Skip to main content
. Author manuscript; available in PMC: 2023 Aug 1.
Published in final edited form as: IEEE Trans Med Imaging. 2022 Aug 1;41(8):1990–2003. doi: 10.1109/TMI.2022.3153322

TABLE V:

The AUROC and AUPRC results of various models to classify the 13 classes (12 diseases and Support Devices) on MIMIC-CXR dataset. The upper part is the AUROC results and the lower part is the AUPRC results.

EC Card AO LL Edem Cons Pneu1 Atel Pneu2 PE PO Frac SD mean

AUROC A-GCN-PPS 0.756 0.826 0.749 0.791 0.905 0.817 0.725 0.817 0.883 0.919 0.826 0.725 0.897 0.818
A-GCN-APS 0.752 0.816 0.743 0.768 0.887 0.801 0.723 0.804 0.877 0.901 0.826 0.764 0.879 0.811
AlexNet 0.745 0.819 0.738 0.721 0.901 0.805 0.703 0.812 0.850 0.911 0.791 0.666 0.889 0.796

R-GCN-PPS 0.764 0.828 0.760 0.828 0.909 0.821 0.764 0.826 0.895 0.926 0.849 0.761 0.907 0.834
R-GCN-APS 0.760 0.820 0.761 0.778 0.892 0.818 0.744 0.817 0.897 0.909 0.853 0.825 0.890 0.828
ResNet50 0.752 0.822 0.756 0.736 0.905 0.816 0.729 0.822 0.862 0.923 0.817 0.668 0.900 0.808

V-GCN-PPS 0.767 0.826 0.760 0.826 0.908 0.826 0.761 0.824 0.897 0.926 0.844 0.761 0.908 0.833
V-GCN-APS 0.749 0.818 0.762 0.785 0.889 0.812 0.749 0.819 0.894 0.908 0.858 0.820 0.891 0.827
VGGNet16BN 0.743 0.818 0.748 0.715 0.904 0.816 0.717 0.821 0.856 0.920 0.796 0.678 0.900 0.802

p-val (RM-ANOVA) ** *** * *** *** ** *** *** *** *** *** *** *** ***
PPS >APS * *** ** *** * * ** *** *** ***
PPS >base ** *** ** *** *** ** ** *** *** ** *** *** *** ***

AUPRC A-GCN-PPS 0.096 0.478 0.407 0.150 0.528 0.154 0.203 0.455 0.313 0.738 0.068 0.073 0.698 0.335
A-GCN-APS 0.094 0.461 0.398 0.122 0.480 0.145 0.191 0.436 0.313 0.690 0.087 0.099 0.659 0.321
AlexNet 0.087 0.465 0.397 0.085 0.510 0.138 0.182 0.456 0.228 0.726 0.044 0.041 0.687 0.311

R-GCN-PPS 0.102 0.479 0.420 0.224 0.548 0.168 0.233 0.476 0.370 0.760 0.081 0.102 0.730 0.361
R-GCN-APS 0.094 0.468 0.413 0.147 0.490 0.145 0.245 0.452 0.403 0.707 0.127 0.203 0.679 0.352
ResNet50 0.092 0.473 0.417 0.100 0.535 0.155 0.213 0.472 0.288 0.755 0.062 0.044 0.713 0.332

V-GCN-PPS 0.101 0.475 0.421 0.191 0.539 0.166 0.230 0.469 0.368 0.753 0.091 0.109 0.726 0.357
V-GCN-APS 0.098 0.470 0.419 0.149 0.489 0.156 0.233 0.458 0.376 0.703 0.118 0.178 0.679 0.348
VGGNet16BN 0.088 0.468 0.409 0.082 0.520 0.152 0.195 0.470 0.246 0.744 0.052 0.046 0.714 0.322

p-val (RM-ANOVA) *** ** *** *** ** ** *** *** *** *** ** *** ***
PPS >APS * ** ** ** *** ** ** *** *** **
PPS >base *** ** * ** *** *** ** *** ** ** ** ** ***

*, ** and *** denote the significance levels of 0.1, 0.05 and 0.01, respectively. For each disease, the best results are bolded. The red text means our ImageGCN can perform better than the corresponding two baseline models.

EC: Enlarged Cardiomediastinum; Card: Cardiomegaly; AO: Airspace Opacity; LL: Lung Lesion; Edem: Edema; Cons: Consolidation; Pneu1: Pneumonia; Atel: Atelectasis; Pneu2: Pneumothorax; PE: Pleural Effusion; PO: Pleural Other; Frac: Fracture; SD: Support Devices