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Abstract: Sarcopenia is generally an age-related condition that directly impacts the quality of life. It
is also related to chronic diseases such as metabolic dysfunction associated with diabetes and obesity.
This means that everyone will be vulnerable to sarcopenia at some point in their life. Research to find
the precise molecular mechanisms implicated in this condition can increase knowledge for the better
prevention, diagnosis, and treatment of sarcopenia. Our work gathered the most recent research
regarding inflammation in sarcopenia and new therapeutic agents proposed to target its consequences
in pyroptosis and cellular senescence. Finally, we compared dual X-ray absorptiometry (DXA), mag-
netic resonance imaging (MRI), and ultrasound (US) as imaging techniques to diagnose and follow up
on sarcopenia, indicating their respective advantages and disadvantages. Our goal is for the scientific
evidence presented here to help guide future research to understand the molecular mechanisms
involved in sarcopenia, new treatment strategies, and their translation into clinical practice.

Keywords: sarcopenia; aging; muscle; inflammaging; pyroptosis; imaging

1. Introduction

Population aging and obesity have become enormous problems for public health,
challenging healthcare systems. In 2019, the United Nations Population Prospects and
the World Population Ageing indicated that, by the year 2050, the number of people
over 60 years will have increased from 1 in 11 individuals to 1 in 6 individuals [1,2].
This situation forces us to have a new social, health, and economic perspective on the
elderly [3,4]. One of the many conditions related to aging is sarcopenia, defined by the
World European Working Group in Older People 2 (EWGSOP2) as a progressive skeletal
muscle disease prone to dramatic outcomes such as falls, fractures, physical disability,
and mortality [4,5]. Sarcopenia is characterized by a massive decline in muscle mass and
function [6,7] that begins between 30 and 40 years of age, with a 3–8% gradual muscle fiber
decline every decade until the 60’s, when the loss compromises the individual’s life [8].
Although sarcopenia is usually related to aging, in primary sarcopenia, there are other risk
factors, such as cancer, obesity (sarcopenic obesity), rheumatic diseases, and malnutrition,
that lead to secondary sarcopenia [9]. A lack of physical activity or a sedentary lifestyle leads
to secondary sarcopenia in earlier life stages [10,11].

The characterization of sarcopenia is essential for clinical care practice. According to
the EWGSOP2, not only low muscle mass but also low muscle quality, strength, and physical
performance are now accepted as new criteria in the disease diagnosis [5]. Sarcopenia is
a multifactorial disease with a wide variety of factors that contribute to its onset, such as
lifestyle, physical activity, nutritional habits, reduced satellite cells (myogenic stem cell),
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changes in muscle protein homeostasis, anabolic resistance, neuromuscular dysfunction,
among others.

The EWGSOP2, Asian Working Group for Sarcopenia (AWGS), and other worldwide
organizations have established the clinical and research guidelines that help to understand,
prevent, detect early, and treat sarcopenia and its dramatic consequences [5,12]. To date
there have been no US Food and Drug Administration (FDA)-approved medications
for sarcopenia, so therapeutical approaches to overcome sarcopenia could lead to better
intervention in healthy aging [13]. Our objective is to provide a molecular perspective on the
inflammatory and energetic processes that underlie sarcopenia, analyze non-invasive and
low-cost diagnostic tools for early diagnosis, and increase the understanding of treatment.

2. Inflammation in Sarcopenia
2.1. Inflammaging in Sarcopenia

Aging and lipid metabolism are correlated with the increase in dysfunctional systemic
levels of inflammatory molecules (chronic low-grade inflammation) known as “inflammag-
ing” [14,15], which leads to tissue degeneration and pathogenesis in age-related diseases
(type 2 diabetes, osteoarthritis, and sarcopenia) [14,16,17]. Inflammaging is especially
connected to sarcopenic obesity, supported by alterations in glucose metabolism, insulin
resistance, and oxidative stress, along with exacerbating the production of inflammatory
cytokines [18–20]. In addition to inflammaging, primary and secondary sarcopenia are
also correlated with alterations in lipid metabolism [21]; replacing type II muscle fibers
with fat is one of the most prominent characteristics of the disease, contributing to muscle
contraction atrophy [22]. The principal inflammatory molecules involved in inflammaging
are TNF-α, IL-6, IL-1, and chemokines, which promote the infiltration of inflammatory
cells to deteriorate muscle via NF-κB [23]. Lifestyle habits such as physical activity and
diet profoundly impact primary and secondary sarcopenia [24,25]; for example, it is well
known that a sedentary lifestyle increases the risk of many chronic diseases, including
sarcopenia [26]. Moreover, exercise attenuates muscle loss by decreasing the activation
of NF-κB [27,28]. Furthermore, diet and nutrition play an important role in the onset of
sarcopenia; for example, saturated fat can activate the innate immune system, leading to
pro-inflammatory molecule production (IL6 and TNF-α), which, over time, causes insulin
resistance [29]. Inflammation triggered by certain foods can be measured by the Dietary
Inflammation Index (DII), where higher values of DII represent a greater probability of
inflammation. This DII score has been used to establish the inflammatory potential of food;
a high DII has been associated with the development of musculoskeletal diseases, including
sarcopenia [30]. Therefore, a diet rich in vegetables and fruits is recommended to reduce
the risk [31]. In a rat model, a high-fat diet (HFD) caused the accumulation of long-chain
fatty acids such as linoleic acid, stearic acid, and vaccenic acid, as well as an increase in the
chemokines RANTES, MCP-1, and MIP-2, causing low-grade inflammation and decreased
muscle quantity and quality—distinct attributes of sarcopenia [32,33]. The accumulation of
palmitic acid derived from a lifestyle with dietary imbalance reduces Akt phosphorylation
causing insulin resistance and impairs muscle regeneration [34–36]. Moreover, palmitic acid
leads to inflammation and cell death by increasing the inflammatory cytokine TNF-α [37],
which reveals the lipotoxic effect of high levels of this saturated fatty acid.

In contrast, omega-3 polyunsaturated fatty acids (such as alpha-linolenic acid (ALA),
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) decrease the adverse effects
of sarcopenia by reducing inflammation [38] and improving muscle strength and function in
older adults with little effect on muscle mass [39]. In fact, eicosapentaenoic has been shown
to have benefits against muscular atrophy caused by palmitic acid accumulation. EPA
treatment under lipotoxic stress caused by palmitic acid reduced the rate of muscle protein
loss related to the expression of MyoD, myogenin, IGF-II, and IGFBP-5 [37]. These findings
support omega-3 polyunsaturated fatty acid administration as a potential therapeutic tool
to reduce muscle loss and inflammation linked to accumulated fatty acids in secondary
sarcopenia. Likewise, DHA has also recently been found to modulate the ubiquitin–
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proteasome and the autophagy–lysosome systems, potentially improving muscle integrity
and function by decreasing proteolysis and inflammation for sarcopenia [40].

Some saturated fatty acids can enhance the signaling pathways involved in the in-
flammation of macrophages [41]. NF-κB expression, linked to the deregulation of lipid
metabolism, is relevant because it activates the NLRP3 inflammasome multiprotein complex
that generates a network of immune responses related to local and systemic inflamma-
tion [42]. Different signals can lead to the activation of the NLRP3 inflammasome and
cause sarcopenia; for example, metabolic dysregulation due not only to obesity but also to
insulin resistance [43] leads to hyperglycemia and muscle atrophy via the WWP1/KLF15
pathway [44]. This pathway could be used as a therapeutic target for muscle atrophy and
sarcopenia developed by obesity and insulin resistance [45].

2.2. Pyroptosis Contributes to Sarcopenia Development

The inflammation-induced activation of the NLRP3 inflammasome can trigger cell
death, a process known as pyroptosis [46]. NLRP3 activates the axis caspase-1, which acts
upon its substrate gasdermin D (GSDMD), cleaving it [47] and causing multiple membrane
pores. These pores allow ion flux and the release of ATP, HMGB1 (high-mobility group
box-1), and interleukin (IL)-1β into the cell, provoking membrane rupture and, ultimately,
cell death/pyroptosis [48–50]. The NLRP3 inflammasome and pyroptosis contribute to
muscle dysfunction through a decline in the glycolytic potential and myofiber size [44]. The
perspective of the NLRP3 inflammasome reveals the necessity of finding new therapeutical
approaches to attenuate inflammation and pyroptosis in sarcopenia.

A recent approach is the administration of BMP-7 (bone morphogenetic protein 7),
which, in mice, showed the potential to attenuate pyroptosis, inflammation, and muscle
atrophy in diabetic muscle myopathy via the inhibition of the HMGB-1 protein. HMGB-1
protein is a potent signaling molecule for inflammation and a key initiator in pyroptosis
that binds RAGE or TLR4 and activates other pro-inflammatory factors [51]. Mice with
muscle atrophy triggered by the administration of dexamethasone (Dexa) were treated
with phlorotannin dieckol (DK) from the brown algae Ecklonia cava (ECE) extract. They
showed a reduction in protein levels in HMGB-1, NF-κB, and TLR4, key molecules in
NLRP3 inflammasome formation (Figure 1) [52]. These therapeutic alternatives offer an
alternative to attenuate the effects of inflammation and pyroptosis in sarcopenia.
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2.3. Inflammaging and Mitochondria

Mitochondrial dysfunction is a common state in sarcopenia related to inflamma-
tion [53]. Therefore, mitochondrial quality and homeostasis control are essential to prevent
muscle damage. To maintain mitochondrial quality and homeostasis, damaged mito-
chondria must be removed via mitophagy (organelle-specific autophagy). Conversely,
the accumulation of damaged mitochondria and decreased mitophagy are related to sar-
copenia [54,55] and are a source of mitochondrial damage-associated molecular patterns
mDAMPs (such as mitochondrial DNA (mtDNA), N-formyl peptides, and some lipid
species such as cardiolipin).

Interestingly, inflammation and mDAMPs synergistically contribute to sarcopenia [56];
for example, mDAMPs can activate the Toll-like receptor (TLR) pathway and trigger
NF-κB signaling, thus increasing the expression of IL-6 and TNF-α [57]. Damaged mito-
chondria can activate the NLRP3 inflammasome, triggering the expression of the prote-
olytic cytokines IL-18 and IL-1β and enhancing inflammation, likely causing pyroptosis
(Figure 1) [58]. These reports highlight the importance of the interconnection between
mitochondrial dysfunction, triggering potent inflammatory responses that contribute to
sarcopenia. In the next section, we analyze mitochondrial morphology and lipid alterations
related to sarcopenia development.

2.4. Senescence and Its Role in Sarcopenia

Recently, the relevance of cellular senescence in sarcopenia has gained attention due
to its relation with inflammaging. Cellular senescence is the permanent cell cycle arrest in
response to various stress stimuli or signals that compromise genomic integrity, preventing
the proliferation of damaged cells [59]. In addition to cell cycle arrest, cellular senescence
is characterized by a highly active metabolic state, telomere shortening, increased ROS,
persistent DNA damage, the expression of diverse genes, and the secretion of inflamma-
tory molecules partially regulated by NF-κB, such as IL-1α, IL-6, and IL-8, causing the
senescence-associated secretory phenotype (SASP). Over time, this phenotype contributes
to the clearance of the same senescent cells by the immune system since accumulation
could result in chronic inflammation and changes in the cell microenvironment [59–61].

The accumulation of senescent cells in muscle correlates with sarcopenia pathophys-
iology because of the secretion of inflammatory molecules, and the increase in protein
degradation results in muscle fiber thinning [62–64]. On the one hand, cellular senescence
affects the functionality and number of satellite cells (SCs, specific muscle stem cells),
which play a fundamental role by switching from their normal quiescent state with a
low metabolic rate to an active state to proliferate, differentiate, and form new muscle
fibers [65,66]. Subsequent cellular senescence could limit the ability of SC to regenerate and
maintain itself by the overexpression of p16 (INK4a), which is the primary inducer of cell cy-
cle arrest in cellular senescence [65]. On the other hand, the SASP significantly contributes
to sarcopenia via inflammaging, where the persistent levels of IL-6 harm muscle integrity
and function, causing muscle degradation and atrophy [67]. Given the consequences
of cellular senescence in muscle degeneration, it is necessary to find new therapeutical
strategies to attenuate cellular senescence and its SASP. New approaches have emerged
since 2015, when Kirkland’s work group demonstrated the selective depletion of senescent
cells in adipose tissue accompanied by decreasing levels of IL-6, IL-8, and CCL2. The
precise depletion was achieved by a new type of drugs named senolytics, which include
dasatinib and quercetin; the combined treatment can extend the lifespan of aging mice and
improve their muscular strength and exercise capacity (Table 1) [68,69]. Preliminary reports
suggested that new drugs such as senolytics recover muscular function. In this context,
the compound 25HC—an oxygenated derivate of cholesterol that inhibits the CRYAB (Al-
pha beta-crystallin) protein, which is upregulated in senescent cells—showed significant
effects in skeletal muscle. 25HC inhibits the expression of IL-6, a known contributor to
muscle atrophy in sarcopenia, attenuating the loss of muscle mass associated with aging
in mice and human cultures (Table 1) [70]. Another preliminary report suggested the use
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of a 5-fluorouridine (5FUR) derivate; 5FURGal kills human senescent cells with multiple
benefits such as enhancing cognitive function, lifespan extension, and improvement of
muscle tissue and satellite cells (Table 1) [71]. Overall, the connection between SASP and
NLRP3 provides a scenario where therapeutic targets against senescent cells (senolytics)
and/or the NLRP3 inflammasome could prevent muscle degeneration and sarcopenia,
killing two birds with one stone.

Table 1. The summary table of new therapeutic agents proposed to treat sarcopenia and muscle atrophy.

Therapeutic Approaches Target Benefits

Omega 3/Eicosapentaenoic acid
(EPA) [37]

Decreases lipotoxicity caused by palmitic
acid accumulation and it is associated

with increased levels of molecules
implicated in myotube formation

Regenerates skeletal muscle and reduces
inflammation

Bone morphogenic protein-7 (BMP-7)
[51]

Inhibits the pyroptosis initiator HMGB-1
and lowers the protein expression of

inflammasome NLRP3
Amelioration of pyroptosis and sarcopenia

Dasatinib + quercetin [68] Kill senescent cells and decrease levels of
IL-6, IL-8 and CCL2

Improve muscular strength and exercise
capacity

25HT [72] Inhibits the CRYAB protein upregulated
in senescent cells Ameliorates muscle loss

5FURGal [71] Kills senescent cells Improves muscle tissue and its satellite cells

Ecklonia cava extract (ECE)/dieckol
(DK) [52]

Decrease the NLRP3 formation as well as
the expression of HMGB-1

Attenuation of muscle atrophy induced by
dexamethasone co- treatment

BAM15 [73] Mitigates exacerbated mitochondrial
fission by lowering the expression of Fis1

Increased muscle mass and mitochondrial
quality, accompanied by attenuation of

inflammation

Landogrozumab and Trevogrumab
[74,75]

Monoclonal antibody that inhibits
myostatin

Increased muscle mass, moderate
improvement in muscle function

Testosterone [76,77]
Interacts with androgen receptor (AR),
leading to its nuclear translocation to

regulate myogenic expression
Increase in muscle mass and strength

Metformin [78,79] Activates AMPK

Modulates glucose uptake, fatty acid
oxidation and protein metabolism,

autophagy, and mitochondrial function in
muscle, decreases the inflammatory response

by NF-κB

Ursolic acid and tomatidine [80] Reduce the activity of ATF4, a mediator
of age-related muscle atrophy

Increase quality muscle mass and grip
strength in mice

Epicatechin from cocoa [81–83]

Regulates age-altered expression of
extracellular matrix peroxisome

proliferator-activated receptors (PPARs)
and decreases FOXO1A and MuRF1

Delayed skeletal muscle degeneration and
improved physical performance

Vitamin D [84,85] Decreases MuRF1 and FOXO3a Regulator of muscle regeneration

Vitamin C [86,87]

Deficiency stimulates the upregulation of
ubiquitin ligases, such as

atrogin1/muscle atrophy F-box (MAFbx)
and MuRF1

Higher intake of Vitamin C has a positive
correlation with higher muscle mass

3. Mitochondrial Homeostasis in Sarcopenia

Mitochondria play a crucial role in muscle health, function, and homeostasis by
acting as cellular energy communicators, regulating intracellular calcium concentrations,
and modulating cell proliferation [53]. Therefore, mitochondrial quality and homeostasis
control are essential to prevent muscle damage.
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3.1. Mitochondrial Plasticity and Lipotoxicity in Sarcopenia

Mitochondrial functionality depends on the morphological plasticity regulation be-
tween the coordination of two events: (1) Mitochondrial fusion, which allows mitochondrial
interconnection, signal transmission, and metabolite exchange, is associated with the high
utilization of muscle capacity and the regulation of oxidative metabolism and is accom-
panied by the simultaneous expression of Mfn2 and Opa1 proteins [88]. (2) The opposite
event is mitochondrial fission, wherein mitochondrial fragmentation is evident, controlling
the correct segregation of daughter cells, targeting defective mitochondria for mitophagy
elimination and the protein expression of Drp1 and Fis1 [88,89]. Diverse authors have
shown a mitochondrial fusion/fission imbalance phenotype in aged mice [55,90]. Ac-
cording to Del Campo, this imbalanced state is observed before sarcopenia is completely
developed, contributing to the notion that this preserved phenotype in mitochondrial
functionality plays a pivotal role in the pathophysiology of sarcopenia [90]. Earlier this
year, the mitochondrial uncoupling agent BAM15 (a protonophore of the respiratory chain)
was demonstrated to decrease mitochondrial fission by lowering the expression of Fis1;
as a result, increased muscle mass and function, mitochondrial biogenesis quality control,
and OXPHOS activity were observed, accompanied by the attenuation of inflammation in
sarcopenic mice. These findings provide a new perspective on mitochondrial dynamics in
sarcopenia and possible new therapeutical targets [73].

Other mitochondrial disturbances associated with sarcopenia include high sustained
levels of triglycerides due to disproportionate diacylglycerol, resulting in a metabolic shift
and causing low levels of phosphatidylethanolamine [91,92]. Phosphatidylethanolamine is
a key phospholipid for membrane fluidity, inducing a persistent fusion-like phenotype in
mitochondrial morphology—this persistent morphological state is a known contributor to
sarcopenia development (Figure 1) [91,93]. In sarcopenia, lipid metabolism dysregulation
is widespread. Excess triglyceride and HDL are strongly correlated with sarcopenia [94,95].
Furthermore, unbalanced lipid components directly impact mitochondrial morphology
and functionality [91]. These mitochondrial changes are major factors that contribute to the
age-dependent muscle degeneration observed in sarcopenia [96].

3.2. Alterations in Energy Metabolism Implicated in Sarcopenia

Understanding the metabolome in sarcopenia could significantly contribute to deter-
mining its pathophysiology and treatment. In recent years, diverse metabolomic profiles
have been performed, mainly in the skeletal muscle of mice, showing a general perspective
on metabolites that could serve as novel targets to diagnose and treat sarcopenia.

Regarding age-related energy dysfunction, a genome-wide transcriptional analysis
in individuals of diverse ethnicities with sarcopenia showed mitochondrial energy dys-
function as a major disruption accompanied by an impaired OXPHOS system. As a result,
NAD+ levels, the principal regulator of REDOX balance, were reduced significantly; like-
wise, its activity was notably decreased, revealing the essential role of mitochondria in
appropriate muscle function independently of ethnicity [97].

On the subject of glycerophospholipids (GPLs) in the gastrocnemius and soleus of
FBN-aged rats (Fischer/brown Norway rat model of aging), the metabolic analysis showed
a reduction in carnitine [98]. Low levels of carnitine were associated with cardiomyopathy,
muscle weakness [99], and mitochondrial dysfunction [100]. Carnitine is an important
amino acid essential for energy metabolism due to its role in the mitochondrial β-oxidation
of fatty acids. In recent years, low carnitine levels have been associated with secondary
sarcopenia triggered by conditions such as chronic liver disease, liver cirrhosis, and gas-
trointestinal cancer [101–103]. Recently, carnitine levels have been used as a sarcopenic
biomarker [103] and a potential candidate to delay muscle deterioration [102,104]; therefore,
these metabolomic alterations in FBN-aged rats could be extrapolated to humans with
sarcopenia.

Polyamines are biomolecules composed of multiple amino groups interacting with
diverse molecules such as DNA, RNA, and ATP at physiological conditions [105], par-
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ticipating in cell growth and protein synthesis [106]. In early 2006, a reduction in total
polyamine levels in the muscle of aged mice was described [107]. Recently, metabolomic
analyses in aged mice have shown both a notorious reduction in spermidine and spermine
and a lower expression of S-adenosylmethionine decarboxylase [108]. In mice, spermidine,
in combination with exercise, reduced the muscular atrophy and sarcopenia via the AMPK-
FOXO3a pathway, which resulted in autophagy activation, promoted myogenesis, and
reduced D-gal apoptosis [109].

Thus, energy metabolism dysfunction is essential in the pathogenesis of sarcopenia.
Knowing the molecular targets participating in the disruption could lead to new therapeutic
strategies for sarcopenia.

4. Other Therapeutic Approaches for Sarcopenia
4.1. Biological Therapy Interventions

Biotherapeutic approaches for sarcopenia could provide a reliable perspective for
therapeutic intervention for sarcopenia. One attractive candidate to target sarcopenia is
Myostatin (MSTN), a member of the transforming growth factor-beta (TGF-β) superfamily
and a potent negative regulator of muscle growth and differentiation [110]. In recent
years, diverse strategies in designing monoclonal antibodies against MSTN have shown
a significant increase in muscle mass and moderate improvement in muscle function
in clinical trials—such as the case of landogrozumab. Other evaluations in individuals
with sarcopenia are currently underway [74,75]. For example, another MSTN inhibitor,
trevogrumab, enhances muscle mass and function in young and old mice. Meanwhile,
others (Stamulumab, Domagrozumab, a novel anti-myostatin peptide PINTA-745, and
an anti-myostatin adnectin RG6206) increase muscle mass but fail to improve physical
strength in clinical trials [75].

Other interesting therapeutical approaches for sarcopenia treatment are testosterone
and androgen modulators. Testosterone deficiency is clinically associated with sarcopenia
and obesity [76]. Testosterone interacts with the androgen receptor (AR), leading to its
nuclear translocation to regulate myogenic expression [77]. In clinical trials, testosterone
supplementation showed increased muscle mass and strength in older men. However,
studies were terminated due to secondary cardiovascular effects, prostatic hyperplasia, and
urinary symptoms [111,112]. Therefore, combined strategies to reduce secondary effects
have been proposed as a solution, such as exercise or the combination with finasteride that
impedes prostatic hyperplasia [113].

As many therapeutical approaches fail to improve muscular strength and function
(e.g., some MSTN inhibitors), researchers have seriously considered other drugs that
simulate the effects of physical activity on activated protein kinase (AMPK) signaling
as attractive targets for sarcopenia, for example, metformin, a common type II diabetes
treatment. Metformin activates AMPK [114] and modulates diverse biological processes for
muscle, such as glucose uptake, fatty acid oxidation, protein metabolism, autophagy, and
mitochondrial function [115]; it also decreases the development of sarcopenia by reducing
the inflammatory response by NF-κB [116]. Preliminary trials with metformin combined
with exercise have improved resistance training in healthy older adults [78,79].

4.2. Natural Compounds

Natural compounds with anti-aging effects have been tested for sarcopenia treatment,
such as ursolic acid and pentacyclic triterpene acid fruits, including apple peels and
tomatidine (a steroidal alkaloid derived from green tomatoes), which increase the quality
of muscle mass and grip strength of mice by reducing the activity of ATF4, a mediator of
age-related muscle atrophy [80].

Plant flavonoids are important as dietary compounds because of their activities in
maintaining good health; in this regard, we want to reference flavanols, the main con-
stituents of cocoa beans. Flavanols such as epicatechin have delayed skeletal muscle
degeneration in aged mice by reversing the age-altered expression of extracellular matrix
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peroxisome proliferator-activated receptors (PPARs), which are master regulators for lipid
and glucose homeostasis in muscle [81,82]. Furthermore, epicatechin from cocoa beans im-
proves physical performance consistently with the modulation of biomarkers of sarcopenia
by decreasing FoxO1A and MuRF1, regulators of muscle degradation [83]. Epicatechin has
also been shown to have anti-inflammatory effects in diverse cell types, such as hepatic
and glial cells, but this effect remains to be proved in sarcopenia [117,118].

4.3. Vitamins

Vitamin D deficiency and low physical activity strongly correlate with muscle mass,
strength, physical performance, and sarcopenia [119]. Some authors have suggested vi-
tamin D as a regulator of mitochondrial health and possible implications in satellite cells
activity for muscle regeneration [84]. However, the effects of vitamin D can be indirect in
muscle function via its relationship with serum calcium and phosphorus [120,121]. Recent
studies have demonstrated that the depletion of vitamin D receptors in mice myocytes
directly impacts muscle size and strength, demonstrating the participation of signaling
vitamin D in muscle function and size [85]. Another work group showed the increased
expression of MuRF1 (Muscle RING-finger protein-1) and FOXO3a in mice with limited
physical activity and vitamin D deficiency, implying a synergistic effect of vitamin D, phys-
ical activity, and muscle protein degradation in sarcopenia [122]. These studies recommend
vitamin D supplementation and physical activity to fight against sarcopenia.

Vitamin C aids carnitine and collagen biosynthesis [123,124] and has a significant and
positive association with muscle. Vitamin C deficiency in mice stimulates the upregulation
of ubiquitin ligases, such as atrogin1/muscle atrophy F-box (MAFbx) and MuRF1 [125].
Other recent studies have demonstrated that a higher vitamin C intake is positively corre-
lated with a higher muscle mass in men and women [86,87]. These findings are relevant to
future treatments and the prevention of sarcopenia.

5. Imaging Based on Inflammation as an Approach for Detection and Follow-Up
of Sarcopenia

As mentioned above, diverse factors lead to muscle degeneration manifested as a loss
of muscle fibers and mass. The sooner sarcopenia diagnosis is established, the easier it is
to prevent more health impairments; that is why diagnosis needs reliable and combinable
methods for clinical practice. According to EWGSOP2, diagnosis for sarcopenia should
follow a step-by-step procedure starting with a validated measure of muscle strength,
commonly by grip strength. If grip strength is lower than the reference, sarcopenia should
be considered a probability [126]. The next step in diagnosing sarcopenia is measuring
muscle mass and quality [5]. For this approach, there are many tools and techniques, each
with its respective flaws or limitations. Currently, there is no single reliable universal tool
for clinical practice. In this section, we compare the different tools to diagnose sarcopenia.

Clinical visualization methods represent excellent tools to support the diagnosis and
monitoring of various pathological conditions, including sarcopenia [127–129]. Biopsy has
long offered the visualization of the morphological changes in muscle, the infiltration of
adipose cells, and fibrous tissue, among other aspects related to muscle quality; therefore,
muscle biopsies have been commonly used to diagnose sarcopenia [130]. However, biopsy
is an invasive procedure that can cause discomfort and requires posterior wound care;
additionally, a relatively larger sample may be required, and the method is unsuitable for
people on anticoagulant treatments (Table 1) [131]. In this regard, imaging tools offer a
non-invasive option to evaluate muscle integrity and real-time visualization, which provide
the personalized and precise determination of muscle quality.

The various imaging tools can precisely identify vulnerable people before the develop-
ment of sarcopenia or the early stages of the condition, thus allowing early treatment.

Dual X-ray absorptiometry (DXA) has become one of the most common tools to
quantify body composition (BC). For sarcopenia diagnosis, this method is based on X-ray
transmission across the body at two different spectra, visualizing either bone or soft
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tissue (e.g., fat mass and lean mass) [132]. This tool estimates muscle mass by linking the
appendicular lean soft tissue (ALST) and total-body SM mass in an equation [133]. The
use of DXA to measure muscle mass is controversial, while some authors use DXA as a
reference tool to diagnose sarcopenia because of its validation versus other more expensive
imaging methods such as computer tomography (CT) or magnetic resonance imaging
(MRI). Furthermore, the radiation exposure is much lower than in CT [134]. Others point
out that using DXA as a reference/gold standard is still premature because of discrepancies
related to hydration, thickness of soft tissues, and unclear mathematical equations and
algorithms used for the estimation of muscle mass leading to cumulative variations and
dangerous expectations in sarcopenia diagnosis [135].

Another imaging tool that can help analyze muscle integrity and sarcopenia is mag-
netic resonance imaging (MRI), which is based on the atomic distribution of the body
because of a strong magnetic field [136,137]. The organization of the atoms can vary ac-
cording to the nature of the molecules; this allows the recognition of diverse tissues based
on their magnetic attributes [138]. The MRI is the most advanced tool for identifying
sarcopenia and is considered the gold standard for muscle mass quantification, showing
muscular quality and fat [5,139]. The MRI variation methods accompanied by nuclear
polarization have shown a significant intensification of the MRI signal, allowing the visu-
alization of free radical species in tissues [140]. Dynamic nuclear polarization-magnetic
resonance imaging (DNP-MRI) is a variation of the above-described technique used to
explore real-time REDOX fluctuation states under local muscle inflammation; this is a
magnificent MRI approach to follow up pathologies in real time where inflammation plays
a fundamental role (Table 2). However, some disadvantages of MRI and its variations are
the high costs and restricted accessibility [141], which is why it is not yet a daily technique
used worldwide.

Since MRI is not always an option in the identification and follow-up of sarcopenia,
ultrasound (US) can be used since it provides some advantages. First, US is a much more
acceptable tool in terms of costs, accessibility, portability, and patient/analyst ease; second,
this imaging tool offers a significant degree of image resolution, allowing a good evalua-
tion of muscular integrity quantification and inflammation [142]. US is based on sound
waves that the human ear cannot detect (a frequency between 200 kHz and 1.5 MHz) and
provides a signal to visualize the size structure of diverse organs and tissues [143]. The use
of US has increased exponentially in recent years to diagnose and follow up on various
musculoskeletal conditions, including those related to muscle degeneration associated with
inflammation and/or restricted mobility [144]. Recent reports have provided standardiza-
tion and recommendation for the better operation of US to evaluate diverse muscle mass
parameters in more than 30 different muscles, taking advantage of the vast presence of US
in clinical practice [145–147]. These US muscular parameters are considered “ultrasound
biomarkers for sarcopenia” and include muscle thickness, echo intensity, pennation angle,
fascicle length, contrast-enhanced assessment of vascularization, and the cross-sectional
area, among others. One of the most used parameters is the echo intensity, which expresses
the muscle quality in terms of structural changes caused by an increase in intramuscular
fat infiltration and connective tissue, which results in a higher echo intensity of the muscle
in question; it has also been noted that echo intensity is higher in muscle from older than
younger people [148,149]. Likewise, US helps to determine the microstructural characteris-
tics of muscle by measuring the pennation angle and fascicle length, as decreased values of
these parameters are observed in sarcopenia [150].

One of the main challenges for US to be at the same level as MRI (the gold standard
imaging tool) in sarcopenia is the universal standardization of the quantitative and ensem-
bled (and not alone) parameters of muscular changes among diverse muscles to evaluate
individuals with sarcopenia. Nonetheless, US might positively impact the daily clinical
practice for the early identification and follow-up of this disease (Table 2).

Other non-imaging tools are used to measure the muscle mass in sarcopenia diagnosis,
such as bioimpedance analysis (BIA) [151]. This technique is based on an electric current
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through the body, where the tissues rich in water and electrolytes let electric currents pass
more easily than adipose tissue. BIA flaws are influenced by many factors, such as age,
hydration, and different devices [152,153]. Thus, this tool should only be used when there
is limited access to better options [154].

Table 2. Comparison of advantages of imaging tools used for sarcopenia. US, DXA, and MRI have
their own perks; nevertheless, US could become a gold standard for diagnosis and follow-up in
sarcopenia due to its low cost and almost universal use in clinical practice.

Tool Advantages Disadvantages

Biopsy
[131,155,156]

Morphological, cellular, and biochemical
features in muscle

Biobanking practices, tissue manipulation, and
individual patient characterization

Invasive technique
Contraindicated in high-risk complication

patients
Patient discomfort

Possible poor sample size

DXA
[134,135]

Relatively cheap, compared with CT or MRI
Rapid technique, noninvasive

Allows the visualization of different body
compartments (bone or soft tissue)

Lower radiation exposure compared to other
tools such as CT

Hydration and tissue thickness can alter
muscle measurement

Even low-radiation exposure needs to
be considered
No portability

Variations in muscle mass due to mathematical
equations and algorithms

MRI
[157–159]

Gold standard for imaging sarcopenia
No ionizing irradiation

Capable of analyzing images after scanning
DNP variation can detect the REDOX state

in muscle

High cost
Zero portability and not always available in

hospitals and clinics
Restricted accessibility for some people, such

as frail individuals or individuals with
metal/electronic devices implanted

Image interpretation by a health professional

Ultrasound
[128,129,142,145,146,148,160]

Non invasive
A set of US parameters can be used as

biomarkers for sarcopenia
No ionizing irradiation

Low cost
Portability for easy transportation

Adequate for all patients
Extensive availability in clinics and hospitals
Is possible to interpret images at the moment

Necessity of standardization to establish
criteria to diagnose sarcopenia

Interpretation of images can be user-dependent
Sometimes, restricted use in obese individuals

6. Conclusions

From a public health point of view, sarcopenia is a dangerous condition that com-
promises muscle integrity and directly impacts the quality of life of several groups of
individuals, mainly elderly people or those with risky lifestyle behaviors [5,161]. Catego-
rizing sarcopenia into primary or secondary is important to prevent, diagnose, and treat
this condition [162]. However, it is not an easy task because the dynamics of sarcopenia
depend on many factors that can be intrinsic or extrinsic, such as age, sex, physical activity,
dietary intake, comorbidities, etc. [5]. The complex dynamics make it difficult to determine
between primary and secondary sarcopenia. Primary sarcopenia is always associated with
chronological aging and is exacerbated by diseases or other lifestyle factors and leads to
secondary sarcopenia, which is the muscle loss for other causes involved in addition to
aging [162].

More information about the molecular basis, onset, and diagnosis of sarcopenia can be
used for the better prevention and treatment of the disease. Our work comprises some of
the most recent information regarding inflammatory molecular mechanisms underlying
sarcopenia; additionally, we reviewed different imaging tools to help diagnose and follow
up on the disease.
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Aging and metabolic diseases, such as obesity and type II diabetes, are accompanied
by a state of chronic inflammation. One of the diverse mechanisms known to contribute to
the onset of sarcopenia is the slight but persistent increase in inflammatory mediators such
as IL-1β, IL-6, and TNF-α that simultaneously impact muscle metabolism, causing wasting
and loss via the mTOR pathway [163–165]. One event that exacerbates the inflammatory
state in sarcopenia is senescence via its associated secretory phenotype (SASP). The release
of soluble factors such as pro-inflammatory cytokines and chemokines has a paracrine
effect on neighbor cells, reinforcing the microenvironment of chronic inflammation and
cellular senescence. Another factor involved in the onset of sarcopenia is mitochondrial
dysfunction, which brings a series of alterations at different levels; for example, the ab-
normal mitochondrial morphology caused by an impaired lipid metabolism entails the
stiffness of membranes and increases reactive oxygen species in muscle degeneration.
Additionally, mitochondria have a close relationship with inflammatory processes that
could be exacerbated to cause pyroptosis. Mitochondrial dysfunction in sarcopenia can be
expressed as differential patterns depending on the class of muscle with altered levels of in-
termediates that participate in energetic metabolism, i.e. the significant decrease in REDOX
regulators and some cofactors essential for the complete glucose oxidation that enhances
muscle deterioration. Therefore, strategies directed to decrease the inflammatory state, the
clearance of senescent cells in sarcopenia, or the attenuation of mitochondrial dysfunction
(Table 1) are vital to improve the future and quality of life of people with sarcopenia.
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Abbreviations

EWGSOP2 World European Working Group in Older People 2
AWGS Asian Working Group for Sarcopenia
FDA US Food and Drug Administration
DII Dietary Inflammation Index
HFD High-fat diet
ALA Alpha-linolenic acid
EPA Eicosapentaenoic acid
DHA Docosahexaenoic acid
IGF-II Insulin-like growth factor 2
IGFBP-5 Insulin-like growth factor binding protein-5
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
WWP1/KLF15 WW domain-containing E3 ubiquitin protein liubiquitin-protein-like factor 15
GSDMD Gasdermin D
HMGB1 High-mobility group box-1
BMP-7 Bone morphogenic protein-7
DK Dieckol
ECE Ecklonia cava
mDAMPs Mitochondrial damage-associated molecular patterns
mDNA Mitochondrial DNA
ROS Reactive oxygen species
SASP Senescence-associated secretory phenotype
SC Satellite cells
CRYAB Alpha beta-crystallin protein
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25HC 25-hydroxycholesterol
5FUR 5-fluorouridine
OXPHOS Oxidative phosphorylation
GPLs Glycerophospholipids
FBN Fischer/brown Norway rat
MSTN Myostatin
AR Androgen receptor
MuRF1 Muscle RING-finger protein-1
DXA Dual x-ray absorptiometry
CT Computer tomography
MRI Magnetic resonance imaging
US Ultrasound
BIA Bioimpedance analysis
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Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia. Arch.
Gerontol. Geriatr. 2016, 65, 218–224. [CrossRef]

151. Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [CrossRef]
152. Buckinx, F.; Landi, F.; Cesari, M.; Fielding, R.A.; Visser, M.; Engelke, K.; Maggi, S.; Dennison, E.; Al-Daghri, N.M.; Allepaerts, S.;

et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle 2018, 9, 269–278.
[CrossRef] [PubMed]

153. Gonzalez, M.C.; Barbosa-Silva, T.G.; Heymsfield, S.B. Bioelectrical impedance analysis in the assessment of sarcopenia. Curr Opin.
Clin. Nutr. Metab. Care 2018, 21, 366–374. [CrossRef] [PubMed]

154. Cheng, K.Y.; Chow, S.K.; Hung, V.W.; Wong, C.H.; Wong, R.M.; Tsang, C.S.; Kwok, T.; Cheung, W.H. Diagnosis of sarcopenia by
evaluating skeletal muscle mass by adjusted bioimpedance analysis validated with dual-energy X-ray absorptiometry. J. Cachexia
Sarcopenia Muscle 2021, 12, 2163–2173. [CrossRef]

155. Invernizzi, M.; Rizzi, M.; Carda, S.; Cisari, C.; Molinari, C.; Renò, F. Mini invasive skeletal muscle biopsy technique with a tri-axial
end cut needle. Eur. Rev. Med. Pharm. Sci. 2015, 19, 2446–2451.

156. Anoveros-Barrera, A.; Bhullar, A.S.; Stretch, C.; Esfandiari, N.; Dunichand-Hoedl, A.R.; Martins, K.J.B.; Bigam, D.; Khadaroo,
R.G.; McMullen, T.; Bathe, O.F.; et al. Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer
patients. J. Cachexia Sarcopenia Muscle 2019, 10, 1356–1377. [CrossRef]

157. Wang, F.Z.; Sun, H.; Zhou, J.; Sun, L.L.; Pan, S.N. Reliability and Validity of Abdominal Skeletal Muscle Area Measurement Using
Magnetic Resonance Imaging. Acad Radiol. 2021, 28, 1692–1698. [CrossRef]

158. Peñate Medina, T.; Kolb, J.P.; Hüttmann, G.; Huber, R.; Peñate Medina, O.; Ha, L.; Ulloa, P.; Larsen, N.; Ferrari, A.; Rafecas, M.;
et al. Imaging Inflammation—From Whole Body Imaging to Cellular Resolution. Front. Immunol. 2021, 12, 692222. [CrossRef]

159. Eto, H.; Hyodo, F.; Kosem, N.; Kobayashi, R.; Yasukawa, K.; Nakao, M.; Kiniwa, M.; Utsumi, H. Redox imaging of skeletal muscle
using in vivo DNP-MRI and its application to an animal model of local inflammation. Free Radic. Biol. Med. 2015, 89, 1097–1104.
[CrossRef]

160. Stringer, H.J.; Wilson, D. The Role of Ultrasound as a Diagnostic Tool for Sarcopenia. J. Frailty Aging 2018, 7, 258–261. [CrossRef]
161. Tzeng, P.-L.; Lin, C.-Y.; Lai, T.-F.; Huang, W.-C.; Pien, E.; Hsueh, M.-C.; Lin, K.-P.; Park, J.-H.; Liao, Y. Daily lifestyle behaviors and

risks of sarcopenia among older adults. Arch. Public Health 2020, 78, 113. [CrossRef]
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