al.! in the Journal of Infection on the topic
of regdanvimab use in COVID-19 patients. The authors included 7
studies in their meta-analysis and concluded that regdanvimab ad-
ministration significantly reduced COVID-19 mortality and risk of
disease progression according to a composite outcome. This pub-
lication is of particular interest and significance as it is currently
the only meta-analysis published on the topic, however some of
the authors’ presented results and conclusions may potentially be
misleading.

In the original meta-analysis (recreated on Fig. 1A) the au-
thors included 4 studies in their mortality outcome analysis
and concluded that regdanvimab use was associated with sta-
tistically significant lower mortality (OR = 0.14, 95% CI: 0.03 to
0.56, P = 0.006; 12 = 0%). In the meta-analysis, the study by Park,
S. et al.2 with a weight of 75.5% and an OR of 0.04 (95% CI: 0.00
to 0.64) contributed disproportionately more to the pooled result
in comparison to other included studies. The Park, S. et al.? study
was an observational retrospective study which explored outcomes
of 377 regdanvimab treated patients and 520 standard of care con-

trols in an overall primary cohort from which a propensity score
matched cohort of 754 patients, 377 in each group, was created
and analysed. In their meta-analysis, Yang, M. et al.! included the
outcomes from the unmatched primary cohort, instead of the PS-
matched cohort, which in our opinion was incorrect due to statis-
tically significant differences between the two unmatched groups,
as reported by Park, S. et al.2, which favoured the treatment group.
Patients in the control group: 1) were older (median age 65 [IQR,
57-75] vs. 61 [53-68] years, P < 0.001), 2) had a higher proportion
of moderate COVID-19 pneumonia (54.1% vs. 45.9%, P = 0.049),
3) chronic lung disease (78.9% vs. 21.1%, P = 0.007) and 4) car-
diovascular disease (73.9% vs. 26.1%, P < 0.001), which were all
accounted for and no longer statistically significant in the PS-
matched cohort. Thus, the decision to include the outcomes of the
unmatched cohort seems inappropriate and presents a significant
potential source of bias in the meta-analysis, especially when
considering the significant weight of the Park, S. et al.> study.
In order to eliminate the source of bias, we recreated the meta-
analysis using the outcomes from the PS-matched cohort, Fig. 1B
(OR = 0.49, 95% CI: 0.10 to 2.28, P = 0.38; 12 = 0%) and we also
excluded the Park, S. et al.? study altogether due to the zero event
rate, Fig. 1C (OR = 0.44, 95% CI: 0.08 to 2.53, P = 0.38; 12 = 0%)
and we found no statistically significant impact of regdanvimab
on COVID-19 mortality in either analysis. Moreover, we also recre-
ated the composite outcome analysis, Fig. 1D and conducted an
additional analysis with the PS-matched Park, S. et al.2 cohort and
found no significant difference between the results.

In conclusion, while it seems that regdanvimab may have a po-
tential beneficial effect on COVID-19 patients based on the com-
posite outcome, in our view, the conclusion made by Yang, M.
et al.! that regdenvimab reduced patient mortality seems exagger-
ated. Finally, in all meta-analyses shown on Fig. 1, a considerable
uncertainty of the results is perhaps best illustrated by the wide
prediction intervals, which were present even in the original mor-
tality outcome analysis by Yang, M. et al.!, Fig. 1A. As the number
of published studies remains small and with most current studies
being retrospective in design, additional high quality, prospective,
randomised trials exploring the potential beneficial effects of reg-
danvimab in COVID-19 patients are urgently needed.
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Fig. 1. Forest plots recreating the original meta-analysis results by Yang, M. et al.' regarding the mortality (Fig. 1A) and composite (Fig. 1D) outcomes. Reanalysis of the
mortality (Fig. 1B) and composite (Fig. 1E) outcome meta-analysis using outcomes from the propensity score matched cohort from the Park, S. et al.”> Mortality outcome
meta-analysis (Fig. 1C) with the Park, S. et al.” study excluded due to a zero event rate.


mailto:hsporen@gmail.com
https://doi.org/10.1016/j.jinf.2022.10.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinf.2022.10.030&domain=pdf

Letter to the Editor/Journal of Infection 86 (2023) 66-117 79

Conflict of interest
No conflicts of interest to declare.
Authors’ contributions
All authors participated equally in all parts of the manuscript.
Funding
No funding was received for this study.
Data disclosure statement

All analysed data is presented in the manuscript.
References

1. Yang M., et al. Regdanvimab improves disease mortality and morbidity in pa-
tients with COVID-19: a meta-analysis. J Infect 2022;85:122-4.

2. Park S., Je NK, Kim D.W., Park M., Heo ].. Effectiveness and safety of Reg-
danvimab in patients with mild-to-moderate COVID-19: a retrospective cohort
study. ] Korean Med Sci 2022;37:1-16.

Robert Marcec, Vinko Michael Dodig
School of Medicine, University of Zagreb, Zagreb, Croatia

Robert Likic*

School of Medicine, University of Zagreb, Zagreb, Croatia

Clinical Hospital Centre Zagreb, Department of Internal Medicine,
Unit for Clinical Pharmacology, Zagreb, Croatia

*Corresponding author at: University Hospital Centre Zagreb,
Department of Internal Medicine, Unit of Clinical Pharmacology,
Kispaticeva 12, 10000 Zagreb, Croatia.

E-mail addresses: robert.likic@mef.hr, rlikic@kbc-zagreb.hr (R. Likic)

Accepted 21 October 2022
Available online 1 November 2022

https://doi.org/10.1016/].jinf.2022.10.030

© 2022 The British Infection Association. Published by Elsevier
Ltd. All rights reserved.

Evaluation of clinical harm associated with Omicron R
hospital-onset COVID-19 infection ez

Dear Editor,

The COVID-19 pandemic has seen waves of hospital-onset
COVID-19 infection (HOCI).'> As community prevalence rose and
fell, so too did the prevalence of HOCL2 > COVID-19 waves in the
UK can be characterised by the variants that caused them, with the
‘Omicron wave’ emerging in December 2021.* Outcomes in hos-
pitalised patients with COVID-19 were poor pre-Omicron.*”’ The
Omicron variant resulted in a wave of HOCI in late 2021 and early
2022. A recent article in this journal found that ‘incidental’ COVID-
19 infection was more common during the Omicron wave than the
Delta wave, accounting for approximately two thirds of cases in
one London hospital group.! We undertook an evaluation of harms
associated with HOCI caused by Omicron in order to inform future
decision making about COVID-19 risk management strategies.

We reviewed patients with probable HOCI (according to UK def-
initions) admitted to three London hospital groups between Jan-
uary and mid-March 2022. Patients with ‘hospital-onset probable

Table 1
Prevalence of symptoms and harm as-
sociated with COVID-19.

COVID-19 symptoms n %

No 86  66.7
Yes 39 302
Unknown 4 31
Increased length of stay n %
No 109 845
Yes 15 11.6
Unknown 2 1.6
Increased 02 n %
No 18 915
Yes 1 8.5
HDU/ICU admission  n %
No 127 984
Yes 2 1.6
Outcome n %
Died by day 28 (COVID-19 not on death certificate) 13 10.1
Died by day 28 (COVID-19 on part 2 death of death certificate) 4 3.1
Died by day 28 (COVID-19 on part 1 death of death certificate) 3 2.3
Discharged or remained an inpatient at day 28 108 837
Unknown 1 0.8

healthcare-associated’ (HOPHA) (first positive specimen date 8-14
days after admission) and patients with ‘hospital-onset definite
healthcare-associated’ (HODHA) (first positive >=15 days after ad-
mission) were included. Patients were from Guy’s and St. Thomas’
NHS Foundation Trust (n=56), Royal Free London NHS Foundation
Trust (n=49), and St. George’s University Hospitals NHS Foundation
Trust (n=24). These Trusts were testing all inpatients for SARS-
CoV-2 two to three times each week, and had systems in place for
real-time detection of HOCI. All COVID-19 during this period was
assumed to the Omicron variant, supported by laboratory geno-
typing data. Patient notes and death certificates (where applica-
ble) were reviewed and the following information was recorded:
patient age, SARS-CoV-2 vaccination status, whether the patient is
classified as ‘vulnerable’ as defined by a list used to determine eli-
gibility for booster vaccination and treatment,® and whether or not
the patient developed any symptoms consistent with COVID-19.
The following measures of harm were chosen based on NHS guid-
ance?; increased length of stay (>1 day) to manage their COVID-
19 infection, new or increased requirement for supplemental oxy-
gen, and admission to ICU or HDU for COVID-19. Death certificates
of patients who died were reviewed to establish if COVID-19 was
recorded as a direct cause of death (Part 1) or a condition con-
tributing to the death (Part 2). Logistic regression was used to test
whether any measure of harm (increased length of stay or new
or increased requirement for supplemental oxygen or admission to
ICU or HDU for COVID-19, or COVID-19 on Part 1 or Part 2 of the
death certificate) was associated with age, patient vaccination sta-
tus, or whether or not the patient was classified as clinically vul-
nerable. The review was considered service evaluation to help in-
form future infection prevention and control policy decisions.

129 patients were included in the review (Table 1). 55 (42.6%)
of patients were considered fully vaccinated (three doses), and
18 (14%) unvaccinated. 43 (33.3%) were considered vulnerable. 86
(66.7%) of patients did not develop symptoms of COVID-19. 15
(11.6%) patients had an increased length of stay, 11 (8.5%) had
an increased oxygen requirement, and 2 (1.6%) required ICU or
HDU attributed to COVID-19. Three (2.3%) patients had COVID-19
recorded as a direct cause of death (Part 1 of the death certificate),
and four (3.1%) had COVID-19 recorded as a condition contributing
to death (Part 2). A further 13 patients died but COVID-19 was not
recorded on their death certificates. We did not identify any signif-
icant difference in age, vaccination status, or clinically vulnerable
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Table 2
Evaluation of associations with harm in patients with COVID-19.
Harm (n=21) No harm (n=108) p value
n % N %
Age (median, range) 75 (55-91) - 74 (11-96) - 0.216
Vaccination status
1st dose 1 4.8 3 2.8 0.698
2nd dose 8 38.1 35 324  0.858
3rd dose (or more) 7 333 48 444  0.674
Unknown 2 9.5 7 6.5 0.730
Unvaccinated 3 14.3 15 139 Ref
Clinically vulnerable
Yes 5 238 38 352 0316

status for the 21 patients for whom we recorded harm compared
with 108 patients for whom we did not record harm, (Table 2).

Our findings suggest a step-change reduction in harms associ-
ated with HOCI caused by Omicron, which is consistent with the
reduced harms attributed to Omicron elsewhere.':* Despite one-
third of patients being considered vulnerable to a poor outcome
from COVID-19, only a small proportion of patients required escala-
tion of care to ICU or HDU for COVID-19 (2%), or died from COVID-
19 (2%), and the majority of patients were asymptomatic (67%).
This contrasts previous waves, where outcomes for patients in hos-
pital with COVID-19 were poor.®: '° Indeed, in one of our centres
mortality from HOCI was around 30% during the first wave.” Also,
a retrospective observational analysis including 374, 244 adult pa-
tients in England with COVID-19 in hospitals found that adjusted
mortality rates fell from 40-50% in March 2020 to 11% in August
2020.5 A review and meta-analysis found that mortality associ-
ated with nosocomial COVID-19 between January 2020 and Febru-
ary 2021 was significantly higher than for community infection.” A
large study of around 1.5m patient in England found that Omicron
COVID-19 was associated with a significantly lower risk of hospi-
tal attendance, hospital admission, and death, with the risk for all
three measures approximately halved or more than halved.*

We did not identify associations between age, vaccination sta-
tus, or clinical vulnerability status and clinical harm attributed to
COVID-19. This is surprising because older age, incomplete vacci-
nation, and underlying clinical vulnerability have been associated
with clinical harm from COVID-19 with each previous wave.* 6 7.
10 Whilst our dataset is small, our findings may be early evidence
that these variables are less important in predicting harm associ-
ated with Omicron COVID-19 in hospitalised patients than for ear-
lier variants.

Our methods did not allow for direct comparisons of harms
with previous COVID-19 variants. We also acknowledge some sub-
jectivity in the attribution of harm, especially in deciding whether
increased length of stay was due to medical care arising from
COVID-19. We also only measured short-term harm associated
with COVID-19, and didn’t monitor long term clinical outcomes.

Our findings, from multiple hospital sites in London, suggest
that when evaluating the utility of control measures for HOCI, it
becomes more important to consider the indirect impacts of de-
tecting and managing HOCI cases as the direct harms from HOCI
fall. These indirect impacts include the burden of asymptomatic
testing, subsequent impacts on individual patient management and
discharge, and interruption to the flow of other patients due to
contact isolation and bed closures.
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Red herrings in monkeypox m

Checictor
paates

Dear Editor,

Since the eradication of smallpox, monkeypox became the
most prominent Orthopoxvirus affecting humans, being endemic
in Western and Central Africa. A rapidly emerging outbreak of
monkeypox spread in Europe and in the rest of the World from
May 2022, with the pathogen belonging to the West African clade,
which is usually associated with milder disease compared to the
Congo basin one. Most cases of the current outbreak have been
diagnosed in men who have sex with men (MSM), therefore inti-
mate contacts seem to be the prevalent route of transmission. His-
torically, signs and symptoms of monkeypox included a rash with
several simultaneous lesions affecting multiple regions of the body,
including face, arms, legs and less commonly palms, soles and gen-
italia. The cutaneous involvement was usually preceded by prodro-
mal findings as fever, lymphadenopathy and flu-like symptoms.!
Evidence from the current outbreak suggests possible atypical pre-
sentation, with rash usually involving perianal and genital areas
and with only mild prodromal symptoms.2:> In particular, a recent
paper published in your Journal by Marchese et al.* assessed that
most of subjects attending a sexual health clinic had rash as first
symptom of presentation, associated with other satellite symptoms
as fever, lymphadenopathies and malaise. In these individuals, gen-
ital involvement was always associated with other systemic symp-
toms or usually involved also perianal region, face or oral cavity.
The presentation of monkeypox as a solitary penis ulcer is there-
fore unusual and has never been described before.

A 29-years-old homosexual man, without anamnestic co-
morbidities, was admitted to our Infectious Diseases outpatient
clinic for the appearance of a single, painless ulcer, with indurated
borders at the level of the penis (Fig. 1A), associated with left in-
guinal painless lymphadenopathies. The ulcer appeared as a vesi-
cle one week before and became gradually ulcerated. The patient
denied any other symptoms or signs such as fever, headache, ure-
thral burning, or discharge, and no other lesions or enlarged lymph
nodes were found in other body regions, including oral cavity and
anus. He travelled to Mykonos (Greece) one week before the ap-
pearance of the ulcer, where he had numerous unprotected sex-
ual intercourses. The patient was tested for sexually transmitted
diseases, including syphilis, HIV, Herpes Simplex 1 and 2, Neisse-
ria gonorrhoeae, Chlamydia trachomatis, Ureaplasma urealyticum and
Mycoplasma genitalium. In addition, despite of the unusual clini-

Fig. 1. Solitary ulcer of the penis due to monkeypox (Fig 1A) and its complete res-
olution after 2 weeks (Fig 1B).

cal picture, he was also tested for monkeypox by real-time poly-
merase chain reaction (RT-PCR) on a swab taken from the penis
ulcer. Microbiological tests were all negative, except for Monkey-
pox RT-PCR. In the following days, the patient was followed-up by
daily video-calls and no treatment was prescribed. No other skin or
mucosal lesions occurred during follow-up; the penis ulcer gradu-
ally healed, with complete restitutio ad integrum in about 2 weeks
(Fig. 1B).

From January to September, 22th 2022, 64,561 cases of mon-
keypox have been reported globally, of which 63,973 outside the
African endemic regions.* Human-to-human transmission through
intimate contacts have been identified as the most important route
of transmission of this outbreak and MSM seem to be at greater
risk of acquiring the infection.? We describe here an atypical pre-
sentation of monkeypox, presenting with an isolated, painless ul-
cer on the penis associated only with inguinal lymphadenopathies.
There were not prodromal symptoms or other muco-cutaneous le-
sions at the time of presentation and during subsequent follow-up.
The presence of a single, indolent ulcer of the penis usually sug-
gests the presence of other sexually transmitted diseases, such as
syphilis, venereal lymphogranuloma due to Chlamydia trachomatis,
or chancroyd due to Haemophilus ducreyi. Consequently, the pos-
sibility of atypical presentations of monkeypox suggests that per-
sons presenting with isolated genital ulcer, especially when refer-
ring intimate contacts, should be also tested for monkeypox, even
in absence of other typical symptoms.

In conclusion, this case report underlines the importance of
testing for monkeypox individuals with intimate contact with sev-
eral partners in the previous 21 days and presenting with genital
lesions, even in absence of other signs and symptoms.
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A complicated case of monkeypox and viral shedding N

characteristies @ |sms
Dear Editor,

The report by Orviz et al. highlighted the relatively optimistic
prognosis of monkeypox (MPX) with no serious complications in
their case series from Madrid, Spain.! However, in another con-
firmed case series of 197 MPX patients, five (2.5%) had proctitis
with one having a perforated rectum with HIV infection and one
perianal abscess.? The current MPX outbreak differs from its his-
torical antecedents and has novel features, such as sexual trans-
mission route and genital bacterial complications. Here we report
a non-HIV case of MPX with proctitis and severe refractory anal
abscess who had to be relieved by colostomy. We also examined
his viral shedding characteristics including the patient room and
the operating room (OR) air.

A 31-year-old Canadian man visited Istanbul in July 2022. After
5 days of condomless receptive anal sexual practice with a male
partner, he started to have anal pain and vesicular skin lesions. In
an outpatient clinic, botulinum toxin was injected with a diagno-
sis of perianal fissure. With a stabbing pain, and difficulty of pass-
ing stool, a pelvic magnetic resonance imaging (MRI) was taken,
which revealed proctitis and perianal abscess. He was hospital-
ized on August 02, 2022, in our clinic. He had history of bipolar
type 2 disease and mini gastric bypass surgery. He used metham-
phetamine but had been clear for the last 5 months. The real-time
PCR for MPX was positive from the skin and nasopharyngeal ma-
terials. He showed a lymphocytosis (max 8000 /uL) for the first 4
days, which then disappeared. An abscess drainage was applied. He
was given intravenous (iv) piperacillin-tazobactam (TZP). The anal
pain progressed, and an abdominopelvic computerized tomography
(CT) scan revealed a deep abscess, and ESBL positive E.coli and C.
glabrata were isolated. We added micafungin 1 x 100 mg iv and
switched TZP to meropenem 3 x 1 gr iv. We couldn’t access to
the tecovirimat. He then had severe rectal bleeding with abdom-
inal pain and high fever. In rectosigmoidocopy, rectal ulcers were
observed. A new CT scan showed no perforation, but a pelvic ab-
scess with inflammation of rectum and adjacent tissue. General
surgery department applied a transverse end-loop colostomy to
by-pass stool from rectum. At the last abscess drainage MPX PCR
positivity with a cycle of threshold (Ct) value of 26 was detected.
We accounted this low Ct value to start cidofovir iv in combination
with probenecid that could be supplied 18 days after the onset of
lesions. No adverse effect was observed. Psychiatric support was
provided because of his mood fluctuations. His follow up contin-
ues in Montreal, Canada.

Our patient had an unfortunate course complicated by
colostomy. In a case series of 181 patients, two (1%) had reported
having anal abscess, who were treated conservatively,’ and another
one treated by incision and drainage.? In our case, both tranverse
end-loop colostomy and iv cidofovir were applied in the same
time. So, we could not estimate properly the true effect of each on
the recovery of the abscess. He had also lymphocytosis. Atypical
lymphocytes associated with MPX infection is reported in a small
case series (6 out of 14 patients).>

A nurse was exposed to the urine of the patient while handling
urinary bag (spilled over her clothes) on day 3 of admission. The
nurse had no history of smallpox vaccine, and no vaccine for post-
exposure was available in Turkey. She did not show any symptoms
for the next 21 days.

The samples from skin lesions, anal, nasopharynx swabs, anal
abscess, serum, urine, tear, and air were consecutively collected
(Fig. 1). Air samples from the patient room and OR were collected
by Coriolis Micro® portable biological air sampler. All samples
were examined by RT-PCR for MPXV DNA and PCR positive sam-

ples were cultured on Vero-E6 cells (Fig. 1). We defined a thresh-
old (Ct<38; viral load, PFU/ml >103) for the PCR positivity. This
value can vary, ie. Paran et al. defined a threshold (Cq>35; viral
DNA<4,300copies/mL) that predicts poorly- or non-infectious spec-
imens.5 In the RT-PCR, the viral load in skin lesions (the lowest
Ct value: 14; 10° PFU/ml) was the highest, and followed by rectal
smear (the lowest Ct value: 17; 108 PFU/ml), and nasopharyngeal
swabs (the lowest Ct value: 27; 10° PFU/ml). No viable virus was
isolated from any of the air samples. Viral culture was positive in
nasopharygeal, vesiculopustular, rectal smear and rectal ulcer, and
tear samples. Viral particles were visualised in rectal ulcer biopsy
sample stained with anti-vaccina antibody (Fig. 2). He had also a
prolonged viable virus positivity in nasopharynx until 20th day of
skin rash. The latest time point at which a lesion remained pos-
itive was reported as 21 days after onset of symptom.>* 7 In our
case, we detected prolonged rectal PCR positivity until day 30. We
also detected viral DNA in pelvic abscess until the day 20 with no
viral growth.

We found no viable MPX virus in the room air, but detected
viral DNA by PCR. Marimuthu et al. found no viable virus from
the air, but yet viable MPX virus from surfaces and dust samples.?
Gould et al. identified a replication-competent virus in air samples
collected during the bed linen change.® We think that more studies
are needed to confirm that N95 instead of surgical mask is really
necessary during daily routine care of the patient. Such an infor-
mation is critical because of the cost and availability of the N95
respirators.

In conclusion, anal abscess as a less, but proctitis as a
more frequent manifestation in the current outbreak of MPX
among men practicing anal-receptive sex should be kept in
mind by the clinician. MPX could be disturbingly morbid be-
cause of its complications. MPX virus shedding dynamics with
viral culture studies should be investigated much more detailed
in future studies. By this case, we highlight the importance of
multidisciplinary management of MPX and its expanding clinical
variety.
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Fig. 1. Viable monkeypox (MPX) virus and viral DNA shedding in 30 days after onset of skin rash. Green box: Nor MPX DNA neither viable virus detected. Red box: MPX viral
DNA detected. Star within red box: Viable MPX was isolated.

Fig. 2. Rectum epithelium in crypt infected with monkeypox (MPX) virus by using immunofluorescent staining for anti-vaccina (FITC, DAPI counterstaining). Nuclei was
stained with DAPI in blue, MPX virus in green. A. 40x magnification. B. 63x magnification.
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Changes of Haemophilus influenzae infection in children "
before and after the COVID-19 pandemic, Henan, China £

Dear Editor,

In this journal, Yuan et al. demonstrated Streptococcus pneu-
moniae infections among children are on a decreasing trend
during the COVID-19 pandemic in Zhengzhou, China,' as well
as carbapenemase-producing Enterobacteriaceae and extended-
spectrum beta-lactamase E. coli in France.?> However, no data is
available regarding Haemophilus influenzae (H.influenzae) infection.

H. influenzae is a gram-negative, nonmotile, facultatively coc-
cobacillus pathogen for human, and transmitted through respi-
ratory secretion droplets and direct close contact.* H. influenzae
mainly causes respiratory disease, bacteremia and central nervous
system diseases.> In particular for children, it is a leading cause
of children meningitis in worldwide,® and has been listed as one
of priority pathogens by WHO. Vaccination against H. influenzae
serotypes b (Hib) prevented the onward communication transmis-
sion of Hib, and consequently incidence of Hib infections drops
considerably in many countries including China. However, archived
studies showed increasing incidences of H. influenzae serotypes a
(Hia) and non-typeable H. influenzae (NTHi) annually by 13% and
3%, respectively.” With the changing epidemiology of H. influenza
infection, it is important to monitor the dynamic of H. influenzae
among children during the COVID-19 pandemic. Here we evaluated
the change of H. influenzae infection and clinical characteristics in
children before and after the COVID-19 pandemic, which may help
to inform the implementation of prevention strategies in clinic.

Laboratory-based surveillance of H. influenzae was conducted
from January 1, 2018, to December 31, 2021, at Henan Chil-
dren’s Hospital, an affiliated hospital of Zhengzhou University with
95,000 inpatients per year, 2,200 beds in total, and located in
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Fig. 1. The number ofH. influenzae among Children and young people aged 0-18 years by day during2018 to 2021.

Zhengzhou, capital of Henan province, China. We present the num-
ber positive of H. influenzae infection among Children and young
people aged 0-18 years, as well as comparisons of different age
groups (0-28d, 29d-1y, 1-3y, and 3-18y).The groups are based on
the traditional living habits of Chinese children and young people
aged 0-18 years. Group 1 (0-28d), the baby and mom are sup-
posed to stay at home,and avoid contact with other people except
families during the first month after delivery. Group 2 (29d-1y),
preschool age group at home. Group 3 (1-3y), preschool age group
at home or within private nursery affiliations. Group 4 (3-18y),
children and young people in kindergarten or school.

We observed that the number of positive H. influenzae infec-
tion in children were declined over the past four years (Fig. 1).
Most likely because the government carried out a home quaran-
tine through lockdown of the entire society from Jan 24 2020 to
May 15 2020, in Zhengzhou. In particular, the decrease of H. in-
fluenzae infection has been sustained for five months after a lock-
down strategy in Zhengzhou, which ended on May 15, 2020. More-
over, although the number positive and positive rate of H. influen-
zae infection in children began to increase since November 2020,
it is still lower than that in the same period in 2018 and 2019.
The positive rate of H. influenzae among children with respiratory
disease in 2020 (6.21%) was lower than that in 2018 (11.28%) and
2019 (10.16%) (p<0.05), raised again in 2021 (7.37%) (p<0.05) and
still lower than that in 2018 and 2019 (p<0.05). No change was
observed in children with bacteremia and central nervous system
diseases. Therefore the lockdown may have affected H. influenzae
infection with respiratory disease, but not other diseases caused
by H. influenzae. We also found that the positive rate of H. in-
fluenzae decreased in group 2-4 (Fig. 2), which indicated the lock-
down may only contained the community based transmission of
H. influenzae. The proportion of H. influenzae infection was more
than 45% in group 1-2, while reach to 70% in group 1-3. It in-
dicated that the population of H. influenzae infection was mainly
under 3 years old (children at home), especially for those under
1 year.

In addtition, the age composition of the children with H. in-
fluenzae infection under 3 years old changed during the COVID-19

pandemic. The median age of children under 3 years old with H.
influenzae infection in 2020 (8.2 months, IR 4.27-15) was older
than that in 2018 (7.5 months, IR 3.8-14) and 2019 (7.5 months,
IR 3.77-14) (p<0.05). However the median age of the hospitalized
children under 3 years old in 2020 (6.1 months, IR1.77-15) was
younger than that in 2018 (6.8 months, IR1.87-15) and 2019 (6.17
months, IR 1.93-15). These results way be correlated with the de-
lay of Hib vaccinations in these years. In China, Hib vaccine should
be administered starting at 2 months and completed within 1.5
years old, completed the whole inoculation in 3 doses. However,
vaccinations for many children were delayed because of the 113-
day lockdown during Jan 2020 to May 2020 in Henan, including
Hib vaccine.

Finally, this study showed that the COVID-19 pandemic changed
the epidemiological trend of H. influenzae infection in children
in Henan, China. Several factors may have contributed to the
change: the lessening of children-to-children contact during the
COVID-19 pandemic (closed schools and kindergartens), hand hy-
giene, masks, and the limitation of travel in children. What's more,
the H. influenzae vaccination was also delayed, which may be
related to the older median age of children with H. influenzae
infection.

In conclusion, we found a decreased tendency of H. influenzae
infection among children during the COVID-19 pandemic. Keep-
ing effective and continuous surveillance is of great significance to
prevent endemic of H. influenzae infection among children under
3 years old.
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COVID-19 subgroups may slow down biological age N

acceleration i
Dear Editor,

COVID-19 has profound health and socioeconomic impacts glob-
ally. Liu et al. suggested that older patients with COVID-19 had a
higher mortality rate and were more likely to progress to severe
disease.! Moreover, evidence indicates that chronological age is a
major risk factor for COVID-19.2-% Cao et al. suggested that bio-
logical aging was associated with the risk of SARS-CoV-2 infec-
tion and severe COVID-19 development.” However, Franzen et al.
reported that epigenetic clocks were not accelerated in COVID-19
patients.® A longitudinal study by Pang et al. showed that epige-
netic clocks might be slowed down for approximately 2.06 years
in young COVID-19 patients (age < 50).” The inconsistency of the
conclusions of previous studies intrigued us to continue to explore
whether there exist potential causal links between epigenetic age
acceleration and COVID-19. The causal relationships between epi-
genetic age acceleration and various COVID-19 subgroups, espe-
cially hospitalized COVID-19 and COVID-19 diagnosed with very se-
vere respiratory disease, remain unknown.

To further clarify the relationship between chronological age
and COVID-19 subgroups, we conducted two-sample bidirectional
Mendelian randomization (MR) analyses using publicly available
genome-wide association studies (GWAS). Our MR analyses cal-
culated the summary statistics of four epigenetic age accelera-
tion measures® (N = 34,710) (i.e., GrimAge, HannumAge, Intrin-
sic HorvathAge, and PhenoAge). The four epigenetic clocks are
based on DNA methylation levels at different CpG sites that cap-
ture distinctive features of biological aging.® HannumAge and In-

trinsic HorvathAge are ‘First-generation’ epigenetic clocks.!® Han-
numAge was trained on 71 age-related CpGs found in blood,
while Intrinsic HorvathAge was based on 353 age-related CpGs
found in several human tissues and cell types, and further ad-
justments were made for blood cell counts. GrimAge and Phe-
noAge are ‘second-generation’ epigenetic clocks.'” The GrimAge
measure combined data from 1030 CpGs associated with smok-
ing pack-years and seven plasma proteins, and the PhenoAge
measure integrated data from 513 CpGs associated with mor-
tality and nine clinical biomarkers. Though the four epigenetic
clocks measure epigenetic age acceleration differently in terms
of their CpGs components, they all have been shown to assess
epigenetic age accurately.’ The COVID-19 related datasets ana-
lyzed in our study include three subgroups: COVID-19 positive
(COVID-19 vs control), hospitalized COVID-19 (hospitalized vs pop-
ulation), and COVID-19 diagnosed with severe respiratory disease
(very severe respiratory confirmed vs population) (Table S1). All
the datasets were obtained from the COVID-19 Host Genetics Ini-
tiative in 2020 and were available in EBI database (https://gwas.
mrcieu.ac.uk/datasets/?gwas_id__icontains=ebi-a). The severe res-
piratory COVID-19 dataset was derived from a comparison between
very severe respiratory failure patients secondary to COVID-19 vs
control. COVID-19 with signs of severe respiratory distress is de-
fined by WHO as severe COVID-19 (https://app.magicapp.org/#/
guideline/jTWBYn). Hospitalized COVID-19 datasets were obtained
by comparing laboratory-confirmed SARS-CoV-2 infected patients
hospitalized with symptoms of COVID-19 vs control. All partici-
pants of GWAS datasets are European ancestry.

Leveraging three stages of MR analysis, we estimated the
causal effect of COVID-19 subgroups on epigenetic age accel-
erations. In Stage 1, we selected independent COVID-19 ge-
netic variants in each dataset with genome-wide significance
(P <5x1078) as instruments to satisfy the assumption that
the instruments chosen for MR analysis should be strongly as-
sociated with exposure. To test the instrumental variable bias,
we calculated F-statistic and RZ (F= (R? x (N—2))/(1 —R?),
(R? = 282 x MAF x (1 — MAF))/28% x MAF x (1 — MAF)) + 2N x
MAF x (1 — MAF) x SE2), MAF = effect allele frequency, B = ef-
fect estimate of the SNP in the exposure GWAS, SE = standard
error, and N = sample size). All F-statistics of instruments were
larger than 10, indicating that the probability of weak instru-
mental variable bias was minimal. In Stage 2, we extracted
selected instrumental variants from four epigenetic age accel-
eration datasets. LD proxies (r? > 0.8) were allowed to replace
the missing instrumental variants in epigenetic age acceleration
datasets. Subsequently, we conducted inverse-variance weighted
(IVW) MR and MR-Egger analyses. To satisfy the second and third
assumptions of MR analysis, MR-Egger intercept test indicated the
presence of potential pleiotropy. In Stage 3, we performed fixed
effect meta-analysis to pool results across different COVID-19 sub-
groups, which has been applied in several studies to improve the
precision of MR results. In fixed effect meta-analysis, I?-statistic
and p-value of the heterogeneity test depicted the heterogeneity
across studies. The Chi-square test was used to test for subgroup
differences. Furthermore, the reverse MR analysis and fixed effect
meta-analysis were also performed. All statistical analyses were
completed using R software version 4.1.1 with “TwoSampleMR”
and “meta” R packages.

Meta-analyzed IVW MR results indicated significant causal ef-
fects between hospitalized COVID-19 and GrimAge acceleration
(beta = —0.19, 95% CI —0.26 to —0.12, p = 4.68E-07), and PhenoAge
acceleration (beta = —0.26, 95% Cl —0.34 to —0.17, p = 8.86E-
09). Interestingly, we found that COVID-19 diagnosed with very
severe respiratory disease had the same casual effects as hospi-
talized COVID-19 (GrimAge IVW beta = —0.16, 95% CI —-0.36 to
—0.15, p = 7.59E-08; PhenoAge IVW beta = —0.22, 95% CI —0.30
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GrimAge Hannum
Study beta [95% Cl] beta [95% Cl]  Weight Study beta [95% CI] beta [95%Cl]  Weight
COvVID-19 CoviD-19
ebi-a-GCST010776 —a -024  [-062; 0.14] 23.8% ebi-a-GCST010776 —a— -0.14  [-050; 0.21]  24.0%
ebi-a-GCST010780 —_— -0.39 [-1.08; 0.29] 7.4% ebi-a-GCST010780 —_— -0.39 [-0.88; 0.10] 12.5%
ebi-a-GCST011071 -0.06 [-0.46; 0.34] 21.3% ebi-a-GCST011071 —a— -0.05 [-0.47; 0.37] 17.2%
ebi-a-GCST011072 ﬂ; -0.36 [-1.10; 0.37] 6.3% ebi-a-GCST011072 —_— -0.15 [-0.80; 0.50] 73%
ebi-a-GCST011073 -0.10 [-0.42; 0.22] 33.4% ebi-a-GCST011073 —a— -0.16 [-0.47; 0.16] 30.1%
ebi-a-GCST011074 —_— -0.30 [-0.96; 0.36] 7.9% ebi-a-GCST011074 —_— -0.12 [-0.71; 0.46] 8.9%
Fixed effect model - -0.18  [-0.36; 0.01] 100.0% Fixed effect model _ -0.16  [-0.34; 0.01] 100.0%
Random effects model - -0.18  [-0.36; 0.01] = Random effects model - -0.16  [-0.34; 0.01] =
Heterogeneity: ?=0% [0%; 75%], p = 0.92 Heterogeneity: 12=0% [0%; 75%], p = 0.95
hospitalized hospitalized
ebi-a-GCST010779 - -0.14 [-0.29; 0.01] 23.9% ebi-a-GCST010779 — -0.10 [-0.24; 0.05] 33.5%
ebi-a-GCST011081 —a— -0.20 [-0.42; 0.03] 10.7% ebi-a-GCST011081 —— -0.08 [-0.30; 0.15] 14.1%
ebi-a-GCST011082 - -0.22 [-0.37;-0.06] 22.6% ebi-a-GCST011082 —a -0.12 [-0.33; 0.09] 16.8%
ebi-a-GCST011083 - -0.21 24.9% ebi-a-GCST011083 —— -0.11 [-0.32; 0.11] 15.6%
ebi-a-GCST011084 — -0.18  [-0.35,-0.01]  17.9% ebi-a-GCST011084 —— -0.06 [-0.25; 0.13]  20.0%
Fixed effect model < -0.19 [-0.26;-0.12] 100.0% Fixed effect model <> -0.09 [-0.18;-0.01] 100.0%
Random effects model < -0.19 [-0.26; -0.12] == Random effects model <> -0.09 [-0.18;-0.01] b
Heterogeneity: ?=0% [0%; 79%]), p = 0.96 Heterogeneity: 12=0% [<0%; <79%)], p = 0.99
very severe respiratory confirmed very severe respiratory confirmed
ebi-a-GCST010783 - -0.15 [-0.29;-0.01]  17.7% ebi-a-GCST010783 — -0.13  [-0.27; 0.00]  23.5%
ebi-a-GCST011075 - -0.15 [-0.28;-0.02] 19.2% ebi-a-GCST011075 — -0.12 [-0.26; 0.03] 21.2%
ebi-a-GCST011076 - -0.17  [-0.30; -0.04] 20.6% ebi-a-GCST011076 —r -0.12 [-0.28; 0.05] 16.3%
ebi-a-GCST011077 -- -0.18  [-0.30,-0.05] 22.3% ebi-a-GCST011077 — -0.12  [-0.28; 0.05] 17.1%
ebi-a-GCST011078 - -0.15  [-0.28;-0.02] 20.2% ebi-a-GCST011078 — -0.11 [-0.25; 0.03] 22.0%
Fixed effect model < -0.16 [-0.22;-0.10] 100.0% Fixed effect model < =012 [-0.19;-0.05] 100.0%
Random effects model <o -0.16  [-0.22; -0.10] = Random effects model <> =012  [-0.19; -0.05] =
Heterogeneity: 1> = 0% [<0%; <79%], p = 1.00 Heterogeneity: /2 = 0% [<0%; <79%], p = 1.00
11 | —
-1 -05 0 0.5 1 -0.5 0 05
C Intrinsi D
ntrinsic HorvathAge PhenoAge
Study beta [95% CI] beta [95%Cl]  Weight Study beta [95% CI] beta [95% CI]  Weight
CcoviD-19 CcovID-19
ebi-a-GCST010776 0.07 [-0.20;0.34] 26.9% ebi-a-GCST010776 —i— -040 [-0.77;-0.03]  39.0%
ebi-a-GCST010780 0.07 [-0.31;0.45] 13.5% ebi-a-GCST010780 — -0.59 [-1.15;-0.02] 16.4%
ebi-a-GCST011071 005 [-0.31;042] 14.6% ebi-a-GCST011071 —_— -0.15 [-0.86; 0.55] 10.6%
ebi-a-GCST011072 —1—&—— 025 [-0.16;066] 11.9% ebi-a-GCST011072 —_—— -049  [-1.21; 0.24] 9.8%
ebi-a-GCST011073 —.— -0.07 [-0.39;0.26] 18.6% ebi-a-GCST011073 —_— -0.24 [-0.89; 0.41] 12.3%
ebi-a-GCST011074 —t 020 [-0.17;0.57] 14.5% ebi-a-GCST011074 —_— -0.42 [-1.08; 0.24] 11.9%
Fixed effect model -_— 0.08 [-0.06;0.22] 100.0% Fixed effect model - -0.40 [-0.62;-0.17] 100.0%
Random effects model —-_— 0.08 [-0.06; 0.22] == Random effects model _ -0.40 [-0.62; -0.17] =
Heterogeneity: 1?=0% [ 0%; 75%], p = 0.87 Heterogeneity: 2=0% [0%; 75%], p = 0.95
hospitalized hospitalized
ebi-a-GCST010779 -0.00 [-0.14;0.13] 27.8% ebi-a-GCST010779 - -0.23  [-0.40; -0.06] 26.4%
ebi-a-GCST011081 005 [-0.11;0.22] 18.4% ebi-a-GCST011081 —— -0.25 [-0.46; -0.04] 17.3%
ebi-a-GCST011082 -0.00 [-0.16;0.15] 21.2% ebi-a-GCST011082 —a— -0.27 [-0.46;-0.07] 20.2%
ebi-a-GCST011083 —— -0.07 [-0.26;0.12] 14.8% ebi-a-GCST011083 - -0.31  [-0.50;-0.12] 21.3%
ebi-a-GCST011084 —1a— 0.09  [-0.08;0.26] 17.8% ebi-a-GCST011084 —— -0.21 [-0.44; 0.02] 14.8%
Fixed effect model - 0.01 [-0.06;0.09] 100.0% Fixed effect model <> -0.26 [-0.34;-0.17] 100.0%
Random effects model E—g 0.01  [-0.06; 0.09] = Random effects model < =0.26  [-0.34; -0.17] =
Heterogeneity: 12 = 0% [ 0%; 79%], p = 0.78 Heterogeneity: 12 = 0% [ 0%; 79%], p = 0.97
very severe respiratory confirmed very severe respiratory confirmed
ebi-a-GCST010783 -0.06 [-0.21;0.08] 23.8% ebi-a-GCST010783 - -0.24  [-0.39;-0.10] 24.7%
ebi-a-GCST011075 -0.03 [-0.19;0.12] 20.9% ebi-a-GCST011075 - -0.22  [-0.38;-0.05] 20.0%
ebi-a-GCST011076 -0.03 [-0.20;0.15] 16.1% ebi-a-GCST011076 —— -0.22  [-0.40; -0.04] 15.9%
ebi-a-GCST011077 -0.03 [-0.20;0.14] 16.8% ebi-a-GCST011077 —a -0.22  [-0.40; -0.05] 17.3%
ebi-a-GCST011078 -0.03 [-0.18;0.12] 22.4% ebi-a-GCST011078 - -0.21  [-0.37;-0.06] 221%
Fixed effect model -0.04 [-0.11;0.03] 100.0% Fixed effect model o -0.22 [-0.30;-0.15]  100.0%
Random effects model =0.04 [-0.11;0.03] e Random effects model < -0.22  [-0.30; -0.15] =
Heterogeneity: 12 = 0% [<0%; <79%], p = 1.00 Heterogeneity: 12 = 0% [<0%; <79%], p = 1.00
11
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Fig. 1. Fixed effect meta-analysis of inverse-variance weighted Mendelian randomization estimates for genetically predicted effects of COVID-19 subgroups on epigenetic
clocks: GrimAge acceleration (A), HannumAge acceleration (B), Intrinsic HorvathAge acceleration (C) and PhenoAge acceleration (D).
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Table 1
P-value of fixed effect meta-analysis of the causal effect of COVID-19 subgroups on epigenetic clocks.
COVID-19 subgroups GrimAge  HannumAge  Intrinsic HorvathAge  PhenoAge
COVID-19 0.057 0.071 0.253 7.06E-04
hospitalized COVID-19 4.68E-07 0.036 0.723 8.86E-09
COVID-19 with very severe respiratory confirmed  7.59E-08 0.042 0.301 1.05E-09

to —0.15, p = 1.05E-09). Besides, COVID-19 only slowed PhenoAge
acceleration (beta = —0.40, 95% ClI —-0.62 to —0.17, p = 7.06E-
04) significantly (Fig. 1, Table 1, Table S2-S5, S13). The threshold
of statistically significant association between COVID-19 subgroups
and epigenetic age accelerations was a Bonferroni correction
(P < 0.05/4 = 1.25E-02). MR-Egger intercept test indicated no
pleiotropy present (Table S11). Additionally, reverse MR analyses
and fixed effect meta-analysis illustrated no significant casual ef-
fect of epigenetic clocks on three COVID-19 subgroups (Figure S1,
Table S6-S10, S14). MR-Egger intercept test indicated no pleiotropy
present (Table S12).

In conclusion, our research was initiated to further explore and
investigate the conflicting views on the issue of the relationship
between epigenetic aging and COVID-19 based on GWAS-based
MR analysis and DNA methylation profile-based longitudinal anal-
ysis.>” Taken together, our findings provided evidence to sup-
port that hospitalized COVID-19 subgroup and COVID-19 diagnosed
with very severe respiratory disease may slow down GrimAge ac-
celeration and PhenoAge acceleration. The general COVID-19 pos-
itive subgroup only slowed down PhenoAge acceleration signifi-
cantly. For the reverse direction of MR analysis, we found no sig-
nificant casual effect of epigenetic clocks on three COVID-19 sub-
groups.
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Low serum neutralization of Omicron variants a month )

cccccccc

after AZD7442 prophylaxis initiation @~ ==
Dear Editor,

In this journal, Yang and colleagues recently reviewed effective-
ness of monoclonal antibody therapy in organ transplant recipients
with COVID-19.! Pre-exposure prophylaxis (PrEP) of COVID-19 is
essential for immunocompromised patients who do not respond
to SARS-CoV-2 vaccines. Prior to the spread of Omicron variants,
a single 300 mg IM dose of AZD7442 (Tixagevimab/Cilgavimab,
Evusheld) was 76.7% effective in preventing symptomatic COVID-
19.2 In vitro studies showed that AZD7442 has lost through various
degrees part of its efficacy against all Omicron sublineages, includ-
ing BA.4 and BA.5° which are currently becoming predominant in
some parts of the world with a surge in COVID-19 cases.* The neu-
tralizing activity of sera from AZD7442-treated patients against all
Omicron sublineages remains poorly characterized.

The ANRS-0166s PRECOVIM prospective cohort study included
severely immunocompromised patients not responding to vaccina-

tion and receiving AZD7442 300 mg IM as PrEP (NCT05216588).
Here we present the first results, namely the neutralizing capacity
of patients’ sera one month after treatment against the Omicron
variants BA.1, BA.2 and BA.5 compared to the European ancestral
variant D614G.

One hundred patients (94 analyzable) from 15 French cen-
ters were included between 1/31/22 and 2/24/22 (58 solid organ
transplant recipients, 20 chronic lymphocytic leukemia or non-
Hodgkin lymphoma, 8 allogenic stem cell transplant recipients
and 8 chronic inflammatory disorders under immunosuppressive
drugs). Median age was 58 years (19-87). Using clinical replica-
tive strains of the ancestral D614G European variant and the Omi-
cron BA.1, BA.2 and BA.5 sublineages, we showed that the geomet-
ric mean neutralizing titers of sera from the 94 analyzable patients
were respectively 5157.9, 12.7, 92.7 and 19.0 (Fig. 1). Neutralization
titers were >10 (and considered positive) in 100%, 27%, 98% and
66% of patients’ sera, respectively. The in vitro half-maximal ef-
fective concentrations (EC50) of AZD7442 against the same strains
were 13.36, 580.87, 27.04 and 56.56 ng/mL, respectively.

Median anti-SARS-CoV-2 spike protein IgG antibody concentra-
tions one month after AZD7442 administration were 2996.3 (876.1-
13566.7) BAU/mL.

In this prospective cohort study including severely immuno-
compromised patients non-responding to SARS-CoV-2 vaccines,
neutralization activity of patients’ sera one month after admin-
istration of 300 mg of AZD7442 was low against both the Omi-
cron BA.1 and BA.5 sublineages. As the serum-neutralizing ca-
pacity against SARS-CoV-2 is associated with protection against
COVID-19,° the decreased AZD7442 in vitro activity against BA.16
had already prompted numerous regulatory agencies (FDA, MHRA,
ANSM) to recommend doubling the AZD7442 dosing®. Our findings
of low in vivo anti-BA.1 and -BA.5 neutralizing activity in treated
patients’ sera re-inforce the importance of continuous optimization
of the AZD7442 dosing according to current and emerging SARS-
CoV-2 variants.
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Fig. 1. Sera neutralizing titers of 94 patients one month after 150 mg Tixagevimab and 150 mg Cilgavimab administration against authentic live viruses from the D614G

historical lineage and the Omicron BA.1, BA.2 and BA.5 sublineages.

Dots indicate individual samples. The serum geometric mean titers are shown with black bars and in bold characters at the top of the plot- I bars represent its 95% confidence
intervals. Geometric means of individual ratio between viral strains neutralization are indicated in the upper part of the figure.
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Rapid emergence of ceftazidime-avibactam resistance n

among carbapenem-resistant Enterobacterales in a =y
tertiary-care hospital in Taiwan

Dear Editor,

We read with great interest the article by Zha et al. de-
scribing a nationwide survey on the management of infections
caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) in
critically ill patients of tertiary hospitals in China.! In this
study, only 16% of the participating hospitals offered ceftazidime-
avibactam (CZA) for treating carbapenem-resistant K. pneumo-
niae infections. The authors recommended that routine detec-
tion of carbapenemases and in vitro susceptibility for CZA among
all CRKP isolates are necessary, as a nationwide survey in China
has demonstrated an 11.1% of CRKP isolates resistant to this
agent.!

CZA was introduced into Taiwan in 2019 and has been widely
used for the treatment of infections caused by carbapenem-
resistant Enterobacterales (CRE) and Pseudomonas species (CRP).
Resistance to CZA has been reported in isolates carrying metallo-
B-lactamases (MBLs) or certain blagpc variants, resulting in treat-
ment failure. 2 Previous surveillance revealed that CZA remained
active against the CRE or CRP isolates with a resistance rate of less
than 10%.2

In this study, we performed CZA susceptibility testing using Ep-
silometer tests (E test) for all CRE or CRP isolates before start-
ing treatment from April to August 2021. We analyzed the medi-
cal records of these patients and detected five common carbapen-
emases (blagpc, blanpm, blaypy, blapp, and blagxa-4g) in the isolates
by targeted PCR and sequencing. The genetic relatedness of CZA-
resistant Enterobacterales isolates was determined by multilocus
sequence typing. The K. pneumoniae isolates were further analyzed
by pulsed-field gel electrophoresis using Xbal restriction enzyme
digestion and wzc gene partial sequencing to determine related-
ness and capsular types as described previously.*

A total of 48 patients were included in the analysis. The clin-
ical characteristics and outcomes are summarized in Table 1 and
Supplementary materials. The crude mortality rates at 28 days and
120 days were 18.8% and 50%, respectively. The antimicrobial sus-
ceptibilities are listed in Supplementary Table 1. Prior exposure to
CZA within 3 months before infection episodes was a significant
predictor of acquiring resistant isolates (p = 0.039, adjusted odds
ratio: 5.14, 95% CI 1.08-24.29). Among the 48 isolates, 13 (27.1%)
carried MBLs (one with two MBLs), 10 (20.8%) carried SBL, and two
carried both MBL and SBL. Sixteen out of the 20 isolates (80.0%)
of the CZA-resistant isolates carried at least one MBLs, including
six blaypum.1 (two E. coli, two K. pneumoniae, one K. oxytoca, one
Enterobacter cloacae complex), two blaypm.4 (K. pneumoniae), four
blayp.g (two K. pneumoniae, one ECC, one Serratia marcescens), one
blayyy-1 (K. oxytoca), two blaypg+blagxa-ag (K. pneumoniae), and
one blayp-g+blaypo3 (one P. alcaligenes). One K. pneumoniae iso-
late carrying blagxa-4g and four isolates (two P. aeruginosa, one E.
coli, and one K. pneumoniae) without carbapenemases were resis-
tant to CZA. In addition, we found that ten patients had more than
one isolate identified during their admission, and 4 of the iso-
lates from the same patients showed a 4-times elevated CZA MICs.
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Table 1

Underlying characteristics and demographic data of the 48 patients infected with carbapenem-resistant
Enterobacterales or carbapenem-resistant Pseudomonas species.

No. (%) of patients infected with indicated isolates

Characteristic All isolates

Enterobacterales Pseudomonas spp.

(n = 48) (n = 34) (n=14)
Age (years) Mean+ S.D. 69.9 + 16.1 69.2 + 17.5 71.6 + 11.9
Male 34 (70.8) 22 (64.7) 12 (85.7)
Underlying diseases
Malignancy 26 (54.2) 15 (57.7) 11 (42.3)
Diabetes mellitus 20 (41.7) 13 (65.0) 7 (35.0)
Other endocrine diseases?® 7 (14.6) 5 (71.4) 2 (28.6)
COPD 9 (18.8) 9 (100) 0
CKD stage > 3 15 (31.3) 13 (86.7) 3(20.0)
Cardiovascular diseases 34 (70.8) 23 (67.6) 11 (324)
Previous CVA 8 (16.7) 7 (87.5) 1 (12.5)
Other neurological disorders” 10 (20.8) 8 (80.0) 2 (20.0)
Liver diseases 11 (22.9) 6 (54.5) 5 (45.5)
Diagnosis
Pneumonia 29 (60.4) 19 (55.9) 10 (71.4)
Bacteremia 24 (50) 13 (38.2) 11 (78.6)
UTI 10 (20.8) 9 (26.5) 1(71)
1Al 7 (14.6) 6 (17.6) 1(71)
Wound infection 11 (22.9) 8 (23.5) 3 (214)
Shock 17 (35.4) 11 (324) 6 (42.9)
ICU admission after onset 24 (50.0) 18 (52.9) 6 (42.9)
120-day mortality 24 (50.0) 15 (44.1) 9 (64.3)
Discharge 24 (50.0) 18 (52.9) 6 (42.9)
Discharge to another institute 9 (18.8) 8 (23.5) 1(71)
Discharge to home 15 (31.3) 11 (324) 4 (28.6)

Abbreviations: COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; CVA, cere-
brovascular accident; UTI, urinary tract infection; IAl, intra-abdominal infection; CR, carbapenem-

resistant.

3 Including adrenal insufficiency, hyperthyroidism, hypothyroidism, and hypopituitarism
b Including Alzheimer’s disease and Parkinson’s disease

The eCIM failed to detect MBLs in K. pneumoniae isolates carrying
blayp.g+blagxa-4g (Supplementary Table 2).

Regarding the clonality of isolates, PFGE revealed genetic di-
versity especially for MBL clusters (Fig. 1). For example, four iso-
lates carrying NDM-4 displayed pulsotypes I and IV, accounting
for three different subpulsotypes. In contrast, for SBLs, four iso-
lates carrying KPC-2 displayed pulsotype III only, which was pre-
dominant in ST11-K47. Among ST11-K47 isolates, there were three
different sub-pulsotypes, indicating a local evolution rather than
a single outbreak of isolates carrying KPC-2. In addition, the SBL
clusters including ST11-K47 and ST11-K64 were prevalent clonali-
ties of KPC-2 and OXA-48 in Taiwan, whereas MBL clusters such as
ST307-wzc_80 carrying IMP8 seemed to be a novel clonality. Fur-
ther studies are required to determine the prevalence of this con-
dition.

The present study had three main findings. First, among
carbapenemase-encoding genes, the proportion of CRE carrying
MBL was higher than previous data in Taiwan,” and might indicate
a rapid emergence of MBL resulting in reduced CZA susceptibilities.
Unlike previous reports, the CZA resistance of CRE in our institute
was not caused by mutations in blagpc.3 but by the dissemination
of MBLs.® In addition, our study included a small number of cases
infected by CRE carrying blajp.g, which has not been frequently
reported in Taiwan. Further studies are warranted to determine its
clinical relevance by comparing it with blaypy;.”

Second, the MBLs producing CRE not only arise from their in-
trinsic resistance to carbapenem and CZA, but also their location
on genetic mobile elements such as plasmids, integrons, and trans-
posons.® Commercial screening tools such as NG-Test CARBA 5 (NG
Biotech, Guipry, France) and Xpert CARBA-R assay (Cepheid, Sunny-
vale, CA, USA) might be helpful for timely and accurate detection.’

Unfortunately, the Xpert assay could not detect the bla;yp.g variant
in Taiwan.? Also, isolates containing both MBLs and SBLs further
complicate the recommended phenotypic assay for the detection
of MBLs as revealed by the discrepant results of mCIM and eCIM
in our study.

Finally, in terms of post-infection tracing, a significant propor-
tion of our patients were discharged into the community. Clinicians
should be aware that more than half of CRE carriage can be pro-
longed to six months, posing a threat to long-term care facilities
and communities. Considering the prolonged colonization, active
surveillance may be beneficial for infection control once patients
are admitted.!?

There were three limitations in this study. First, we only col-
lected isolates with CZA E test ordered by physicians who initi-
ated the treatment. Not all CRE or CRP isolates were included;
therefore, the resistance rate may be overestimated. Second, it re-
mains unclear whether MBLs were already disseminated before the
widespread use of CZA. Third, the sample size was small. A longer
monitoring period with a larger sample size will be helpful in clar-
ifying the resistant trend.

In conclusion, the emergence of CRE carrying various MBLs, re-
sulting in reduced CZA susceptibility, provides an alert for clini-
cians in Taiwan. To prevent an outbreak of cross-infection associ-
ated with health care, measures such as contact isolation, repeated
culture with the CZA E test, and timely identification of carbapen-
emases and the genotypes should be implemented for hospitalized
patients. Moreover, the trend of CZA susceptibility should be mon-
itored at the national level. Further research needs to be carried
out to investigate zoonotic, geographical, and environmental fac-
tors that account for the emergence, so that a one-health approach
can be developed for infection control.
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Isolate no. ST type Capsular type Carbapenemases
cza25 414 wzc_936 NDM-1
cza40 1 K47 KPC-2

| | cza39 273 ND NDM-4
\ | | cza34 273 ND NDM-4
| | | cza22 1 K64 OXA-48-like
|| cza31 1 K64 IMP-8+OXA-48-like
| cza32 2424 ND IMP-8
[[]|  cza28 1 Ka7 KPC-2
||| cza33 11 Ka7 KPC-2
|||  cza3s 11 K47 KPC-2
[I]]  cza30 1 Ka7 KPC-2
[[1]  czaa1 6121 ND NDM-1
| || cza2e 147 K64 NDM-4
|| cza27 438 ND NDM-4
| ‘ ’ czal6 307 wzc_80 IMP-8
’ ‘ | | cza23 307 wzc_80 IMP-8
‘ ‘ ‘ czal9 1 K47 KPC-2
[ [ czao 1 K47 KPC-2

Fig. 1. Genetic relatedness of 18 carbapenemase-producing-carbapenem-resistant Klebsiella pneumoniae isolates by pulsed-field gel electrophoresis, multilocus sequence typ-
ing, and wzc capsular typing. There are six pulsotypes (I to VI) identified. The corresponding numbers from patients with multiple carbapenemase-producing-carbapenem-
resistant K. pneumoniae isolates (Supplementary Table 2) are as following: cza16 (patient C-isolate 1), cza22 (D-1), cza23 (C-2), cza27 (F-1), cza31 (D-2), cza34 (F-2), and
cza39 (F-3). The MLST-capsular types of K. pneumoniae isolates carrying blayp.swere ST307-wzc80 (n = 2; Patient C) and ST2424. Isolates carrying blayp.g+blaoxa-as-iice gENES
were ST11-K47 and ST11-K64. Isolates carrying blanpy.4 Were ST147-K64, ST273 (n = 2, Patient F), and ST438. Isolates carrying blaypy.; were ST414-wzc_936 and ST6121. E.
coli isolates carrying blaypy.; belonged to ST14 and ST69. The E. cloacae complex isolate with bla;yp.g was ST204, one was blanpy-1 ST316, and the other was blaxpy.q ST1497

(Patient B).
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Efficacy and safety of Paxlovid for COVID-19:a
meta-analysis

nnnnnnnn

Dear Editor,

We read with interest a recent article reported by Wang Y
et al. !. The authors reported a case of COVID-19 rebound in a

Table 1
Basic information of the included studies.

95

severe COVID-19 patient during long term (20 days) treatment of
Paxlovid. Paxlovid is a recommended treatment for mild-moderate
COVID-19 and risk factors for severe disease. With wide-spread
use of Paxlovid, there have been case reports of individuals ex-
periencing virologic rebound. Hence, meta-analysis of the effi-
ciency and safety of Paxlovid in patients with COVID-19 is of great
importance.

An extensive literature search was performed in PubMed, Web
of Science, EMBASE, and Cochrane Library to find all for relevant
studies published from December 1, 2021, to September 20, 2022.
We screened the references of the retrieved studies and restricted
the language of the search to English. Following keywords were
used in the search: Paxlovid (nirmatrelvir/ritonavir) and COVID-
19 (SARS-CoV-2, SARS2, SARS Coronavirus 2, Coronavirus Disease
2019, 2019-nCoV, 2019 Novel Coronavirus). The inclusion criteria
were as follows: (1) the article reported the clinical results of
Paxlovid, including the total number of participants and the spe-
cific number of deaths, hospitalization, rebound or adverse events;
(2) English language. The exclusion criteria were as follows: (1) ir-
relevant to the research direction, (2) no relevant data, (3) case re-
ports, (4) review papers, (5) repeated articles.

The analysis was conducted using the Review Manager statisti-
cal software, version 5.3. A binary controlled study was used to
calculate the number of deaths, hospitalization, rebound or ad-
verse events. Odds ratio (OR) and 95% confidence interval (CI) were
used to assess the effect in a whole random-effects meta-analysis
model. The I? and P value was used to quantify the heterogeneity
of the effects among the included studies.

A total of 13 studies involving 186,306 patients were identi-
fied in the final analysis, and the detail of the included studies
are shown in Table 124, Three studies described the rebound of
COVID-19 patients in Paxlovid group and control group. The overall
OR of rebound among COVID-19 patients in the Paxlovid vs. con-
trol group was 0.99 (95% CI, 0.28-3.57; I> =59%), P = 0.99 (Fig. 1A).
Five studies described adverse events in Paxlovid group and con-
trol group. The overall OR of adverse events among COVID-19 pa-
tients in the Paxlovid vs. control group was 1.07 (95% CI, 0.49-
2.34; 2 =90%), P = 0.87 (Fig. 1B). There is no significant differ-
ence of rebound and adverse events in Paxlovid group and control
group.

In addition, we analyze the efficacy of Paxlovid on death and
hospitalization for COVID-19 patients. Seven studies described the

Study Events

Paxlovid Group

Placebo group

Events (n)  Total (n)  Events (n)  Total (n)
Dryden-Peterson S, Death 0 6036 39 24,286
2022° Hospitalization 40 6036 223 24,286
Ganatra S, 2022° Death 0 1130 10 1130
Hospitalization 10 1130 23 1130
Hammond ], 2022* Death 0 697 9 682
Hospitalization 5 697 44 682
Adverse events 476 1109 525 1115
Hedvat J, 2022° Death 0 28 3 75
Hospitalization 3 28 23 75
Pfizer; 2021° Death 0 607 10 612
Hospitalization 6 607 41 612
Adverse events 10 607 40 612
Saravolatz LD, 20227 Death 0 1039 12 1046
Hospitalization 8 1039 66 1046
Adverse events 67 1039 22 1046
Wong CKH, 20228 Death 31 890 83 890
Yip TCF, 2022° Hospitalization 172 4921 1931 83,154
Dai EY, 2022'° Rebound 3 11 1 25
Wang L, 2022" Rebound 609 11,270 204 2374
Li HY, 2022 Rebound 2 258 3 244
Anderson AS, 2022" Adverse events 23 990 17 980
Yan GF, 20224 Adverse events 2 5 7 30
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Paxlovid Control Odds Ratio Odds Ratio
= 0, n nm aiog gl
Dai EY, 2022 3 1" 1 25 18.8% 9.00 [0.82, 99.25] =
Li HY, 2022 609 11270 204 2374 54.8% 0.61[0.52, 0.72] |
Wang L, 2022 2 258 3 224 264% 0.58 [0.10, 3.48] -
Total (95% CI) 11539 2623 100.0% 0.99 [0.28, 3.57]
Total events 614 208

Heterogeneity: Tau? = 0.77; Chi? = 4.83, df = 2 (P = 0.09); I> = 59%

0.01 0.1 : 10
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Test for overall effect: Z = 0.01 (P = 0.99) Favours [experimental] Favours [control]
Paxlovid Control Odds Ratio Odds Ratio
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Anderson AS, 2022 23 990 17 980 21.6% 1.35[0.72, 2.54]
Hammond J, 2022 476 1109 525 1115 24.9% 0.85[0.71, 1.00]
Pfizer;, 2021 10 607 40 612 20.9% 0.24[0.12, 0.48] =
Saravolatz LD, 2022 67 1109 22 1115 22.9% 3.19[1.96, 5.21] =
Yan GF, 2022 2 5 7 30 97% 2.19[0.30, 15.85]
Total (95% CI) 3820 3852 100.0% 1.07 [0.49, 2.34]
Total events 578 611
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Fig. 1. Incidence of rebound (A) and adverse events (B) in Paxlovid group and control group.
Paxlovid Control Odds Ratio Odds Ratio
Study or Subgroup Events Total Events Total Weight M-H. Random.95% Cl M-H. Random. 95% Cl
1.1.1 Death
Dryden-Peterson S, 2022 0 6036 39 24286 4.0% 0.05 [0.00, 0.83]
Ganatra S,2022 0 1130 10 1130 3.9% 0.05[0.00, 0.81] *
Hammond J, 2022 0 697 9 682 3.9% 0.05[0.00,0.87] ¢
Hedvat J, 2022 0 28 3 75 37% 0.36 [0.02, 7.26]
Pfizer; 2021 0 607 10 612 3.9% 0.05[0.00,0.81] *
Saravolatz LD, 2022 0 1039 12 1046  4.0% 0.04 [0.00, 0.67] ¢
Wong CKH, 2022 31 890 83 890 10.3% 0.35[0.23, 0.54] T
Subtotal (95% CI) 10427 28721 33.8% 0.12 [0.04, 0.36] ———
Total events 31 166
Heterogeneity: Tau? = 0.81; Chi? = 10.27, df = 6 (P = 0.11); I = 42%
Test for overall effect: Z = 3.81 (P = 0.0001)
1.1.2 Hospitalization
Dryden-Peterson S, 2022 40 6036 223 24286 10.4% 0.72[0.51, 1.01] ]
Ganatra S,2022 10 1130 23 1130 9.5% 0.43[0.20,0.91) - =
Hammond J, 2022 5 697 44 682 9.0% 0.10 [0.04, 0.27] ol
Hedvat J, 2022 3 28 23 75 7.9% 0.27 [0.07, 0.99] - E—
Pfizer; 2021 6 607 41 612 9.2% 0.14 [0.06, 0.33] -
Saravolatz LD, 2022 8 1039 66 1046  9.6% 0.12 [0.08, 0.24] ——
Yip TCF, 2022 172 4921 1931 83154 10.6% 1.62 [1.30, 1.79] -
Subtotal (95% Cl) 14458 110985 66.2% 0.32[0.13, 0.75] —i—
Total events 244 2351
Heterogeneity: Tau? = 1.21; Chi? = 122.78, df = 6 (P < 0.00001); I* = 95%
Test for overall effect: Z = 2.61 (P = 0.009)
Total (95% Cl) 24885 139706 100.0% 0.22 [0.11, 0.45] i
Total events 275 2517
Heterogeneity: Tau? = 1.23; Chi2 = 173.96, df = 13 (P < 0.00001); I2 = 93% ’0 p 0’ > p 1‘0 ” 00‘

Test for overall effect: Z = 4.18 (P < 0.0001)
Test for subgroup differences: Chi* = 1.86, df =1 (P = 0.17), I = 46.3%

Favours [experimental] Favours [control]

Fig. 2. Subgroup analysis: impact of Paxlovid on mortality and hospitalization rates of COVID-19 patients.

death of COVID-19 patients in the Paxlovid group and control
group, and seven studies described the hospitalization of COVID-
19 patients. Our study showed that the overall OR for death and
hospitalization among COVID-19 patients in the Paxlovid vs. con-
trol group was 0.22 (95% CI, 0.11-0.45; I> =93%), P <0.0001. The
result indicates that the Paxlovid treatment is effective for pa-
tients with COVID-19, reducing the mortality or hospitalization rate
by 78% (Fig. 1). Subtype analysis shows that the OR of mortality
for COVID-19 patients in the Paxlovid vs. control group was 0.12
(95% CI, 0.04-0.36; I> =42%), P = 0.0001, indicating an 88% re-
duction in mortality. The OR of hospitalization for COVID-19 pa-
tients in the Paxlovid vs. control group was 0.32 (95% CI, 0.13-
0.75; 12 =95%), P = 0.009, a 68% reduction in hospitalization
rate.

In conclusion, our research shows that Paxlovid for COVID-19
is effective and safe. COVID-19 rebound is not unique to Paxlovid.

There is no significant difference of rebound in Paxlovid group
and control group. There has been more attention to COVID-19 re-
bounds following Paxlovid treatment, which may be attributable
to more people being treated with Paxlovid. However, the phe-
nomenon of rebounds following Paxlovid treatment reinforces the
importance of testing for individuals with recurrent symptoms af-
ter Paxlovid treatment.
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Resurgence of influenza virus activity during COVID-19 )
pandemic in Shanghai, China S

Dear Editor,

Recent study by Han et al, reported the dramatic impact
of nonpharmaceutical interventions (NPIs) introduced during the
coronavirus disease 2019 (COVID-19) pandemic on influenza and
other common respiratory virus detections among children in
Hangzhou, China.! Their results demonstrated that the influenza
virus activity had apparent seasonality before COVID-19 pandemic,
while it was suppressed and the seasonality was not fully high-
lighted during COVID-19 pandemic (From February 2020 to Oc-
tober 2021). Besides, a study conducted in Singapore also re-
ported that although rhinoviruses, parainfluenza, respiratory syn-
cytial viruses and other common respiratory viruses have re-
turned, the activity of influenza remains absent in circulation dur-
ing COVID-19 pandemic.? Herein, we presented a resurgence of in-
fluenza virus activity among children during COVID-19 pandemic
in Shanghai, China.

In this cross-sectional study, pediatric patients with respiratory
disease symptoms (fever, cough, rhinitis, sore throat or myalgia)
in the outpatient clinic at Children’s Hospital of Fudan Univer-
sity from Jan 1, 2014 to Aug 31, 2022 were enrolled. Nasopharyn-
geal swabs were collected from all enrolled outpatients and tested
by chromatographic immunoassay for influenza A/B virus (Stan-
dard Diagnostics, Yongin, Republic of Korea). Time series models of
seasonal autoregressive integrated moving average (SARIMA) were
trained using data from Jan 2014 to Jan 2020 (pre-COVID-19) to
forecast the monthly positive rates of influenza A/B virus from
February 2020 to August 2022 (COVID-19 pandemic). Goodness-of-
fit tests of models were performed by comparing Akaike’s informa-
tion criterion (AIC) and Schwarz Bayesian Criterion (SBC). Smaller
AIC and SBC indicate the better fitting model.> For comparisons be-
tween different periods, Chi-squared test was used for categorical
data and Mann-Whitney U test for numeric data.

A total of 452,552 patients were enrolled in the study, including
328,220 (72.5%) patients in the pre-COVID-19 period and 124,332
(27.5%) patients in the COVID-19 pandemic period. The median age
of patients in the pandemic period (6 years) was older than in the
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Table 1

Comparison of demographics and positive rates (%) of influenza viruses between pre-COVID-19 and
COVID-19 pandemic.

Whole study period* pre-COVID-19* COVID-19 pandemic* P value”

Demographics

Total patients 452,552 328,220 124,332

Male sex, n (%) 244,946 (54.1) 177,467 (54.1) 67,479 (54.3) 0.221

Age, median 5y (16m-9y) 4y (7m-8y) 6y (3m-10y) <0.001
Virus detections, n (%)

Influenza A 42,293 (9.3) 39,950 (12.2) 2343 (1.9) <0.001

Influenza B 32,634 (7.2) 26,519 (8.1) 6115 (5.9) <0.001

Total 74,927 (16.6) 66,469 (20.3) 8458 (6.8) <0.001

* Whole study period: Jan 1, 2014 to Aug 31, 2022; pre-COVID-19: Jan 1, 2014 to Jan 31, 2020;
COVID-19 pandemic: Feb 1, 2020 to Aug 31, 2022.
# Comparison between pre-COVID-19 and COVID-19 pandemic;Abbreviations: y, years; m, months.

—e— Observed
Influenza A virus = « Projected
A
40—
Q) :
< 30
[ A
3
[
o 20
= :
=
3 104
o
0_‘ awy
Jan2014 Jan2015 Jan2016 Jan2017 Jan2018 Jan2019 Jan2020 Jan2021 Jan 2022
Time (month-year)
-~ Observed
Influenza B virus = « Projected
B
25
< 20
[ E
® 15+
© i
q’ B
2 10+
=
7]
g st
0- —tosefossst ey T Sossaq 1 { 1
Jan2014 Jan2015 Jan2016 Jan2017 Jan2018 Jan2019 Jan2020 Jan2021 Jan 2022

Time (month-year)

Fig. 1. Observed and model-fitted time series of monthly influenza activity between Jan, 2014 and Aug, 2022. (A) influenza A virus; (B) influenza B virus. Hypothetical positive
rates during Feb, 2020-Agu, 2022 (blue) in the absence of NPIs was projected using the SARIMA model based on Jan 2014-Jan 2020. Gray block represents the period of the
“COVID-19 pandemic” when NPIs were implemented. NPIs, nonpharmaceutical interventions; SARIMA, seasonal autoregressive integrated moving average.

pre-pandemic period (4 years), and no qualitative difference was
found between the two sexes (Table 1). A significant decline in
influenza A/B activity was observed in the pandemic period com-
pared to the pre-COVID-19 period from a positive rate of 20.3 to
6.8% (Table 1). The usual bimodal peaks of influenza A activity, in
summer (June to August) and winter (December to February) were
present in the pre-COVID-19 period. However, the seasonality of
influenza A was interrupted after the introduction of tight nation-
wide NPIs in February 2020. The peaks disappeared completely in
the year of 2020 and 2021. Whereas, a resurgence of influenza A
activity was observed in the summer of 2022, and the actual activ-
ity significantly exceeded model-projected levels in the hypotheti-
cal scenario without COVID-19 related NPIs (Fig. 1A).

The annual peak of influenza B activity occurred in winter or
early spring (January to March) in the pre-COVID-19 period and it

was also flattened or suppressed after the implementation of NPIs.
However, the resurgence of influenza B was earlier than influenza
A. The activity increased from July 2021 and peaked in January
2022, which was almost in agreement with the model-projected
seasonality (Fig. 1B).

Early studies conducted in both Southern Hemisphere and
Northern Hemisphere reported that influenza seasons were en-
tirely suppressed during the COVID-19 pandemic.*% Likewise, the
activity of influenza declined sharply and was reduced to near zero
during the early stage of pandemic in our study. Influenza virus
can be transmitted by contact, droplet, or aerosol.” Leung et al. re-
ported that surgical face masks significantly reduced the detection
of influenza virus RNA in respiratory droplets, indicating that surgi-
cal face masks could prevent the transmission of influenza viruses
from symptomatic individuals.® These results demonstrated that
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the current NPIs, including international mobility restriction and
mask-wearing, social distancing, increased hand hygiene, could be
highly effective against influenza activity. This positive effect in the
short term is welcome. However, the lack of immune stimulation
due to the reduced circulation of influenza and the related reduced
vaccine uptake may induce an "immunity debt" which could have
negative consequences and may render the population more vul-
nerable in the following season.’ Unsurprisingly, after a relative ab-
sence during the pandemic period, a large resurgence of influenza
activity was observed in July 2021 for influenza B and June 2022
for influenza A in Shanghai, China. These findings raise concerns
for influenza control. The eventual cancelation of COVID-19 related
NPIs may herald a more significant rise in influenza activity. Vac-
cination is one of the most effective measures in influenza control.
Identifying and developing universal vaccines, as well as increas-
ing the vaccination coverage are of primary importance after in-
fluenza’s long-term absence. Additionally, further studies are still
needed to better understand the circulation patterns change of in-
fluenza viruses during COVID-19 pandemic in the different stages
and regions.
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Genome characterization of monkeypox cases detected in )
India: Identification of three sub clusters among A.2 S
lineage

Dear Editor,

In this journal, Jolly and Scaria, reported distinct phylogenetic
cluster of monkeypox virus (MPXV) genomes suggesting an early
spread of virus.! Since May 2022, monkeypox cases have been re-
ported in more than 102 countries indicating expansion of its geo-
graphic range. Recent studies have also reported microevolution of
MPXV genome of 2022 outbreak compared to earlier outbreaks.?->
Here, we report the complete genome analysis of monkeypox cases
detected in India.

The clinical specimens i.e., orophryngeal swab, nasopharyngeal
swab, lesion crust and lesion fluids of 96 suspected Monkeypox
cases were referred to ICMR-National Institute of Virology, Pune,
India for diagnosis of Monkeypox. Of all the cases, MPXV infec-
tion was confirmed in ten cases (Kerala=5, Delhi=5) using Mon-
keypox specific real time PCR. 6 Cases from Delhi had no inter-
national travel history; while cases from Kerala had travel history
from United Arab Emirates to India.” All the cases were immuno-
competent with no comorbidities and their clinical presentations
are described in supplementary Table 1.

The genomic characterization of these MPXV positive sam-
ples were carried out using next generation sequencing.” The
Maximum-Likelihood phylogenetic tree analysis placed ten genome
sequences (Retrieval 90 to 99%) from India (highlighted in blue)
and eight genomes from USA (n = 3), UK (n = 2) and Thai-
land (n = 3) under lineage A.2 of clade IIb (Fig. 1). Further,
they diverge into three sub clusters of A.2 lineage consist of
total eighteen sequences. The seven sequences (Kerala n = 5,
Delhi n = 2) grouped into sub cluster I showing highest sim-
ilarity with MPXV_USA_2022_FL0O1. In this sub cluster, five se-
quences from Kerala were designated as A.2.1 based on the lin-
eage defining mutations in the position C 25072 T, A 140492 C,
C 179537 T. Two sequences from Delhi are lacking these three
mutations hence still defined into A.2 lineage. These mutations
were also lacking in the 3 sequences of Delhi from sub cluster II
which aligned with sequences of lineage A.2 reported from USA
2022 (USA_2022_VA001). Apparently, Delhi MPXV sequences in
sub cluster I and II are showing divergence which needs to be fur-
ther explored.

The sub cluster Il has monkeypox sequences reported from
UK, Thailand during current outbreak of 2022 and USA during
2021. These sequences have many shared mutations that separated
them from other two sub cluster including India (A.2) and travel-
associated cases from 2017 to 2021 of other lineages (A, A.1, A.1.1).
The A.2 lineage MPXV sequences from India showed a divergence
from the MPXV sequences reported from Germany, Italy, Portu-
gal, Switzerland and France (lineage B.1) and earlier outbreak se-
quences from Nigeria, Israel and Singapore 2017/18 (lineage A.1).
The findings of our study are in concordance with the recent study
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Fig. 1. The maximum-likelihood phylogenetic tree of MPxV/hMPxV genome constructed using software IQ TREE with 1000 ultra bootstrap replication cycle. The retrieved
sequences from ten monkeypox cases from India belong to A.2 lineage of Clade IIb (Highlighted in red color).

of Gigante et al, which reported the circulation of both A.2 and B.1
lineages in current outbreak in USA with similarity to MPXV se-
quences of traveler from Nigeria to Texas in 2021.3

Analysis of Clusters of Orthologous Genes for orthopox viruses
(OPG) revealed that the sub cluster I of seven sequences from In-
dia showed 07 synonymous mutations (OPG055, OPG071, OPGO074,
OPG093, OPG124, OPG163, OPG187) and 11 non-synonymous mu-
tations (OPG040, OPG062, OPG063, OPG069, OPG074, OPG116,
OPG160 and OPG208). Sub cluster II included three sequences
from India which indicated 04 non synonymous mutations
(OPG025, OPG082, OPG084, OPG099) and 08 synonymous mu-
tations (OPG037, OPG038, OPG105, OPG111, and OPG135). Map-
ping the A.2 sequences with the reference genome (NC_063383
strain) indicated total fifteen mutations (OPG031, OPG047, OPGO053,
OPG103, OPG113, OPG145, OPG174, OPG176, OPG180, OPG188,
OPG190 and OPG205) which were common throughout all the
three sub clusters of the A.2 lineage (Fig. 2A). We have also noted

a seven-nucleotide deletion in all three A.2 sub clusters in OPG 174
gene. It is known to play role in influencing virulence by suppress-
ing immune system; further studies are needed to determine the
impact of this deletion on virulence of A.2 lineage.

We have also observed single nucleotide polymorphisms (SNPs)
specific to sub cluster Il compared to reference (NC 063383.1)
which were not found in the sequences of sub cluster I and II
There were total 27 non synonymous changes observed in Thailand
sequences.

APOBEC 3 mutation analysis indicated presence of 13 mu-
tations in A.2 sequences from the current MPXV outbreak
2022. These could be A.2 lineage defining mutations apart
from OPGO053; C 34472 T reported during earlier studies
(https://master.clades.nextstrain.org) (Fig. 2B). Further, we identi-
fied 25 additional APOBEC 3 mutations from the MPXV strain
circulating in India. Besides this, 21 synonymous and non-
synonymous APOBEC-3 mutations were also noted in sub cluster
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III. Recently O'Toole and Rambaut reported that the APOBEC3 with
cytidine deaminase activity could be significant factor in the short-
term evolution of MPXV since 2017.8 Our APOBEC3 mutation anal-
ysis supported a strong inclination for GA to AA and TC to TT mu-
tations, indicating cytosine deaminase functioning reported only
in Clade 1II since 2017 and not in Clade 1.* A recent study Isidro
et al. also demonstrated microevolution and divergence of MPXV
sequences of 2022 outbreak pertaining to APOBEC3 and other pro-
teins.?

Variant analysis of all sequences of A.2 lineage indicated a to-
tal of 34/67 synonymous mutations and 33/67 non synonymous
mutations. Fourteen mutations are found in the non coding re-
gion and 53 mutations were observed in coding region of different
ORFs. Most of the mutations are observed in gene OPG 047 which
is closer to the middle of the genome followed by OPF 053, OPG
074 and OPG 105. Earlier reported clade defining mutation was ob-
served (C 34472 T) in all the retrieved sequences from India. Dur-
ing complete genome analysis, we have observed insertions; one in
OPG 047 (insertion of T at 29767), and other in non coding region
(insertion of T at 170897). A deletion of CATATCA was also noted
at 148529- 148535 in gene OPG 174 ° (Fig. 2C).

Interestingly, one di-nucleotide substitution of AT-CC in OPG
047 at position 29768 leading to amino acid change (I 476 G) was
observed in the retrieved sequences of ten monkeypox cases. Of
67, a total 63 substitution mutations were observed in cluster from
India in which 58 are transitions and 05 are transversion (Non
synonymous 30 and synonymous 33). One substitution mutation
which led to stop gain at position 149872 was also recorded in
gene OPG 176. No mutations were noted on H3L (OPG 108), gly-
cosil transferase which plays important role in pox virus entry into
host cell. We have also observed four non synonymous and two
synonymous SNPs in OPG 31 and OPG 174 genes that are predicted
to modulate the host immune response.

The 2022 Monkeypox outbreak demonstrates accelerated mi-
croevolution of MPXV leading to divergence in viral phylogeny.?—>
Gigante et al., demonstrated 80 nucleotide changes in lineage A.2
compared to the B.1 lineage which has been predominant lineage
of 2022 suggesting an independent virus strain emergence.> The
genomic research on the 2022 MPXV outbreak has also grabbed
attention depicting divergence of lineage B.1 from lineage A.1 of
2018-2019 outbreaks.> Hence, genome evolution mechanisms and
importance of gene functions needs to be studied further to un-
derstand evolution of the MPXV genome. As B.1 is found to be the
predominant lineage of 2022 Monkeypox outbreak globally, the in-
troduction event of A.2 lineage specifically in the USA, UK, India
and Thailand is the question of further exploration.

Ethical approval

The study was approved by the Institutional Human Ethics
Committee of ICMR-NIV, Pune, India under the project ‘Providing
diagnostic support for referred samples of viral hemorrhagic fever
and other unknown etiology and outbreak investigation’. The clin-
ical data collected were anonymized. The informed consents were
obtained for the use of the clinical details in the study.

Financial support & sponsorship

The intramural grant was provided from ICMR-National Insti-
tute of Virology, Pune for conducting this study.

Supplementary information

Supplementary Table-1. Clinico-demographic, viral load and
outcome of ten monkey pox cases from India, July-August 2022

Declaration of Competing Interest
Authors do not have a conflict of interest among themselves.

Acknowledgement

Authors extend gratitude to Smt. Veena George [Hon’ble Min-
ister for Health and Family Welfare, Kerala], for efficient coordina-
tion of the monkeypox virus disease control activities, and “The
Team Kerala Health,” the district administration. We would also
extend our gratitude towards Dr. Asha Thomas, Additional Chief
secretary of Medical Education, Mrs. Tinku Biswal, Principal Sec-
retary for Health Kerala, Dr. Thomas Mathew, Director of Medi-
cal Education and Dr. Preetha PP, Director of Health Services, Ker-
ala. The authors would like to thank Dr. Lakshmi Geetha Gopalkr-
ishnan, State Epidemiologist, and District Surveillance Officers of
Thiruvananthapuram [Dr. Preethi James], Kannur [Dr. Shaj MK],
Kollam [Dr. Sandhya], and Thrissur [Dr. Anoop TK and Dr. Kavya
Karunakaran]. Dr. Kala Kesavan P, Principal; Dr. Nizarudeen A, Med-
ical superintendent; Dr. Aravind Reghukumar, HOD Infectious Dis-
eases and Dr. Manjusree Suresh, from Government Medical College
Thiruvananthapuram. The authors are thankful to Dr. Prathap So-
manath, Principal, Dr. Sudeep, HOD Infectious Diseases; Dr. Manasi
Ravindranath from Government Medical College Kannur; Dr. Shi-
nas, Government Medical College, Manjeri. The authors also ac-
knowledge the support from Dr. Fazil Abubaker from Daya General
Hospital and Specialty Surgical Centre, Thrissur.

Authors extend sincere thanks to Dr. Bijayalaxmi Sahoo, Profes-
sor and Head, and resident doctors Dr. Abhinav Kumar, Dr. Aneet
Kaur, Dr. Bhawna Solanki, Dr. Anjali Bagrodia of Dermatology; Dr.
Sonal Saxena, Professor, and Head, Department of Microbiology
from Maulana Azad Medical College and Lok Nayak Hospital, New
Delhi for providing support for sample collection and transporta-
tion. We are also grateful to Dr. Lalit Dar, Professor, Department
of Microbiology; Dr. Aashish Choudhary, Dr. Megha Brijwal, from
All India Institute of Medical Sciences, New Delhi. The authors are
thankful to Dr. Avdesh Kumar, State Surveillance Officer, New Delhi
and his team for coordination. The authors are extremely grate-
ful to Dr. Nivedita Gupta, Scientist ‘F’ and Head, Epidemiology and
Communicable Diseases, ICMR, New Delhi for her constant support.

We also acknowledge the excellent technical support from Dr.
Kannan Sabarinath PS, Dr. Rajlaxmi Jain, Ms. Jyoti Yemul, Mr. Sunil
Shelkande, Ms. Pratiksha Vedhpathak, Mrs. Shubhangi Sathe, Ms.
Vaishnavi Kumari, Ms. Nandini Shende, Mr. Raj Hawale for the di-
agnosis and data management for the diagnosis and data manage-
ment. The authors also would like to thank and express immense
gratitude to the monkeypox cases and family members, who will-
ingly agreed and provided consent to be part of the study.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jinf.2022.09.024.

References

1. Jolly B., Scaria V.. A distinct phylogenetic cluster of Monkeypox genomes sug-
gests an early and cryptic spread of the virus. J Infect 2022 Aug 19.

2. Isidro J., Borges V., Pinto M., Sobra D., Santos ].D, Nunes A., et al. Phylogenomic
characterization and signs of microevolution in the 2022 multi-country out-
break of monkeypox virus. Nat Med 2022:1-4 Jun 24.

3. Gigante C.M., Korber B., Seabolt M.H., Wilkins K., Davidson W. Rao AK.,
et al. Multiple lineages of Monkeypox virus detected in the United States,
2021-2022. BioRxiv 2022 Jan 1.

4, O'Toole A., Rambaut A.. Initial observations about putative APOBEC3 deaminase
editing driving short-term evolution of MPXV since 2017. ARTIC Network; 2022.

5. Yadav PD., Reghukumar A., Sahay R.R., Sudeep K. Shete A.M, Raman A,
et al. First two cases of Monkeypox virus infection in travellers returned from
UAE to India, July 2022. ] Infect 2022;5S0163-4453(22):00471-6.


https://doi.org/10.1016/j.jinf.2022.09.024
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0001
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0002
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0003
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0004
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005
http://refhub.elsevier.com/S0163-4453(22)00554-0/sbref0005

Letter to the Editor/Journal of Infection 86 (2023) 66-117 103

6. Li Y., Olson V.A,, Laue T, Laker M.T,, Damon LK.. Detection of monkeypox virus
with real-time PCR assays. J Clin Virol 2006;36(3):194-203.

7. Yadav PD., Nyayanit D.A., Shete AM., Jain S. Majumdar T., Chaubal G.Y,
et al. Complete genome sequencing of Kaisodi virus isolated from ticks in In-
dia belonging to Phlebovirus genus, family Phenuiviridae. Ticks Tick-Borne Dis
2019;10(1):23-33.

8. Senkevich T.G., Yutin N., Wolf Y.I., Koonin E.V, Moss B.. Ancient gene capture and
recent gene loss shape the evolution of orthopoxvirus-host interaction genes.
Mbio 2021;12(4) e01495-21.

9. Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: a fast and effec-
tive stochastic algorithm for estimating maximum-likelihood phylogenies. Mol
Biol Evolut 2015;32(1):268-74.

Anita M. Shete!, Pragya D. Yadav'!*, Abhinendra Kumar,

Savita Patil, Deepak Y. Patil, Yash Joshi, Triparna Majumdar
Maximum Containment Facility, National Institute of Virology, Indian
Council of Medical Research-National Institute of Virology, Sus Road,
Pashan, Pune, Maharashtra 411021, India

Vineet Relhan
Maulana Azad Medical College and Lok Nayak Hospital, New Delhi
110002, India

Rima R. Sahay

Maximum Containment Facility, National Institute of Virology, Indian
Council of Medical Research-National Institute of Virology, Sus Road,
Pashan, Pune, Maharashtra 411021, India

Meenakshy Vasu
Public Health Department of Kerala, Directorate of Health Services,
Thiruvananthapuram 695035, India

Pranita Gawande, Ajay Verma

Maximum Containment Facility, National Institute of Virology, Indian
Council of Medical Research-National Institute of Virology, Sus Road,
Pashan, Pune, Maharashtra 411021, India

Arbind Kumar, Shivram Dhakad
All India Institute of Medical Sciences, New Delhi 110029, India

Anukumar Bala Krishnan
Indian Council of Medical Research-National Institute of Virology,
Alappuzha, Kerala 688005, India

Shubin Chenayil
State Surveillance Unit (IDSP), Directorate of Health Services (IDSP),
Malappuram, Kerala 688005, India

Suresh Kumar
Maulana Azad Medical College and Lok Nayak Hospital, New Delhi
110002, India

Priya Abraham

Maximum Containment Facility, National Institute of Virology, Indian
Council of Medical Research-National Institute of Virology, Sus Road,
Pashan, Pune, Maharashtra 411021, India

*Corresponding author.
E-mail address: hellopragya22@gmail.com (P.D. Yadav)

1 These authors contributed equally to this work and are first
authors

Accepted 22 September 2022

Available online 28 September 2022

https://doi.org/10.1016/j.jinf.2022.09.024

© 2022 The British Infection Association. Published by Elsevier
Ltd. All rights reserved.

Genetic characterization of a novel quadruple reassortant x

influenza A (H1IN2) virus from swine, China, 2021 £
Dear Editor,

We read with interest a recent letter in the Journal of In-
fection, which reported the emergence of novel H5N6 reassor-
tant and it's threat to both birds and humans.! Pigs are sus-
ceptible to human, swine, and avian influenza A viruses (IAVs)
and considered as intermediate hosts or “mixing vessels” for gen-
erating novel viruses with pandemic potential.> Moreover, China
has a complicated ecosystem of swine influenza viruses (SIVs) in
which HIN1, HIN2, and H3N2 subtypes with classical swine (CS),
North America triple-reassortant (TR), Eurasian avian-like (EA),
and HIN1 pandemic/2009 (pdm/09) lineages are co-circulating
throughout the swine population. This co-circulation has led to
frequent emergence of novel reassortments or genotypes.’ In
this study, we report a novel influenza virus A(HIN2) virus,
A/swine/Henan/417/2021(H1N2) (HN/21) that was isolated from a
swine farm in December 12, 2021 in Henan, China.

We collected 168 nasal swab samples from pigs for swine
influenza surveillance from November 2021 to December 2021.
For virus isolation, nasal swabs were taken and placed in spread
medium (50% glycerol in phosphate-buffered saline [PBS] vol/vol)
containing antibiotics. All samples were individually inoculated
into Madin-Darby canine kidney (MDCK) cells for virus isolation.
The total RNA was extracted according to the instruction of the
RNAfast200 purification kit (Fastagen Biotech, Shanghai, China).
Polymerase chain reaction (PCR) was conducted using Unil2 and
universal primers for influenza viruses.* The PCR products were
recovered and cloned into the pMD-19T vector (Takara Bio Inc.,
Beijing, China) for sequencing. Sequencing data were spliced us-
ing the Seqman program of Lasergene (Version 7.1). GISAID ac-
cession numbers were assigned to the gene sequences of the
analysed virus: 1) polymerase basic 2 (PB2) (EPI2129631), 2)
polymerase basic 1 (PB1) (EPI2129632), 3) polymerase acid (PA)
(EPI2129633), 4) hemagglutinin (HA) (EPI2129634), 5) nucleopro-
tein (NP) (EPI2129637), 6) neuraminidase (NA) (EPI2129636), 7)
matrix protein (M) (EPI2129635), and 8) nonstructural protein (NS)
(EPI2129638).

The homology was analysed by comparison with the sequences
available in GenBank (http://www.ncbi.nlm.nih.gov/). At the nu-
cleotide level, the PB2, PB1, NP, and NA genes of HN/21 showed
high similarity to A/Guangdong/YueFang277/2017(H3N2), which
caused human infection with 99.80%, 99.87%, 99.93%, and 99.78%
agreement, respectively as shown in Supplementary Table S1.° All
coding regions of all HN/21’s segments were obtained based on
the G + C content from 41.84% to 46.64%. It is noteworthy that all
H1N2 SIVs contained at least 1 of 4 amino acid mutations (158E,
190D, 225E, and 226Q) in HA gene and 1 of 6 amino acid muta-
tions (251K, 271A, 431T, 591R, 627K, and 701N) in the PB2 gene,
which were associated with increasing viral mammalian-adapting,
replication, and pathogenicity (Supplementary Table S2).

Sequence alignments were constructed separately for eight seg-
ments using the MAFFT (version 7.149) program.® Phylogenetic
trees were inferred using the maximum likelihood method in the
IQ-TREE 1.68 software with 1,000 bootstraps.” Phylogenetic analy-
ses of the eight genes of HIN2 SIVs revealed that the HA, NA, PB2,
PB1, PA, NP, M, and NS genes were classified into four (Supple-
mentary Fig. 1A), four (Supplementary Fig. 1B), six (Supplementary
Fig. 1C), six (Supplementary Fig. 1D), six (Supplementary Fig. 1E),
six (Supplementary Fig. 1F), seven (Supplementary Fig. 1G), and six
(Supplementary Fig. 1H) separate lineages, respectively.

To reveal HIN2’s evolutionary characteristics, we conducted
molecular clock phylogenetic analysis and genotype character-
isation (Fig. 1). We computed marginal likelihoods using path
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sampling and stepping-stone sampling to compare the constant-
size, exponential-growth, and Bayesian skyline coalescent tree
priors and to compare the strict molecular clock and uncorrelated
lognormal relaxed clock.® The best-fit model was chosen to con-
struct maximum clade credibility (MCC) trees using 200,000,000
total steps for each set with sampling every 1,000 steps (Sup-
plementary Table S3). The convergence (effective sample sizes >
200) of relevant parameters was assessed using Tracer version1.7.°
Based on genomic diversity, China’s HIN2 SIVs were classified into
sixteen different genotypes (G1-G16) from 1999 to 2021 with nine
reassortants of the CS lineage, five reassortants of the EA lineage,
one reassortant of the pdm/09 lineage, and one reassortant of
human seasonal influenza lineage. HN/21 classified into genotype
16 is a novel quadruple reassortant-derived HA gene from the EA
lineage, the NA gene from human-like H3N2 lineage, the NS gene
from TR lineage. and the PB2, PB1, PA, and M genes from pdm/09
lineage (Fig. 1).

N-linked glycosylation (abbreviates G) of HA and NA, which add
oligosaccharides to Asn-residue by N-glycosidic linkages, plays an
important role in multiple biological activities of IAV. According
to the consensus N-X-S/T (X can be any amino acid except pro-
line) glycosylation motif, HN/21 had six (28G+, 40G +, 291G+,
498G+, 502G+, and 557G+) and three (66G+, 82G+, and 142G+)
N-linked glycosylation sites on HA (Fig. 2C) and NA (Fig. 2D),
respectively. In contrast, the phenotype of genotype 15 was
104G+/291G—/313G+/502G~— and 230+ on HA and NA genes, re-
spectively. Our results suggested there are variations in the glyco-
sylation sites at the residues 104, 291, 313, and 551 of HA gene and
230 of NA gene during the evolution of HIN2 SIVs. The HN/21 lost

a glycosylation site at residue 230 of NA. Remarkably, glycosylation
at the residue 230 of NA was absent in the HIN1 pandemic/2009
virus and was suggested as a pandemic associated signature (Sup-
plementary Table 2). The 230 G shift in the glycosylation site of NA
could serve as a potential characteristic of the pandemic.

To further detect the replication ability of HN/21 in vitro, the
growth curves were measured in MDCK, A549, and 3D4/21 cells. It
was found that HN/21 virus efficiently replicated in MDCK, A549,
and 3D4/21 cells. In MDCK, A549, and 3D4/21 of HN/21, viral
titres peaked at 72, 60, and 24 hpi with titres of 7.8, 3.5, and
3.85 IgTCIDsg/mL, respectively (Supplementary Fig. 2). Thus, this
novel reassortant poses the potential to infect human, as was ob-
served human cases infection with EA lineage SIVs.!0 Our results
demonstrate that emerging reassortants have the potential risk for
adaptation to humans or mammals, thus necessitating continuous
surveillance and development of effective vaccine for SIVs.
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Dynamics of immune responses to inactivated COVID-19 N

vaccination over 8 months in China [
Dear Editor,

In this Journal, Lazarus and colleagues recently reported results
of a randomized controlled trial of a novel inactivated SARS-CoV-2
vaccine (VLA2001) in healthy adults.! They found that the high-
est dose group showed statistically significantly stronger immuno-
genicity with similar tolerability and safety. We also investigated
dynamics of immune responses to inactivated COVID-19 vaccina-
tion over 8 months among healthy adults in China. Studies from
Israel, UK, Chile and Denmark on the decay of anti-SARS-CoV-2
antibodies elicited by BNT162b2 (mRNA vaccine) and ChAdOx1-
nCoV19 (adenovirus-vectored vaccine) revealed that mRNA vac-
cines could induce robust antibody response but started a rapid
decay shortly after vaccination.”> Modeling of the antibody decay
uncovered factors such as age, sex, comorbidity, and the interval
between vaccine doses that could influence the dynamics of hu-
moral responses.>= Yet, long-term surveillance study is needed to
supplement studies of immune responses for inactivated COVID-
19 vaccines.?-® In addition, the relationship between humoral and
cellular immune responses to inactivated vaccine has been rarely
investigated.

We conducted a large-scale longitudinal study with 6646 serum
samples from 4359 eligible participants, including many healthcare
workers, who received a 2-dose immunization of inactivated SARS-
CoV-2 vaccine (BBIBP-CorV or CoronaVac) at Yunnan University
Affiliated Hospital (74.4% were female; average age 33+11 years
[£SD]) to evaluate immunogenicity kinetics(Fig.S1). We used com-
prehensive immune indexes including anti-SARS-CoV-2 receptor-
binding domain (RBD) IgG, anti-RBD-IgM, neutralizing antibodies
(NAbs) as well as T cell responses (for a subset of participants)
to analyze immunogenicity kinetics according to various demo-
graphics and disease states. Baseline characteristics of the partic-
ipants are well-balanced across groups (Table 1). To assess the
humoral response to inactivated SARS-CoV-2 vaccines, we mea-
sured NAbs titers using competitive inhibition method, while anti-
RBD-IgG and anti-RBD-IgM using magnetic particle chemilumines-
cence immunoassay (MCLIA, Bioscience Co., Tianjin, China). We
performed FluoroSpot assay to estimate T cell response (Human
IFN-g/IL-2 SARS-CoV-2 FluoroSpotPlUs kit, Mabtech AB, Sweden).
The study was approved by the Committee on Medical Ethics of Af-
filiated Hospital of Yunnan University (Approval number: 2021078),
and Informed Consent Forms were signed by all participants.

We analyzed the seroprevalence of SARS-CoV-2-specific IgM or
IgG among 2,4705 participants prior to the massive vaccination
campaign in China (Table S1). We observed very low IgG sero-
prevalence among local hospital patients and healthcare work-
ers (0.11-0.62%) and significantly elevated seroprevalence among
healthcare workers who have worked as temporary support team
at Wuhan during the early pandemic outbreak (2.35%). This data
indicates a very low local natural infection rate before vaccination
campaign.

We then assessed antibody levels for the vaccine study popu-
lation cohort spanning from receiving the first dose to over 200
days after the second vaccination (Table 1). After the first dose
of inactivated vaccine, a minority of participants showed signifi-
cant increase of anti-RBD-IgG, anti-RBD-IgM, and NAbs (108 [9.6%],
156 [13.9%], and 140 [12.5%], respectively). A second dose elicited
a sharp increase in antibody concentrations among most people
(Fig. 1A, 1B and 1C). The average NAbs, anti-RBD-IgG, and anti-
RBD-IgM concentration increased 12, 45, and 4 folds, respectively,
after 1-2 weeks of the second dose compared to the first dose.
The concentration and seropositive rate of NAbs and anti-RBD-IgG
peaked at the 4th week after the second dose (236.3 IU/mL, 94.6%
and 47.6 S/CO, 94.1%, respectively) (Fig. 1A and 1B). From the 5th
week, NAbs levels decreased sustainably and culminated in a 4-
fold decrease in NAbs level reaching 58.5% seropositivity at the
21st week. Anti-RBD-IgG levels significantly decreased by a factor
of 9.3 with a 50.7% seropositivity at the 21th week. Anti-RBD-IgM
level also dropped by a factor of 11.3 with 4.8% seropositivity dur-
ing 9-12th weeks, but the decline from the 9th week to the end of
study was much slower, with an overall decrease by a factor of 1.3.
Importantly, we noted anti-RBD-IgG and NAbs kinetics were con-
sistent in their degree of immunogenicity (R = 0.89, P <2x10-16,
Fig. S2).

Although most people showed a significant waning antibod-
ies after two-dose inactivated vaccine immunization, cellular re-
sponses developed in majority of individuals, especially Th1 cell
responses (Fig. 1D), suggesting that a second vaccination could ef-
fectively promote SARS-CoV-2-specific T cells immunity. Moreover,
humoral immune response represented by antibody levels posi-
tively correlated with Th1 responses represented by IFN-y and IL2
secreting cells (Fig. S3).

We found that age, sex, BMI, health condition, vaccine products,
the days since the second-dose vaccination were significantly re-
lated to the antibody waning kinetics by linear regression analy-
sis (Fig. S4-S7). Therefore, we estimated the dynamics of anti-RBD-
IgG and NAbs over 27 weeks after the second dose and associated
changes of SARS-CoV-2 specific antibodies with demographic char-
acteristics of participants by linear mixed models (Table. S2 and
S3). Mixed model analysis revealed that individuals with diabetes,
obesity (BMI > 23.9), older age (> 48 years-old), and male sex sig-
nificantly associated with lower NAbs and anti-RBD-IgG concentra-
tions. Conversely, vaccine product CoronaVac was associated with
higher NAbs and anti-RBD-IgG concentrations compared to BBIBP-
CorV (Table S4). We also observed an age-by-sex interaction in af-
fecting antibodies titers, suggesting age-dependent antibody kinet-
ics vary differently condition on sex.

Our analysis showed that antibody levels decline at different
rates depending on age, sex, BMI, diabetes, vaccine products, and
the time since the second-dose vaccination. Although antibody lev-
els drop sharply, the cellular immunity was activated in most peo-
ple and T cell immune memory induced by inactivated vaccines
could last over 6 months post vaccination.” The finding provides
valuable insights of humoral response dynamics and advice to vac-
cination strategy with inactivated COVID-19 vaccine.
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Participants demographic characteristics. The study population includes volunteers who provided blood samples after the first dose and after the second dose (Whole
study population). Participants who provided at least one blood sample following the second vaccination were subject to analysis (Population in model).

Characteristics Whole study population (n=4359)
Population in model (n=4314)
Total Before2Dose ~ week1-2 week3-4* week5-8* week9-12  week13-16  week17-20  week21+

Age, median (IQR) 31 (24-41) 34(29-43) 32(27-42)  35(28-45) 30(23-42)  24(22-32)  28(23-38) 31(25-41) 33(29-42)

Age n (%) 18-27 1717 (39.4) 207(20.6) 183(29.7) 459(24.3) 163(43.6) 460(63.6) 556(48.8) 142(36.5) 53(18.7)
27-38 1235 (28.3)  369(36.8) 215(34.8) 621(32.9) 91(24.3) 161(22.3) 289(25.4) 114(29.3) 132(46.5)
38-47 748 (17.2) 247(24.6) 141(22.9) 402(21.3) 54(14.4) 67(9.3) 182(16.0) 78(20.1) 56(19.7)
>48 659 (15.1) 153(15.3) 78(12.6) 406(21.5) 66(17.7) 35(4.8) 111(9.8) 55(14.1) 43(15.1)

Sex n (%) male 1117 (25.6) 239(23.8) 172(27.9) 556(29.5) 85(22.7) 170(23.5) 235(20.7) 85(21.9) 54(19.0)
female 3242 (744)  764(76.2) 445(72.1) 1332(70.6)  289(77.3) 553(76.5) 903(79.3) 304(78.1) 230(81.0)

BMI n (%) <185 536 (12.3) 99(9.9) 62(10.0) 174(9.2) 44(11.8) 129(17.8) 156(13.7) 42(10.8) 34(12.0)
18.5-23.9 3093 (71.2)  626(62.4) 374(60.6) 1137(60.7) 237(63.5) 478(66.1) 731(64.2) 270(69.4) 193(68.0)
>23.9 712 (16.5) 268(26.7) 177(28.9) 562(30.0) 92(24.7) 116(16.1) 251(22.1) 77(17.8) 57(20.0)

Body condition n (%)  health 1818 (43.2) 543(54.1) 382(62.0) 1252(66.3)  135(36.1) 129(17.8) 262(23.0) 136(35.0) 71(25.0)
comorbidity 2386 (56.8)  460(45.9) 235(38) 636(33.7) 239(63.9) 594(82.2) 876(77.0) 253(65.0) 213(75.0)

Seropositivity N (%) NAbs 4817(72.5) 140(12.5) 525(84.4) 1802(94.6)  336(89.8) 625(86.3) 922(81.0) 301(77.3) 166(58.5)
1gG 4753(73.5) 108(9.6) 517(83.1) 179(94.1) 339(90.6) 622(85.9) 939(82.5) 296(76.1) 144(50.7)
IgM 1465(22.0) 156(13.6) 292(46.9) 875(46.0) 57(15.2) 35(4.8) 29(0.8) 13(3.3) 8(2.8)

n: Number of participants; N:Sample size;
* :Some individuals did not provide online survey.
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Fig. 1. Antibody kinetics and T-cells responses following vaccination. (A) shows the neutralizing antibody levels following vaccination. The cutoff level of positive neu-
tralizing concentration is 50 IU/mL. (B) shows the IgG levels following vaccination. The cutoff level of positive antibody concentration is 5 S/CO. (C) shows the IgM levels
following vaccination. The cutoff level of positive antibody concentration is 5 S/CO. Each point represents a serum sample. The error-bar indicates 95% confidence interval
(CI) of geometrical mean concentrations(GMTs). (D) Distribution of IFN-y and IL2 levels from activated T-cells upon recognition of S peptides. Samples were collected at the

30th day after a second vaccination. Data reported as the median and interquartile range (box), whiskers represent 1.5 times the interquartile range.
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Pseudomonas aeruginosa bloodstream infection in m

patients with hematological diseases: Clinical outcomes 2
and prediction model of multidrug-resistant infections

Dear Editor,

We read with interest the article by Metais et al.,! which re-
ported that short-term antibiotic treatment during febrile neu-
tropenia (FN) in patients with acute myeloid leukemia was as ef-
fective as prolonged therapy for bloodstream infection (BSI), with
very few relapses over 30 days. Patients with hematological dis-
eases are susceptible to BSI due to long-term neutropenia, and P.
aeruginosa presents one of the major cause of hospital acquired
infections.2 P. aeruginosa is intrinsically resistant to a variety of
antibiotic agents, and it is easy to develop resistance under the
overuse of antibiotics. The spreading of carbapenem-resistant (CR)
and multidrug resistant (MDR) infections brings great difficulties
to clinical treatment and becomes a challenge topic with increas-
ing costs®> and mortality.*
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Table 1

Clinical characteristics of patients with PA BSI, According to multidrug resistance of isolates.

Characteristic

MDR (n= 58)

Non-MDR (n= 371)

Univariate Analysis
P value

Age 42.5(29.0-51.3)  43.0(29.0-52.0) 0.980
Female 21 (36.2) 175 (47.2) 0.156
Severe neutropenia 28 (48.3) 159 (42.9) 0.478
Neutropenia 53 (914) 349 (94.1) 0.390
Duration of neutropenia before BSI 7.5 (3.0-13.0) 4,0(2.0-8.0) 0.005
Prior hospital admission 44 (75.9) 242(65.2) 0.134
Corticosteroid use 10 (17.2) 72 (19.4) 0.858
HSCT 7 (12.1) 29 (7.8) 0.305
Chemotherapy 45 (77.6) 315 (84.9) 0.178
Diabetes mellitus 10 (17.2) 26 (7.0) 0.018
BSI occurring during antibiotic therapy 31 (534) 31 (8.4) <0.001
Prior antibiotic therapy within 3 months
Quinolones 17 (29.3) 37 (10.0) <0.001
Anti-pseudomonal cephalosporins 35 (60.3) 181 (48.8) 0.067
Piperacillin/tazobactam 17 (29.3) 52 (14.0) 0.006
Carbapenems, 43 (74.1) 192 (51.8) 0.002
Aminoglycoside 7 (12.1) 25 (6.7) 0.175
Length of hospital stay before BSI, days 16.0(10.8-26.0)  16.0(13.0-22.0) 0.696
Duration of antibiotic treatment, days 14.0(10.0-23.0) 11.0(8.0-17.0) 0.063
Complications
Oral mucositis 20 (34.5) 91 (24.5) 0.110
Diarrhea 9 (15.5) 53 (14.3) 0.841
Septic shock within 48 h 0 (0.0) 16 (4.3) 0.145
Pulmonary infection 22 (37.9) 108 (29.1) 0.218
Perianal infection 8 (13.8) 39 (10.5) 0.496
Hypoalbuminemia 25 (43.1) 129 (34.8) 0.240
IET within 48h 24(41.4) 25(6.7) <0.001
30-day mortality 17 (29.3) 27 (7.3) <0.001
7-day mortality 6 (10.3) 15 (4.0) 0.050

Notes: BSI, bloodstream infection; HSCT: hematopoietic stem cell transplantation; MDR, multidrug resistant; CR,

carbapenems resistant; IET, inadequate empirical therapy.

Rational use of antibiotics is essential to reduce antibiotic resis-
tance and improve patient outcome. Therefore, there is an urgent
to find a way to balance the coverage of active antibiotic agents
and avoiding further development of antibiotic resistance under
overuse of antibiotics. To this end, we conducted an analysis of 429
consecutive episodes of P. aeruginosa BSI in patients with hema-
tological diseases at our hospital from January 2014 to December
2020, to compare the clinical risk factors for MDRPA BSI and prog-
nostic factors of PA BSI.

Patient characteristics were detailed in Table S1, all patients
received empirical treatment immediately after the collection of
blood samples. None of the patients in this study received pro-
phylactic antibiotic treatment. Most patients with acute myeloid
leukemia, 80.4% of the patients received at least one antimicro-
bial agent with in vitro activity within 24 hours after the on-
set of BSI, 88.6% of patients received adequate empirical therapy
(AET) after the adjustment based on clinical response within 48
hours, and 421 patients received adequate definitive therapy. The
median antimicrobial treatment length was 11 days, overall 30-
day mortality rate was 10.3%, higher mortality was found in MDR
group (P<0.001; Table 1), and there was no significant difference
in mortality between the empirical monotherapy and combination
therapy (P=0.686). Early AET be of great importance to patient
outcome® and cost. In this study, inadequate empirical therapy
(IET) was more frequent in patients with MDR P. aeruginosa BSI,
it reached up to 41.4% within 48 hours after the onset of BSI, and
multivariate analysis revealed IET was an independent risk factor
for 30-day mortality (Table 1 and S2). As shown in Fig. 1A, the
longer a patient waits to receive AET, the worse the prognosis, and
the 30-day mortality rate was 33.3%, 51.0% and 80.0%, respectively,
for patients received IET within 24 hours, 48 hours and 72 hours
after the onset of BSI. Therefore, patients with P. aeruginosa BSI
could benefit from an early use of active agents.

P. aeruginosa exhibits multiple antibiotic resistance mechanisms,
the efflux pump mechanism can generate cross-resistance to mul-
tiple classes of antimicrobials, and may work in conjunction with
other resistance mechanisms.” Quinolones is the substrate of all ef-
flux pumps for P. aeruginosa, which may trigger cross-resistance to
many other important antibiotics.® The prior use of antibiotics is
a well-known factor for resistant infections, medication time and
the serum concentrations are important factors related to patient
outcome.? In the current study, previous antibiotic therapy was
defined as the use of antibiotics for at least 72 hours within 3
months before the onset of BSI. We found that the previous use
of quinolones was an independent predictor of MDR P. aeruginosa
BSI, and we further revealed the association between time of pre-
vious quinolone exposure and subsequent MDR infections. Notably,
among patients previously treated with quinolones(n=54) or car-
bapenems (n=235), the cumulative duration of quinolone and car-
bapenem use was longer in patients with MDR infection than in
non-MDR infection. (median, days: 8.0 vs4.0, P=0.010;12.5 vs8.0,
P=0.006). In other words, duration of antibiotic use was associated
with MDR infections, rather than antibiotic use alone. Furthermore,
no one received antibiotic prophylaxis. In addition to antibiotic ex-
posure, duration of neutropenia and diabetes mellitus are associ-
ated with MDR BSI (P=0.005, P=0.018; Table 1). Therriault et al.’”
demonstrated that levofloxacin prophylaxis may contribute to the
development of antibiotic resistant infections in patients received
allo-HSCT. In this study, 30-day mortality was lower than most re-
cent reports,” and the low mortality and the relatively low inci-
dence of MDR P. aeruginosa BSI in this study underscore the safety
of neutropenic patients not receiving prophylactic therapy and the
side effects of long-term antibiotic use.

CR and MDR infections were recorded in 85(19.8%) and
58(13.5%) patients. The incidence of MDR P. aeruginosa trended up-
ward during the study period (Fig. 1B). As illustrated in Fig. 1C,
there were still many agents have in vitro activity against CR
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Fig. 1. Clinical outcomes and antibiotic resistant characteristics of P. aeruginosa bloodstream infection. (A) Association between empirical therapy and survival among
patients with P. aeruginosa bloodstream infection. Abbreviations: BSI, bloodstream infection; AET, adequate empirical therapy; IET, inadequate empirical therapy. (B) Evolution of
multidrug resistant P. aeruginosa bloodstream infection from 2014 to 2020. (C) Antimicrobial susceptibility of P. aeruginosa isolates in different resistance patterns. Abbrevia-
tions: MDR, multidrug resistant; CR, carbapenems resistant. (D) Internal discrimination of the prediction model of multidrug resistant in patients with P. aeruginosa bloodstream
infection demonstrated by receiver operating characteristics curves. The overall predictive model showed a good discrimination with a C-index of 0.79 (95% CI, 0.71 to 0.86)
and the goodness of fit of the model is satisfying, with a P-value of the Hosmer-Lemeshow test of 0.53; (E) Internal calibration of prediction model by levels of predicted
risk versus observed risk. Internal validation after bootstrap re-sampling showed good calibration, the C-index is calculated using the score after coefficient transformation,
with a very minimal decrease in the C-index (0.793 to 0.773), indicates a low over-optimism of the final model and good consistency between prediction probabilities and
observation probabilities. (F) Sensitivity and specificity of the prediction model for different cut off. Abbreviations: PPV, positive predictive value; NPV, negative predictive value;

PLR, positive likelihood ratio; NLR, negative likelihood ratio.

strains in this study, and more than 60% of CR strains were sus-
ceptible to antipseudomonal cephalosporins (Ceftazidime and Ce-
fepime) and piperacillin/tazobactam, and MDR strains were most
sensitive to aminoglycosides. In addition, we collected 274 non-
repetitive CR strains from clinical samples between October 2017
and April 2021. Most of the isolates were obtained from throat
swabs (23.7%, 65/274), followed by anal swabs (23.7%, 65/274) and
blood (20.8%, 57/274), and only 13 isolates were found to express
carbapenemase, IMP was the most prevalent type (92.3%, 12/13) ,
followed by NDM (7.7%, 1/13). which provides an explanation for
the susceptibility of CR P. aeruginosa strains to other antimicrobials
in this study.

To facilitate the rapid identification of high-risk MDR infec-
tions, we developed a quick scoring prediction rule based on a few
straightforward clinical factors. Prior treatment with carbapenems
(OR, 2.066; 95%CI, 1.024-4.171), piperacillin-tazobactam (OR, 2.500;
95% Cl, 1.162-5.380), quinolones (OR, 2.275; 95% CI, 1.016-5.094)
and BSI occurring during antibiotic treatment (OR, 12.957; 95% (I,
6.581-25.514) were independent risk factors for MDR P. aeruginosa
BSI in multivariate analysis (Table S2), one point was assigned to
each predictor, except for BSI occurring during antibiotic treatment
(4 points). The model showed a good discrimination and calibra-
tion (Fig. 1D and E). Patients with a score>6 were classified as
high-risk group, with a positive predictive value of 86.7% (Fig. 1F).

In conclusion, the present study of a large number of patients
with blood diseases revealed the association between long-term
antibiotic use and subsequent infection with MDR P. aeruginosa.
Then we demonstrated a strong link between clinical data and
microbiological outcomes, as well as antibiotic resistance patterns
and adverse outcomes of delaying appropriate treatment. Finally,
a quick scoring rule based on clinical factors was established to
identify patients at risk for MDR P. aeruginosa BSI. This could

be a quick tool to identify patients at high risk for multidrug-
resistant infections who could benefit from a broad-spectrum reg-
imen, thereby optimizing antibiotic therapy based on local resis-
tance patterns, improving clinical outcomes, and reducing antibi-
otic overuse in low-risk patients. Furthermore, reducing the devel-
opment and spread of resistance.
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Comparative analysis of transmission and vaccine )
effectiveness in Omicron and Delta variant outbreaks in =
China

Dear Editor,

In this Journal, Yidun Zhang et al. compared Ct value difference
between Omicron BA.1 and BA.2 variants and showed that Omi-
cron BA.2 more transmissible than BA.1'. Previous letter by Yue Yin
et al. announced that inactivated COVID-19 vaccines (CoronaVac,
Sinovac) is less effective against Omicron than against Delta, and

its protection against Omicron?. However, the transmission charac-
teristics of infection in Delta and Omicron mutant strains have not
been fully defined. The goal of this study is to examine the charac-
teristics of Delta and Omicron variants, including transmission, Ct
value, and effectiveness of vaccine, to provide additional informa-
tion about the COVID-19 pandemic in China.

We examined three outbreaks caused by the different SARS-
CoV-2 variants and located in Southern China (Fig. S1). A total
of 202 infections due to SARS-CoV-2 variants in three outbreaks
were included in our analysis. Of these infections, 33 (16.34%)
were caused by the Omicron BA.2 variant, 38 (18.81%) were caused
by the Omicron BA.1 variant, and 129 (63.86%) were caused by
the Delta variant. The median age of infections for Omicron BA.2,
Omicron BA.1 and Delta variant was varied (21.5 years vs. 31.0
years vs. 34.0 years), and 137 (67.82%) infections were in adults
(19-64 years). 31 (88.57%) infections of Omicron BA.2 have been
completed vaccine, higher than Delta (68.42%) and Omicron BA.1
(29.46%). In addition, the proportion of asymptomatic infections
decreased from 15% in the Delta outbreak to 6%-8% in the Omi-
cron outbreak (Table S1, Fig. 1A-C).

The distribution of epidemiological parameters was fitted to
Gamma distribution, the Lognormal distribution and Weibull dis-
tribution were used as well and showed similar goodness-of-fit as
measured by log-likelihood (Table S2, Fig. S2). Compared with the
Delta variant, Omicron BA.2 and BA.1 variants were transmitted
with a shorter serial interval (SI), (5.70days vs. 3.00 days vs. 2.24
days) (Fig. 1D), and incubation period (IP) (7.63 days vs. 4.35 days
vs. 3.07days) (Fig. 1E) in the outbreaks examined. Approximately
35.09% cases where SIs were shorter than IPs were recorded in in-
dividuals infected with Omicron BA.1; similarly, 70.98% cases were
recorded in those infected with Omicron BA.2, and 75.00% cases in
those infected by Delta (Fig. 1F). The estimation of generation time
(GT) was based on a review of the exposed period and probable
time of infection. Omicron BA.1 displayed a shorter GT than the
Delta variant (1.76 days vs. 2.52 days), and a similar GT to Omi-
cron BA.2 (2.93 days vs. 2.52 days). Transmission generation (TG)
of variants, defined as the period between the positive test results
of infector and infectee which did not relay on the recall of in-
fectee, were also varied. Delta and Omicron BA.1 showed similar
TG values (3.61 days vs. 3.56 days), and Omicron BA.2 displayed a
TG of 1.95 days (Fig. 1G-H). R.s; of Delta at increased stage was
1.93 (95% CI: 1.3-2.72), 2.94 (95% CI: 1.41-5.30) for Omicron BA.1,
and 3.56 (95% Cl: 1.20-7.94) for Omicron BA.2 (Fig. 1I). We also
compared IP, SI, TG, and GT values between adults (older than
19 years) and children (0-18 years) and found that children had
shorter IP in the Omicron BA.1 outbreak (4.00 days vs. 4.89 days)
and shorter TG values in both the Omicron BA.1 (3.11 days vs. 4.14
days) and Delta (2.37 days vs. 4.06 days) outbreaks (Fig. S3). This
may be related to a deficient vaccine coverage in children, in part
(Fig. 1A-C). However, the difference between the epidemiological
parameters of Omicron BA.2, as opposed to other variants, cannot
be explained entirely by deficient vaccine coverage in children.

A total of 21,716 contacts were introduced by 202 infections
and tracked by local CDC health workers (Table S3). Full vaccine
coverage of contacts in Delta, Omicron BA.1, and BA.2 outbreaks
was 44.33%, 79.77%, and 68.72%, respectively. Booster dose cover-
age was 40.84% and 29.62% in Omicron BA.1 and Omicron BA.2
outbreaks, respectively. Vaccine coverage of children (aged 0-18
years) and older adults (aged 65 years or older) was lower than
that of younger adults (Fig. 2A-C). More than 99% of the vaccines
received by contacts were produced by 5 manufacturers, includ-
ing Sinovac Biotech Ltd., Sinopharm Group Co. Ltd., CanSino Bio-
logics Inc., Anhui Zhifei Longcom Biopharmaceutical Co. Ltd., and
Shenzhen Kangtai Biological Products Co., Ltd. The mixed vaccine
strategy was also observed in each outbreak, but 98.27% of vacci-
nations were a dosing combination of CoronaVac (Sinovac Biotech
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Fig. 1. Vaccination status and epidemiological parameters estimation of infections in COVID-19 outbreaks caused by Omicron BA.2, Omicron BA.1 and Delta. Vaccination
status of infections from Omicron BA.2 (A), Omicron BA.1 (B) and Delta (C), respectively, and grouped by age. (D), Fitted serial interval (SI) distribution of paired cases of
Delta (n = 83), Omicron BA.1 (n = 31) and BA.2 (n = 19). (E), Fitted incubation period (IP) distribution of cases of Delta (n = 74), Omicron BA.1 (n = 35) and BA.2 (n = 33).
(F), The difference between IP and related SI of cases. (G), Fitted probability generation time (GT) distribution of infections of Delta (n = 58), Omicron BA.1 (n = 33) and BA.2
(n = 20). (H), Fitted transmission generation (TG) distribution of infections of Delta (n = 90), Omicron BA.1 (n = 32) and BA.2 (n = 20). (I), Effective reproductive number of

difference outbreaks, estimated using RO package.
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(E) and Delta outbreaks (F), respectively. (G), Comparison of vaccine effectiveness against infection using a logistic regression model. (H), Comparison of vaccine effectiveness

against infection using conditional logistic regression model, adjusted for age group.

Ltd.) and COVILO (Sinopharm Group Co. Ltd.) (Fig. 2D-F). Overall ef-
fectiveness of vaccine against the Delta variant in fully vaccinated
individuals was 51.68% (95% CI: 28.90-67.16%) (Fig. 2G). In condi-
tional logistic regression model, the vaccine effectiveness against
Delta variant infection adjusted by age group was 67.87% (95% CI:
51.67-78.64%) (Fig. 2H). For Omicron BA.1 and BA.2, difference in

vaccine effectiveness against infection was not observed, regardless
of adjustment by age group.

Our findings imply that Omicron’s transmissibility is 1.5-1.8
times higher than that of Delta in terms of viral transmission. This
is lower than the value reported by other studies, which claim that
Omicron has a transmissibility 2.5 to 4 higher than that of Delta’-4,
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This might be attributable to the rising rate of fully vaccinated and
booster-vaccinated people. Meanwhile, the geographic variability is
also linked to inconsistencies in the implementation of COVID-19
prevention and control measures in different regions. We also saw
that the transmissibility of the two Omicron sub-lineages differed,
with Omicron BA.2 being 1.2 times more transmissible than BA.1,
which is similar to the results of several studies that suggest that
BA.2 is 30 to 40 percent more infectious than BA.1°”. In compari-
son to Delta, applying a dynamic zero-COVID policy for interrupt-
ing Omicron transmission may necessitate greater preventative and
control efforts.
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Highly accurate protein structure prediction and drug m

screen of monkeypox virus proteome =
Dear Editor,

We recently came accross an interesting article published in
this journal by Usman Ayub Awan et al,' which highlighted
that the monkeypox virus had become another global emergency
threatening human health under the COVID-19 pandemic. An out-


https://github.com/xmusphlkg/zhuhai_omicron
https://doi.org/10.1016/j.jinf.2022.08.018
https://doi.org/10.1016/j.jinf.2022.05.035
https://doi.org/10.1016/j.jinf.2022.06.018
https://doi.org/10.3390/jcm11010030
https://doi.org/10.1093/jtm/taac037
https://www.nationalworld.com/health/new-omicron-variant-symptoms-of-covid-subvariant-ba2-how-contagious-is-it-and-does-it-cause-severe-illness-3612480
https://www.reuters.com/business/healthcare-pharmaceuticals/omicron-subvariant-ba2-more-infectious-than-original-danish-study-finds-2022-01-31/
https://www.cnbc.com/2022/02/25/covid-transmissibility-severity-reinfection-of-omicron-bapoint2-subvariant.html
mailto:1297648405@qq.com
mailto:13698665@qq.com
https://doi.org/10.1016/j.jinf.2022.08.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinf.2022.08.006&domain=pdf

114 Letter to the Editor/Journal of Infection 86 (2023) 66-117
A 1004 B ; C o s ;
pLDDT s Alignment of A42R A42R Profilin-like protein
80 (il
57 Experimental

£ 607 N PDB: 4QWO
Q 20 5
@] S

40 > AlphaFold

21 22 Mean pLDDT: 94.83
204
9
I 0.0 -
0- Q ) < Alignment
S SEP A
PO FPN & & & F RMSD=0.39
ST NP
S \‘9 <,\ < QQ \$‘>+ &>
[1L pLDDT=83.69 D2 VITF3L pLDDT=90.84
1i:

Binding energy: -1

1 kecal/mol

THR105, ASN304,
ILE 305, ILE307

Hydrophobic Interactions
Hydrogen Bonds

D3 A42R pLDDT=94.83
Binding energy: -7.8 kcal/mol

PROS50, ASN54,

ILES7, LYS59
Hydrophobic Interactions
Hydrogen Bonds

Binding energy: -8.9 kcal/mol

oS

LEU8, GLU12, GLY230,
ILE 305, LYS330
Hydrophobic Interactions
Hydrogen Bonds
Halogen Bonds

D4 ESL pLDDT=89.86

Binding energy: -10.2 kcal/mol

1

TYRS85,TYR87,GLN122,PRO186,
PRO188,ASN190,ALA240,
ALA241,VAL246,ARG247
Hydrophobic Interactions
Hydrogen Bonds

Fig. 1. Protein structural analysis and drug screening of the monkeypox virus. (A) The pLDDT values of all 186 monkeypox virus proteins. (B) Comparison between exper-
imental structure (PDB: 4QWO) and AlphaFold2-predicted structure of A42R profiling-like protein. (C) The alignment of experimental structure and AlphaFold2-predicted
structure of A42R profiling-like protein. (D) The interactions between Cepharanthine and four monkeypox virus proteins, including I1L (D1), VITF3L (D2), A42R (D3), and
ESL (D4). The molecular structures of cepharanthine in different protein complexes are shown in different colors. The green "cartoon" model and the electrostatic surface
present the protein structures. Red and blue indicate negative and positive charges on the electrostatic surface. The detailed interactions between amino acids (light blue)
and cepharanthine (yellow) are under the four protein structures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

break of the Monkeypox virus, which was first reported in the
United Kingdom in May of 2022 and has since spread to more
than 72 territories causing up to 14,533 cases according to the
World Health Organization (WHO), as of the 20th of July 2022
(www.who.int/). In response to rising concerns over monkeypox,
researchers are focused on acquiring structures of essential mon-
keypox proteins and have succeeded in producing crystal struc-
tures of the A42R Profilin-like protein (PDB: 4QWO), as well as
simulating the structure of envelope protein F13, also known as
C19L.2 The structures of most of the monkeypox virus proteins re-
main unknown, knowledge of which would significantly enhance
our understanding of the molecular mechanisms underlying criti-
cal viral processes such as viral entry and replication. AlphaFold?2 is

a powerful open-source computational approach developed to help
predict protein structures,’> which has been used successfully in ac-
quiring accurate protein structures of the human and SARS- CoV-2
proteomes.*©

Here, we used AlphaFold2 to predict the protein structures of
the reference monkeypox virus proteome (Uniprot ID: UP1012697),
yielding a total of 186 highly accurate protein structures (Sup-
plemental Table S1). The mean predicted Local Distance Differ-
ence Test (pLDDT) values of 156 of the 186 proteins are above the
threshold of 70, which suggests that the predicted structures for
these proteins are highly accurate (Fig. 1A). Furthermore, among
these proteins, 77 protein structures had mean pLDDT values of
between 80 and 90, while 57 protein structures showed mean
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Table 1
Virtual screening of potential drugs targeting the ten proteins. Related to Table S3.

Proteins  Drugs Values  Proteins  Drugs Values

B4R ZINC164528615 -113 G9R Trypan Blue -9.4
Trypan Blue -11.2 ZINC3934128 -8.7
ZINC208774715 -111 ZINC40164432 -8.7
Ixabepilone -10.9 ZINC14879959 -8.6
ZINC40165257 -10.8 Irinotecan -85
Differin -10.7 ZINC8220175 -85
ZINC43195321 -10.6 ZINC14879961 -84
Vumon -10.5 Indacaterol-8-0-Glucuronide ~ —8.4

P28 Yaz -9.7 D10L Lumacaftor -93
Ergotamine -9.2 ZINC3934128 -9.1
Xaliproden -9 Dihydroergotamine -9
Indocyanine Green -9 Trypan Blue -9
Trypan Blue -9 Dihydroergotoxine -89
Bisoctrizole -89 Gliquidone -88
Orobronze -89 Lestaurtinib -88
ZINC1530886 -8.8 ZINC253632968 -8.7

1L Cepharanthine -111 E4R Glycyrrhizinate Dipotassium -9.7
Trypan Blue -111 Trypan Blue -9.7
ZINC3934128 -10.2 Nilotinib -9.6
ZINC14880001 -10.2 Naldemedine -9.6
Avodart -10.1 Lifitegrast -9.5
ZINC3917540 -9.9 ZINC936069565 -9.5
Lumacaftor -9.9 ZINC14880001 -94
Nilotinib -9.7 ZINC43195321 -9.4

PRO132 Antrafenine -114 VITF3L Trypan Blue -9.6
Dihydroergotamine -1 ZINC164528615 -9.1
ZINC43195321 -1 Midostaurin -9
Cabozantinib -1 Nilotinib -89
Trypan Blue -11 Cepharanthine -89
Lorazepam Glucuronide  —10.9 ZINC253633751 -89
ZINC8234383 -10.8 Avodart -8.8
Lomitapide -10.8 ZINC14880001 -8.8

ESL Trypan Blue -114 A42R Tipranavir -79
Dihydroergotoxine -10.9 Trypan Blue -79
Naldemedine -10.9 ZINC936069565 -79
ZINC14880001 -10.6 Cepharanthine -7.8
Irinotecan -10.3 Daclatasvir -7.8
Cepharanthine -10.2 Dihydroergotamine -7.7
Fluspirilene —-10.1 Penfluridol -7.7
Dihydroergotamine —-10.1 Dihydroergotoxine -7.7

pLDDT values above 90. To further evaluate the predicted protein
structures, we compared the AlphaFold-predicted structure with
the experimental crystal structure (PDB: 4QWO) of A42R Profilin-
like protein. The resulting Template Modelling (TM), Global Dis-
tance Test (GDT)-TS, and the maximal subset (MaxSub) scores be-
tween two protein structures are above 0.95 (Fig. 1B). The aligned
structure between two proteins has a root means square devia-
tion (RMSD) value of 0.39 (Figs. 1B and 1C), suggesting that the
two protein structures are highly similar (Figs. 1B and 1C). Taken
together the above suggests that the predicted structures can be
considered to be highly accurate.

Previously approved drugs for smallpox, tecovirimat and brin-
cidofovir have been shown to be effective against the monkey-
pox virus, both in vitro and in animals®; however, given the global
emergency, it is necessary to identify alternative drugs that could
be used to fight the outbreak. Thus, we endeavored to uncover po-
tential drugs to treat monkeypox based on accurate prediction of
the monkeypox protein structures and 5903 approved drugs from
the Zinc database® (Supplemental Table S2). We first selected ten
target proteins based on their high pLDDT values, essential func-
tions, and potential pharmacophores. The selected proteins were
B4R, A42R, PRO132, VITF3L, E8L, I1L, D10OL, P28, and G9R. We
subsequently calculated the binding energies of all ten proteins
with the 5903 drugs (Supplemental Table S3). The top best dock-
ing drugs targeting the ten proteins showed low binding energies
(Table 1, S3, and FigureS1-S10), suggesting they might have strong
interactions.

Trypan Blue and Cepharanthine display significant binding
affinities to all ten target proteins (Supplemental Table S3). Trypan
Blue interacts with the proteins by forming hydrogen bonds, salt
bridges and hydrophobic and pi-cation interactions (supplemen-
tal materials). Cepharanthine shows high binding affinities to I1L
(Fig. 1D1), VITF3L (Fig. 1 D2), A42R (Fig. 1 D3), and ESL (Fig. 1D4)
through hydrophobic interactions and hydrogen bond formation.
We have generated an extensive drug dataset consisting of 43,800
protein-drug paired data for the monkeypox virus, which could
contribute to discovering the potential drugs for fighting mon-
keypox. Combatting the outbreak would require rapid research in
the following: 1. Development of suitable pseudovirus and animal
models of the current subtype of monkeypox virus; 2. Clarification
of the mechanism of infection, reproduction, and transmission of
monkeypox virus; 3. Identify and validate potential drugs that can
be used to treat the viral infection.

In conclusion, here we acquired 186 highly accurate protein
structures of the monkeypox virus reference proteome using Al-
phaFold2, which provided the most comprehensive database of
monkeypox virus protein structures worldwide. Moreover, we have
screened the potential drugs for binding the ten crucial proteins
of the monkeypox virus, including B4R, A42R, PRO132, VITF3L, E8L,
I1L, D10L, P28, and G9R, and generated a drug dataset containing
total 43,800 protein-drug paired data, which could be helpful for
drug discovery to the monkeypox virus.
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Peculiar Variations of the Electrostatic Potential of Spike "

Protein N-terminal Domain Associated with the 2
Emergence of Successive SARS-CoV-2 Omicron Lineages

Dear Editor,

Zeng and collaborators (1) have recently discussed the potential
of the porcine tyrosine-protein kinase receptor UFO (AXL) to inter-
act with the N-terminal domain (NTD) of the spike (S) protein of
some SARS-CoV-2 Variants of Concern (VOC). Omicron (BA.1.1.529)
is the last VOC that, after its first detection in South Africa in the
late 2021, has spread worldwide and has generated several sub-
variants of which those belonging to the BA.2 lineage (BA.2.12.1,
BA.4 and BA.5) are now the most prevalent in several countries
(www.who.int). Omicron subvariants markedly differ in resistance
to antibody neutralization, that has been largely attributed to
changes in the mutational landscape of RBD region of the Spike (S)
protein (2) Little comparative attention is currently reserved to the
mutational landscape of the S protein NTD although this domain
also carries a distinctive set of mutations which markedly distin-
guish BA.1 (and BA.3) from the subvariants of the BA.2 lineage
(BA.2.12.1,and BA4/5). In addition, BA.4 and BA.5 carry a HV69-70
deletion that is absent in the BA.2 and BA.2.12.1 subvariants.

We have recently shown that the mutational landscape of both
RBD and NTD largely determines their net surface charge, i.e. an in-
direct estimate of the dominant charge of the surface electrostatic
potential (EP) (3,4) . Changes in these potentials can modify the
kinetics/strength of receptors recognition, or other suggested NTD
functions, hence influencing the biological properties of SARS-CoV-
2. in particular its transmissibility and infectivity(4-7). In all the
pre-Omicron VOC, the EP of both RBD and NTD is dominantly pos-
itive, a finding that has been interpreted to favour their binding
to negatively charged surfaces of the ACE2 (RBD) or the less char-
acterized receptor(s) of NTD (4-7: see also below). Interestingly,
the first emerged Omicron VOC (BA.1.1.529), while maintaining the
usual positive net charge of the RBD region, showed a negative
net charge of the NTD region, differently from all other previous
VOC(4).

We have therefore considered to be of interest reporting here
the net-charge values of all Omicron subvariants. Surprisingly,
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Table 1

Predicted net charge (electrostatic potential) of the Spike RBD
and NTD (folded state) of SARS-CoV-2 VOC, compared with
previous main VOC'

SARS-CoV-2 VOC  Pango Lineage EP-RBD  EP-NTD
Wuhan B.1 215 130
Alpha B.117 3.18 1.69
Delta B.1.617.2 4.15 1.28
Omicron BA.1.1.529 5.22 -1.10
Omicron BA.3 5.22 0.02
Omicron BA.2 518 0.80
Omicron BA.2.12.1 5.18 0.80
Omicron BA.4 5.19 139
Omicron BA.5 5.19 139

1 Calculated as described in Ref.4.

these EP-NTD values differed in the different subvariants. As shown
in Table 1, only the first appeared Omicron strain had a dominantly
negative EP. All others had a neutral (BA.3) or slightly positive
(BA.2 and BA.2.12.1) or frankly positive (BA.4/5) value. Interestingly,
the EP value of these last two subvariants falls in the range of all
pre-Omicron VOC, being equal to that of the Delta variant. In con-
trast, no appreciable changes were observed in the high positive
value of the RBD-EP of all Omicron subvariants (Table 1) demon-
strating that variations in the electrostatic potentials of the NTD
regions occur independently on those of the RBD region.

We notice that the negativity of the BA.1 Omicron variant is
probably contributed to or just determined by its unique EPE in-
sertion at the position 214 of NTD sequence, meaning the double
acquisition of the negatively charged (at physiologic pH) glutamic
acid. Thus, the trend toward positivity of all other Omicron sub-
variants could be mostly due to the loss of the EPE insertion. In-
silico mutagenesis of the Glu residues of the EPE insertions with
Ala moves the net charge toward neutrality. The same effect can be
seen by replacing Asp142 with Ala. Interestingly, Asp142 is shared
by all the BA subvariants and by Delta. Also in this case, replace-
ment with Ala increases the positivity of the domain net charge.

We previously (4) suggested that the negative EP value of
BA.1 NTD might have hindered the NTD recognition by known or
postulated,NTD- receptors, including gangliosides and, particularly,
the AXL receptor which is mostly expressed in lung cells (5-7).
In fact, the net charge of the AXL domain that is putatively in-
volved in the interaction with NTD (as reported in the PDB struc-
ture 2C5D) is negative at around -5.5 according to our calculations.
The electrostatic potential of AXL has been displayed and the most
negative portion of its surface appears to coincide with the pre-
dicted interface with NTD (1). If so, the EP-NTD reversion to pos-
itivity of the BA.2 subvariants, in particular BA.4/5 could actually
imply the rescue of NTD receptor recognition function that was
lost or decreased in the progenitor Omicron BA.In this line, it is
of some interest that these EP-NTD variations appear to parallel
the increased resistance of the BA.2 lineage subvariants to neutral-
ization by antibodies as well as their increase in the experimen-
tal pathogenicity reported by Kimura and collaborators, as com-
pared to BA1 lineage (8). In particular, the gradient of fusogenicity,
a marker of SARS-CoV-2 pathogenicity, of these subvariants (BA.1
toBA.2 to BA-4/5 in increasing order) coarsely parallel the gradi-
ent Of EP-NTD trend to positivity from BA.1 to BA4/5. . In addition,
evasion of innate immunity appears to be markedly higher in BA.5
than in BA.1 and BA.2 (9,10).

We are aware of the rather speculative nature of our data in-
terpretation above. Nonetheless, the here reported, peculiar varia-
tions of the electrostatic potential of the S-protein NTD region of
the Omicron lineages may be virologically relevant, thus worthy
being carefully investigated.
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