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Abstract

Heterogeneity is a hallmark of cancer. For various cancer outcomes/phenotypes, supervised 

heterogeneity analysis has been conducted, leading to a deeper understanding of disease 

biology and customized clinical decisions. In the literature, such analysis has been oftentimes 

based on demographic, clinical, and omics measurements. Recent studies have shown that high-

dimensional histopathological imaging features contain valuable information on cancer outcomes. 

However, comparatively, heterogeneity analysis based on imaging features has been very limited. 

In this article, we conduct supervised cancer heterogeneity analysis using histopathological 

imaging features. The penalized fusion technique, which has notable advantages—such as 

greater flexibility—over the finite mixture modeling and other techniques, is adopted. A sparse 

penalization is further imposed to accommodate high dimensionality and select relevant imaging 

features. To improve computational feasibility and generate more reliable estimation, we employ 

model averaging. Computational and statistical properties of the proposed approach are carefully 

investigated. Simulation demonstrates its favorable performance. The analysis of The Cancer 

Genome Atlas (TCGA) data may provide a new way of defining/examining breast cancer 

heterogeneity.
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1 ∣ INTRODUCTION

Heterogeneity is a hallmark of cancer. For many cancers, heterogeneity analysis has been 

extensively conducted and can be roughly classified as unsupervised and supervised. 

Supervised heterogeneity analysis directly concerns with outcomes/phenotypes and can 

be clinically more relevant. Such analysis has led to a deeper understanding of disease 

biology, new ways of classifying/defining diseases, and more informed clinical decision-

making (Dagogo-Jack and Shaw, 2018). In “classic” studies, heterogeneity analysis has 

oftentimes been based on clinical and demographic features. Lately, there have also been 

many heterogeneity studies built on high-throughput omics data (Lawrence et al., 2013).

Different from many existing studies, here we consider cancer heterogeneity analysis 

based on histopathological imaging data. Histopathological images are generated in biopsy. 

They differ from radiological images (which contain information on “macro” properties of 

tumors) and describe “micro” properties. In particular, they contain essential information 

on the histological organization and morphological characteristics of tumor cells and their 

surrounding microenvironment. They have been traditionally used as the gold standard for 

definitive diagnosis/staging. Recent studies have explored building imaging-based models 

for cancer prognosis and other outcomes/phenotypes (Wang et al., 2019; Zhong et al., 2019). 

There have also been a handful of recent studies exploring heterogeneity analysis based 

on histopathological imaging features (Belhomme et al., 2015; Luo et al., 2017). However, 

they are oftentimes built on a small number of imaging features (which are not sufficiently 

informative) and/or simple statistical techniques.

For supervised heterogeneity analysis, the most popular technique is perhaps the finite 

mixture regression (FMR; McLachlan and Peel, 2000). When the number of input variables 

is large and/or noises are present, regularization and other techniques have been coupled 

with the FMR (Khalili and Chen, 2007; Städler et al., 2010). There are also more recent 

developments. For example, Wager and Athey (2018) develops a nonparametric causal forest 

for estimating heterogeneous treatment effects. For binary responses, Foster et al. (2011) 

develops a virtual twins method. A recent technique, which has attracted extensive attention 

and is advantageous in multiple aspects, is penalized fusion (Tibshirani et al., 2005; Ma and 

Huang, 2017). Specifically, it has a more intuitive definition, more conveniently determines 

the number of subgroups, and can in principle accommodate subgroups as small as size 

one. On the negative side, it involves a much larger number of parameters, which leads to 

challenging computation and unreliable estimation.

In this article, we conduct histopathological imaging-based cancer heterogeneity analysis. 

The significance of cancer heterogeneity analysis does not need to be reiterated, and the 

demand for more effective analysis methods has been noted (Dagogo-Jack and Shaw, 

2018). Compared to some other types of measurements, histopathological imaging features 

contain “more direct” information on tumors and are much more cost-effective and simpler 

to obtain. However, heterogeneity analysis built on such features remains scarce. This 

study can complement the existing literature by providing a new way of modeling cancer 

heterogeneity and a new way of utilizing histopathological imaging data. In addition, 

our data analysis can also provide a new way of looking at breast cancer heterogeneity. 
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The penalized fusion technique (Ma and Huang, 2017; Zhu and Qu, 2018) is adopted 

for determining heterogeneity. Advancing from the “standard” penalized fusion, sparse 

penalization is introduced to accommodate high dimensionality and distinguish signals from 

noises. Our preliminary examination (described later) suggests that a direct application 

of double penalization—with one for heterogeneity and the other for sparsity—leads to 

significant computational challenges and unsatisfactory estimation. To overcome this hurdle, 

we resort to model averaging, divide a big analysis problem into multiple small ones, 

tackle each separately, and ensemble results to generate the final analysis. Although some 

components of the proposed approach have been examined to a certain extent, effectively 

“assembling” them in a novel way to tackle the present challenging analysis is new and 

demands extensive and challenging numerical and theoretical investigations. Our numerical 

study suggests favorable performance of the proposed approach. With significant practical, 

methodological, computational, and theoretical advancements, this study is warranted 

beyond the existing literature.

2 ∣ METHODS

2.1 ∣ Penalized fusion with model averaging

Denote y as the response variable and x = (x1, …, xp)T as the p-dimensional imaging 

features. Consider a continuous response. Discussions on other types of response are 

provided later. Let {xi, yi}i = 1
n  be n independent copies of {x, y}, and xi = (xi1, …, xip)T. 

Under the penalized fusion framework, we consider the models

yi = xiTθi + ϵi, i = 1, …, n, (1)

where θi = (θi1, …, θip)T is the vector of unknown regression coefficients, and ϵi is the 

random error with E(ϵi) = 0 and Var(ϵi) = σ2. Here each subject has its own regression 

model/coefficients, which renders the penalized fusion technique greater flexibility than 

the FMR and some other techniques. For example, the number of subgroups does not 

need to be assumed a priori. In addition, penalized fusion can potentially accommodate 

small subgroups (in principle, as small as size one). The downside is that the number of 

parameters, n × p, is much higher than in an ordinary regression.

In regression-based heterogeneity analysis, two subjects belong to the same subgroup if and 

only if they have the same regression model/coefficients. As such, heterogeneity analysis 

amounts to determining which θi’s are equal to each other. With low-dimensional covariates, 

the “standard” penalized fusion has objective function:

1
2 ∑

i = 1

n
yi − xiTθi

2 + ∑
1 ≤ i < m ≤ n

p(‖θi − θm‖, λ), (2)

where p(·, λ) is a penalty function with tuning parameter λ, and ∥ · ∥ is the L2 norm. Note 

that the penalty component involves n(n − 1)/2 terms. With proper penalization, there is a 

nonzero probability θi = θj, and so subgrouping can be realized.
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When p is large and there are noises in covariates, additional regularization needs to 

be imposed to (2). Although seemingly straightforward, a direct application may lead 

to challenging computation and unsatisfactory estimation. For example, this may involve 

manipulating matrices with size n(n − 1)p
2 × np (details in Section 2.2.1). Each term in the 

fusion penalty involves p-dimensional vectors, and a small change of tuning may cause a big 

change of the objective function, leading to instability. We adopt model averaging to tackle 

computational challenges. Overall, the proposed approach involves the following steps:

Step 1: Partition {1, …, p} into Bn nonoverlapping sets with equal sizes. More 

information on the partition is provided below in the theoretical development. Denote 

Ab as the bth index set and ∣Ab∣ as its size. For the simplicity of notation, assume 

p = Bn × ∣Ab∣. For a p-dimensional vector a = (a1, …, ap)T, denote a(b) as its 

subvector indexed by Ab. According to Ab’s, partition {xi, yi}i = 1
n  into Bn subsets 

{(xi(1), yi)i = 1
n }, …, {(xi(Bn), yi)i = 1

n }.

Step 2: For data subset b(= 1, …, Bn), conduct the double penalized fusion analysis. 

Denote the estimate as {θ1(b), …, θn(b)}.

Step 3: With {(xi(1)
T θi(1), yi)i = 1

n , …, (xi(Bn)
T θi(Bn), yi)i = 1

n }, minimize the prediction 

error, and obtain the optimal weight ω = (ω1, …, ωBn)T.

Step 4: For i = 1, …, n, compute the model-averaged estimate θiω = ∑b = 1
Bn ωbπb

Tθi(b), 

where πb is the matrix (I∣Ab∣, 0∣Ab∣×(p−∣Ab∣)) column permutation correspond to Ab. 

Based on {θiω}i = 1
n , conduct subgrouping, and identify the heterogeneity structure.

In some model averaging studies, random sampling is adopted. In Step 1, we use partition 

(Ando and Li, 2017), which has a lower computational cost. Our numerical exploration 

described below suggests that the ordering of variables in the partition is not critical, as long 

as certain conditions are satisfied. Step 2 can be conducted on multiple CPUs in a highly 

parallel manner to reduce computer time. More details of Steps 2-4 are as follows.

2.1.1 ∣ Details of Step 2—Consider the bth data subset, which contains all n samples 

and ∣Ab∣ covariates. Consider the submodel:

yi = xi(b)
T θi(b) + ϵi(b), (3)

where θi(b) = (θi(b)
1 , …, θi(b)

∣ Ab ∣ )T is the ∣Ab∣-vector of unknown coefficients. As p → ∞, both 

∣Ab∣ and Bn can go to infinity (details provided in the theoretical development). When 

applying penalized fusion to submodel (3), we note that ∣Ab∣ may still be moderate to 

large compared to n, and there may be noises in the ∣Ab∣ covariates. As such, we propose 

additionally applying a sparsity penalty. Specifically, consider the objective function:
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Qn({θi(b)}, λ1, λ2) = 1
2 ∑

i = 1

n
yi − xi(b)

T θi(b)
2

+ ∑
i = 1

n
∑
j = 1

∣ Ab ∣
p1( ∣ θi(b)

j ∣ , λ1)

+ ∑
1 ≤ i < m ≤ n

p2(‖θi(b) − θm(b)‖, λ2),

(4)

where p1(·, ·) and p2(·, ·) are two penalties, and λ1 and λ2 are (vectors of) tunings. In our 

implementation, we take p1 and p2 as SCAD (which also involves a regularization parameter 

γ) and note that some alternatives may be equally applicable. Loosely speaking, the two 

penalties in (4) share similar spirit as those in fused penalization, with the first for sparsity 

and the second for equality. Key differences are: the proposed approach involves a much 

larger number of parameters, all pair-wise (as opposed to the adjacent) differences are taken 

in the second penalty, and different θ’s correspond to different subjects. The Bn sets of 

estimates, as opposed to the individual subgrouping results, will be used in downstream 

analysis.

2.1.2 ∣ Details of Step 3—Step 2 generates {θ1(b), …, θn(b)}b = 1
Bn . Denote yi(b) = xi(b)

T θi(b)

and yi = (yi(1), …, yi(Bn))T. Consider the weight vector ω = (ω1, …, ωBn)T with 0 ≤ ωb ≤ 1 

and Σb ωb = 1. Here ωb is the weight of the bth submodel. For a given ω, let yi(ω) = ωTyi. 

For choosing ω, consider the loss function:

Ln(ω) = ∑
i = 1

n
{yi − yi(ω)}2 .

When Bn is large, this function may not have a unique solution. In addition, directly 

optimizing it leads to a dense estimate. In Section 2.2.2, we adopt a greedy optimization 

algorithm that leads to a unique and sparse estimate. Denote ω as the estimated weight 

vector and θiω = ∑b = 1
Bn ωbπb

Tθi(b) as the corresponding estimate.

2.1.3 ∣ Details of Step 4—With the estimates, the heterogeneity structure can be 

determined following the standard penalized fusion strategy and examining the equality 

of estimates (Ma and Huang, 2017). In practice, as the computation is terminated when the 

adjacent estimates are close enough (details below), thresholding may be needed to conclude 

equality when two estimates are close enough.

2.1.4 ∣ Remarks—With other models and other types of response, the first term in 

the objective function can be replaced by a general lack-of-fit measure, and the proposed 

approach can then be applied. When the lack-of-fit measure is continuously differentiable, 

the computational algorithm described below can be applied by invoking Taylor expansion. 

Theoretical investigation may need further data/model-specific adjustments.
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2.2 ∣ Computation

2.2.1 ∣ Computation of Step 2—We reparameterize by introducing ηim(b) = θi(b) − 

θm(b) and μi(b)
j = θi(b)

j . Then minimizing (4) is equivalent to the constrained optimization 

problem:

Sn({θi(b)}, {μi(b)}, {ηim(b)}) = 1
2 ∑

i = 1

n
yi − xi(b)

T θi(b)
2

+ ∑
i = 1

n
∑
j = 1

∣ Ab ∣
p1( ∣ μi(b)

j ∣ , λ1)

+ ∑
i < m

p2(‖ηim(b)‖, λ2),

(5)

where μi(b) = (μi(b)
1 , …, μi(b)

∣ Ab ∣ )T. The augmented Lagrangian function is

Tn({θi(b)}, μ(b), {ηim(b)}, {vi(b)}, v‒(b))
= Sn({θi(b)}, μ(b), {ηim(b)}) + ∑

i < m
vim(b)

T {θi(b) − θm(b) − ηim(b)}

+ v‒(b)
T {θ(b) − μ(b)} + κ

2 ∑
i < m

‖θi(b) − θm(b) − ηim(b)‖2

+ κ
2 ‖θ(b) − μ(b)‖2,

(6)

subject to μi(b) = θi(b), ηim(b) = θi(b) − θm(b), where μ(b) = (μ1(b)
T , …, μn(b)

T )T, {vim(b)} and 

v‒(b) = {(v‒i(b)
1 , …, v‒i(b)

∣ Ab ∣ ), i = 1, …, n}T are the Lagrange multipliers, and κ is the penalty 

parameter. Let X(b) = diag(x1(b)
T , …, xn(b)

T ), η(b) = (ηim(b)
T , i < m)T, v(b) = (vim(b)

T , i < m)T, Δ = {(ei 

− ej), i < m}T, A = Δ ⊗ I∣Ab∣, ei be the ith canonical basis of ℝ ∣ Ab ∣ , I∣Ab∣ be the ∣Ab∣ × ∣Ab∣ 
identity matrix, and ⊗ denote the Kronecker product. Then (6) can be rewritten as

Ln(θ(b), μ(b), η(b), v(b), v‒(b)) = 1
2‖y − X(b)θ(b)‖2

+ ∑
i = 1

n
∑
j = 1

∣ Ab ∣
p1( ∣ μi(b)

j ∣ , λ1) + ∑
i < m

p2(‖ηim(b)‖, λ2)

+ κ
2 Aθ(b) − η(b) + v(b)

κ
2

+ θ(b) − μ(b) + v‒(b)
κ

2
+ C .

(7)

We adopt the alternating direction method of multipliers technique and provide additional 

details in the Supporting Information. Note that here A is a 
n(n − 1) ∣ Ab ∣

2 × n ∣ Ab ∣ matrix. As 

such, without model averaging, the dimension of A would be n(n − 1)p
2 × np, which can lead 

to challenging computation.

Given the estimate ({θi(b)
(ℓ − 1)}, μ(b)

(ℓ − 1), η(b)
(ℓ − 1), {vim(b)

(ℓ − 1)}, v‒(b)
(ℓ − 1)) at the ℓ − 1th iteration, the 

ℓth iteration estimates are

He et al. Page 6

Biometrics. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ηim(b)
(ℓ) =

S(δim(b)
(ℓ) , λ2 ∕ κ) if ‖δim(b)

(ℓ) ‖ ≤ λ2
+ λ2 ∕ κ

S δim(b)
(ℓ) , γλ2 ∕ ((γ − 1)κ)
1 − 1 ∕ ((γ − 1)κ) if λ2 + λ2 ∕ κ

< ‖δim(b)
(ℓ) ‖ ≤ γλ2

δim(b)
(ℓ) if ‖δim(b)

(ℓ) ‖ > γλ2,

(8)

where δim(b)
(ℓ) = θi(b)

(ℓ − 1) − θm(b)
(ℓ − 1) + 1

κ vim(b)
(ℓ − 1) and S(t, λ) = (1 − λ/∥t∥)+t,

θ(b)
(ℓ) = X(b)

T X(b) + κATA + κIn ∣ Ab ∣
−1

× X(b)
T y + κAT η(b)

(ℓ) − v(b)
(ℓ − 1) ∕ κ

+κ μ(b)
(ℓ − 1) − v‒(b)

(ℓ − 1) ∕ κ ,
(9)

μi(b)
j(ℓ) =

ST (ξi(b)
j(ℓ), λ1 ∕ κ) ∣ ξi(b)

j(ℓ) ∣ ≤ λ1 + λ1 ∕ κ

ST (ξi(b)
j(ℓ), γλ1((γ − 1)κ))

1 − 1 ∕ ((γ − 1)κ) λ1 + λ1 ∕ κ < ∣ ξi(b)
j(ℓ) ∣

≤ γλ1,

ξi(b)
j(ℓ) ∣ ξi(b)

j(ℓ) ∣ > γλ1

(10)

v(b)
(ℓ) = v(b)

(ℓ − 1) + κ(Aθ(b)
(ℓ) − η(b)

(ℓ)),
v‒(b)

(ℓ) = v‒(b)
(ℓ − 1) + κ(θ(b)

(ℓ) − μ(b)
(ℓ)),

(11)

where ξi(b)
j(ℓ) = θi(b)

j(ℓ) + v‒i(b)
j(ℓ − 1) ∕ κ and ST(t, λ) = sign(t)(∣t∣ − λ)+.

Overall, we propose the following algorithm: (a) Initialization: ℓ = 0, μ(b)
(0) = θ(b)

(0), η(b)
(0) = Aθ(b)

(0), 

v(b)
(0) = 0, v‒(b)

(0) = 0. In numerical study, we use estimates from an FMR (with the number 

of subgroups determined by Bayesian information criterion (BIC)) as the initial θ(b)
(0). 

Our exploration suggests that the estimates are not too sensitive to the initial values as 

long as they are not “too off.” (b) Update ℓ = ℓ + 1, η(b)
(ℓ) via (8), θ(b)

(ℓ) via (9), μ(b)
(ℓ)

via (10), v(b)
(ℓ) and v‒(b)

(ℓ) via (11). We set κ = 1 and γ = 3. (c) Repeat Step (b) until 

convergence, which is concluded if ‖r(b)
(ℓ∗)‖ ≤ ε with ε = 0.001. Here r(b)

(ℓ) = ((r(b)
(ℓ))T, (r‒(b)

(ℓ))T)T, 

r(b)
(ℓ) = Aθ(b)

(ℓ) − η(b)
(ℓ)), and r‒(b)

(ℓ) = θ(b)
(ℓ) − μ(b)

(ℓ). The following convergence result is proved in the 

Supporting Information.

Corollary 1. Let {θ(b)
(ℓ), μ(b)

(ℓ), η(b)
(ℓ), v(b)

(ℓ), v‒(b)
(ℓ)}ℓ = 1

∞  be the sequence of estimates. 

If {μ(b)
(ℓ), η(b)

(ℓ)}ℓ = 1
∞  are bounded and ‖v(b)

(ℓ) − v(b)
(ℓ − 1)‖ + ‖v‒(b)

(ℓ) − v‒(b)
(ℓ − 1)‖ 0, then 
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{θ(b)
(ℓ), μ(b)

(ℓ), η(b)
(ℓ), v(b)

(ℓ), v‒(b)
(ℓ)}ℓ = 1

∞  is bounded. Furthermore, there exists a sequence 

{θ(b)
(ℓj)

, μ(b)
(ℓj)

, η(b)
(ℓj)

, v(b)
(ℓj)

, v‒(b)
(ℓj)

}ℓj = 1
∞  such that

‖θ(b)
(ℓj)

− θ(b)
(ℓj − 1)

‖ + ‖μ(b)
(ℓj)

− μ(b)
(ℓj − 1)

‖ + ‖η(b)
(ℓj)

− η(b)
(ℓj − 1)

‖

+ ‖v(b)
(ℓj)

− v(b)
(ℓj − 1)

‖ + ‖v‒(b)
(ℓj)

− v‒(b)
(ℓj − 1)

‖ 0

as ℓj → ∞. Thus {θ(b)
(ℓ), μ(b)

(ℓ), η(b)
(ℓ), v(b)

(ℓ), v‒(b)
(ℓ)}ℓ = 1

∞  has a sequence that converges to the 

stationary point {θ(b)
# , μ(b)

# , η(b)
# , v(b)

# , v‒(b)
# } that satisfies the first-order conditions:

X(b)
T ( − y + X(b)θ(b)

# ) + ATv(b)
# + v‒(b)

# = 0

0 ∈ − v‒i(b)
j# +

∂ p1( ∣ μi(b)
j ∣ , λ1)

∂μi(b)
j ∣μi(b)

j = μi(b)
j# , j = 1, …, ∣ Ab ∣ ,

i = 1, …, n

0 ∈ − vim(b)
# + ∂ p2(‖ηim(b)‖, λ2)

∂ηim(b)
∣ηim(b) = ηim(b)

# , i < m

Aθ(b)
# − η(b)

# = 0

θ(b)
# − μ(b)

# = 0 .

(12)

2.2.2 ∣ Computation of Step 3—We adopt a greedy algorithm to generate a unique and 

sparse estimate: (a) Initialize ℓ = 0 and ω(0) = 0; (b) update ℓ = ℓ + 1, λ(ℓ) = 2
ℓ + 1 , γ(ℓ) ∈ arg 

minγ∈Ωn {γT∇Ln(ω(ℓ−1))}, and ω(ℓ) = ω(ℓ−1) + λ(ℓ)(γ(ℓ) − ω(ℓ−1)); and (c) repeat step (b) until 

(ω(ℓ−1) − γ(ℓ−1))T∇Ln(ω(ℓ)) ≤ ε, where ε = 0.001 in our numerical study. Properties such as 

convergence can be established following Dai et al. (2012).

2.2.3 ∣ Remarks—With the convergence properties of steps 2 and 3, the overall 

convergence property can be established. In all of our numerical studies, convergence is 

achieved within a moderate number of iterations. Following Wang et al. (2009) and Ma and 

Huang (2017), we choose the tuning parameters by minimizing a modified BIC:

BIC(λ1, λ2) = log 1
n ∑

i = 1

n
(yi − xiTθiω(λ1, λ2))2

+ Cn
log n

n S,

where Cn = log(np) and S is the number of nonzero coefficients in αω = (α1ω
T , …, αnω

T )T. 

We acknowledge the importance of tuning parameter selection (eg, optimality). As BIC has 

been extensively adopted in the literature, we choose not to discuss further. When Bn is 

too large, computational difficulty may arise. When Bn is too small, conditions specified in 
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the following subsection may be violated. On the other hand, our numerical study below 

suggests that when Bn is in a reasonable range, its value is not critical.

2.3 ∣ Statistical properties

Assume K subgroups, and denote  = ( 1, …, K) as the subgroup set. Denote αk as 

the shared regression coefficient vector for all subjects in K. Let G = {gik} be the n 

× K matrix with gik = 1 for i ∈ k and gik = 0 otherwise, and Gb = G ⊗ I ∣ Ab ∣ . Let 

CG
b = {θ(b) ∈ ℝn ∣ Ab ∣ , θi(b) = θm(b), for any i, m ∈ k, 1 ≤ k ≤ K. For each θ ∈ CG

b , it can 

be written as θ(b) = Gbα(b), where α(b) = (α1(b)
T , …, αK(b)

T )T and αk(b) = (αk(b)
1 , …, αk(b)

∣ Ab ∣ )T

is a ∣Ab∣ × 1 vector of the kth subgroup-specific parameter for k = 1, …, K. Denote 

∣ min∣ = mink ∣ k∣ and ∣ max∣ = maxk ∣ k∣. Further denote the scaled penalty functions as 

p1(t) = λ1
−1p1(t, λ1) and p2(t) = λ2

−1p2(t, λ2). When a model includes all and only covariates 

with nonzero coefficients, we call it the true model. When a model omits at least one 

covariate with a nonzero coefficient, we call it an underfitted model, and denote the set of 

underfitted models as M. When a model is not underfitted, we call it fitted. With respect 

to the partition, we require that at least one submodel is fitted. This requirement has been 

extensively imposed in the model averaging literature (Zhang et al., 2020).

For the kth subgroup, consider

αk(b)
∗ = arg min E{(y − x(b)

T αk(b))2} .

When subject i belongs to the kth subgroup, θi(b)
∗ = αk(b)

∗ . So the underlying submodel for the 

kth subgroup is

yi = xi(b)
T θi(b)

∗ + ϵi(b), i ∈ Gk .

When the submodel corresponding to data subset b does not belong to M, αk(b)
∗  equals 

αk(b)
0 , where αk(b)

0  contains the corresponding elements of the true coefficient αk
0. Let 

bn = minb mink ≠ k′ ‖αk(b)
∗ − αk′(b)

∗ ‖.

Denote Y = (y1, …, yn)T and X(b) = diag{x1(b)
T , …, xn(b)

T }. If the underlying subgroups 1, …, 

K are known, the oracle estimator α(b) can be defined as

α(b)
or = arg min

α(b) ∈ ℝKAb

1
2‖Y − X(b)G(b)α(b)‖2

+λ1 ∑
k = 1

K
∑
j = 1

∣ Ab ∣
∣ Gk ∣ p1( ∣ αk(b)

j ∣ ) .
(13)

Then θ(b)
or = Gbα(b)

or .
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We assume several mild and sensible conditions, which are described in detail in the 

Supporting Information. We then can establish the following consistency results.

Theorem 1. Under Conditions C1-C4 and C6 (Supporting Information), if bn > aλ2 for 

some constant a > 0, then there exists a local minimizer θ(b) of objective function (4) 

satisfying:

P θ(b) = θ(b)
or 1 and sup

i
‖θi(b) − θi(b)

∗ ‖

= Op( ∣ A1 ∣ ∕ ∣ Gmin ∣ ) .

Theorem 2. Denote Ω* = {ω : Σb∉M ωb = 1}. Under Conditions C1-C6 (Supporting 

Information),

lim
n ∞

P (ω ∈ Ω∗) 1 . (14)

With these two theorems, θω converges to θ0 in probability, where θω = (θ1ω
T , …, θnω

T )T, 

θ0 = {(θ1
0)T, …, (θn

0)T}T, and θi
0 is the true coefficient. The proofs and additional discussions 

are provided in the Supporting Information.

3 ∣ SIMULATION

For n = 100 independent samples, we generate p = 100 dimensional xi’s from a multivariate 

normal distribution with marginal means 0 and marginal variances 1. For covariance, we 

consider an auto-regressive structure with parameter ρ = 0, 0.3, and 0.7. The random errors 

are generated from N(0, 0.5). The response yi’s are generated from the linear regression 

models. The first four covariates have nonzero coefficients. To examine the “robustness” of 

partitioning, we randomly shuffle the unimportant covariates so that different subsets can be 

correlated. We consider multiple values of Bn. The following simulation settings have been 

partly motivated by Liu et al. (2020) and Städler et al. (2010).

Simulation 1 There are two subgroups with coefficients (−β, −β, −β, −β, 0p−s) and (β, 

β, β, β, 0p−s). We use the vector pr to denote the proportions of subjects in different 

subgroups and consider both balanced and unbalanced designs. Specifically, we consider all 

combinations by β = 1 and 2, pr = (0.5, 0.5) and (0.3, 0.7), and Bn = 10 and 5.

Simulation 2 There are three subgroups with coefficients (−β, −β, −β, −β, 0p−s), (β, β, β, β, 

0p−s), and (2β, 2β, 2β, 2β, 0p−s), where β = 2. For their relative proportions, we consider pr 

= (1/3, 1/3, 1/3) and (0.3,0.3,0.4). Set Bn = 10.

Simulation 3 There are two subgroups with coefficients (−β, −β, −β, −β, 0p−s) and (β, β, 0, 

0, β, β, 0p−s−2). pr = (0.5, 0.5) and (0.3, 0.7), β = 1 and 2, and Bn = 10.

To assess subgrouping performance, we examine the number of identified subgroups 

and accuracy of subject subgrouping results (Accuracy). To assess variable selection 
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performance, we consider the rates of TP (true positive) and FP (false positive). In addition, 

estimation performance is evaluated using the MSE (mean squared error).

We consider the following alternatives: (a) The FMR approach developed in Khalili and 

Chen (2007) (referred to as “KC”), where Lasso is applied for accommodating high 

dimensionality and selecting relevant variables. It is realized using the R package fmrs. 

This is the most relevant competitor and represents sparse FMR approaches. We consider 

three low-dimensional FMR approaches, which apply the FMR technique without sparsity. 

First, we consider the “True” approach, under which the truly important covariates are 

known, and only such covariates are used (but the subgrouping structure needs to be 

determined). Second, we consider a model with p/Bn covariates, which contain all the 

important covariates along with a few unimportant ones. As this is a fitted model, this 

approach is referred to as “Fitted.” Third, this approach is similar to the above one, with the 

difference that it contains half of the important covariates. As this is an underfitted model, 

this approach is referred to as “Underfitted.” We consider a partially “oracle” approach, 

under which the subgrouping structure is known (as such, penalty P2 is not needed), 

and a model averaging approach similar to the proposed is adopted for estimation. The 

FMR-based approaches, both high- and low-dimensional, need to determine the number of 

subgroups. We set the number of subgroups as the true value, which leads to favorable 

performance. Note that this is not needed with the proposed approach and not practical in 

practice. We have also experimented with the sparse Kmeans and other sparse clustering 

methods but found unacceptable results. Such methods are omitted from our reporting.

For each setting, we simulate 100 replicates. In Table 1, we examine the number of 

identified subgroups using mean, median, standard deviation, and percentage of correct 

identification. Across the whole spectrum, the proposed approach can satisfactorily identify 

the number of true subgroups. Quite a few scenarios have 100% correct identification. 

In contrast, literature suggests that, with the FMR and many other heterogeneity analysis 

techniques, it is extremely difficult to determine the number of subgroups. We further 

examine three representative settings with ρ = 0, β = 1, and (K, Bn) = (2, 10) and (2, 5), as 

well as with ρ = 0, β = 2, and (K, Bn) = (3, 10). In Figure A1 (Supporting Information), 

we plot the average weights of the Bn candidate models. Note that to improve presentation, 

we always keep the first submodel as the one that includes all of the important covariates. 

In all plots, a spike of the first submodel is observed. The rest of the submodels have 

almost or exactly zero weights. Results in Table 1 clearly demonstrate the superiority of 

penalized fusion in this aspect. Subgrouping, estimation, and variable selection accuracy 

results are summarized in Table 2 for Simulation 1 and Table A1 (Supporting Information) 

for Simulation 2 and 3. With the complexity brought by heterogeneity, the proposed 

approach behaves inferior to the oracle as expected. It has significant advantages over the 

KC approach. Consider, for example, Simulation 1, Bn = 5, ρ = 0, and α = 1. The proposed 

approach has (Accuracy, MSE, TP, FP) equal to (0.781, 0.785, 0.962, 0.010), compared to 

(0.500, 7.483, 0.331, 0.223) for the KC approach. Compared to the True approach (which 

is oracle in terms of variable selection), it has slightly inferior Accuracy and much inferior 

MSE. But it has advantageous performance over the Fitted and Underfitted approaches. 

Table 2 also suggests that the value of Bn does not have a substantial impact. Simulation 2 

and 3 lead to similar findings.
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With the proposed approach, partition of variables is needed. In our implementation, we 

partition consecutively. Different orderings of the variables can lead to different partitions. 

To examine the impact of ordering/partition, we consider Simulation 1 with K = 2, Bn = 5, 

ρ = 0, β = 1, and pr = (0.5, 0.5). For each simulated replicate, we permute the variables 

10 times. With each permutation, the proposed approach is applied. Then the mean and 

standard deviation of the summary statistics considered in Tables 1 and 2 are computed. 

We further compute the averages of such mean and standard deviation values across 100 

replicates. For the mean, median, SD, and per values as considered in Table 1, the average 

mean (standard deviation) values are 1.942 (0.018), 2 (0), 0.243 (0.021), and 0.938 (0.011), 

respectively. For the Accuracy, MSE, TP, and FP values as considered in Table 2, the 

average mean (standard deviation) values are 0.813 (0.005), 0.800 (0.058), 0.956 (0.017), 

and 0.005 (0.001), respectively. The average means are very close to their counterparts 

in Tables 1 and 2, and the small standard deviations suggest the stability of results. This 

analysis suggests that the ordering of the variables is not critical.

In the Supporting Information, we additionally (a) examine a sequence of P-values, compare 

with the direct application of double penalization, and “re-establish” the advantage of model 

averaging, (b) consider higher dimensionality and show that the proposed approach still has 

advantageous performance, (c) examine performance when the sub-Gaussian assumption is 

not satisfied, and evaluate the sensitivity of the analysis results to tuning parameter selection. 

Overall, satisfactory performance is observed.

4 ∣ DATA ANALYSIS

The Cancer Genome Atlas (TCGA) is a collective effort organized by the NIH and 

has published high-quality clinical, omics, and imaging data on multiple cancer types. 

Compared to the clinical and omics data, the TCGA imaging data have been much less 

analyzed. However, several recent publications have shown that the analysis of TCGA 

histopathological imaging data can lead to important insights on disease classification, 

prognosis, and other outcomes (Noorbakhsh et al., 2019). Here we consider the breast 

cancer (BRCA) data. The response variable of interest is the ratio between “Positive 

Finding Lymph Node Hematoxylin and Eosin Staining Microscopy Count” and “Lymph 

Node(s) Examined Number”. It reflects the degree of treatment. In the literature, it has 

been suggested that treatment decisions depend on tumor properties, which are reflected 

in histopathological images, and the heterogeneity in breast cancer treatment has been 

observed. As such, it is biologically sensible to conduct heterogeneity analysis based on 

imaging features for this specific outcome. We focus on “nontrivial” ratios, which fall 

between 0 and 1, and conduct the transformation log( ratio
1 − ratio ). The histopathological images 

are downloaded from the TCGA website. The pipeline for extracting imaging features has 

been implemented in recent studies (Zhong et al., 2019) and briefly summarized in Figure 

A2 (Supporting Information). It includes four main steps, namely image chopping, subimage 

selection, feature extraction, and feature averaging. We refer to Zhong et al. (2019) for more 

details on each step and quality control. The final analyzed data set contains measurements 

on 139 subjects and 248 imaging features, which describe tumor properties including 

texture, granularity, size and shape, neighbor distribution, occupation, and areafraction.
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Three distinct subgroups are identified, with sizes 49, 35, and 55. The identified imaging 

features and their estimates are shown in Table 3. Among the identified features, 10 are 

related to texture, six are related to area shape, and five are related to granularity. Overall, 

the three subgroups have significantly different models. It is also noted that some features 

have identical estimates in different subgroups, which can be caused by the promotion 

of equality by P2 and termination of calculation when two consecutive estimates are 

close enough. Compared to clinical and molecular data, the biological implications of 

high-dimensional imaging features are still largely unclear (Luo et al., 2017). As such, we 

defer biological interpretations to future research.

We consider the following alternatives: KC, Alt.1 which uses the 23 selected imaging 

features and applies penalized fusion for subgrouping, Alt.2 that uses the 23 selected 

imaging features and applies FMR for subgrouping, sparse Kmeans, and sparse hierarchical 

clustering. To make different approaches comparable, we fix the number of subgroups as 

three with the alternatives. We compute a subgrouping similarity measure, with range [0,1] 

and a larger value indicating a higher degree of similarity, and find that the proposed 

approach has moderate similarity with the alternatives: 0.495 (KC), 0.621 (Alt.1), 0.604 

(Alt.2), 0.556 (sparse Kmeans), and 0.465 (sparse hierarchical clustering). The KC approach 

identifies 29 features, which have three overlapping with the proposed. Alt.1 and Alt.2 use 

the same set of 23 imaging features as the proposed approach. With the sparse Kmeans 

and hierarchical clusterings, tiny subgroups are generated, making the assessment of 

variable selection unreliable. We evaluate prediction using a random splitting approach (with 

training: testing = 3:1 and 100 splits). The prediction MSEs are 0.804 (proposed), 1.076 

(KC), 1.082 (Alt.1), and 1.181 (Alt.2). Prediction with the sparse clustering approaches is 

not possible as estimation cannot be reliably conducted. Overall, the proposed approach 

makes different subgrouping and identification, with improved prediction performance.

5 ∣ DISCUSSION

We have conducted cancer heterogeneity analysis using high-dimensional imaging 

features and the penalized fusion technique. We have applied additional penalization to 

accommodate high data dimension and screen out noises. Another significant advancement 

is the adoption of model averaging to tackle computational challenges. Beyond providing 

a solid ground, the theoretical investigation can also shed light on high-dimensional 

penalized fusion and model averaging in general. Simulation has demonstrated competitive 

performance. In the analysis of TCGA data, findings different from the alternatives have 

been made, and improved prediction is observed. Overall, this study has delivered an 

alternative technique for supervised heterogeneity analysis and a new venue for modeling 

cancer heterogeneity.

Beyond imaging features, the proposed analysis can also be conducted with other high-

dimensional variables. It will also be of interest to adapt the proposed technique and 

apply to other data distributions/models, which can be achieved by replacing the lack-of-fit 

measure. The proposed computational algorithm will be applicable with minor revisions, 

but additional theoretical developments may be needed. In data analysis, we have identified 

three subgroups with significantly different regression models. In the literature, there is 
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still a lack of commonly accepted approaches for validating heterogeneity analysis results 

under the mixture regression framework. It is noted that the identified subgroups differ in 

the relationship between imaging features and a clinical outcome. However, they may or 

may not differ in other clinical aspects. As the functional implications of imaging features 

have not been well examined, we are unable to make further biological interpretations. 

Nevertheless, the satisfactory simulation results and improved prediction can support the 

validity of our findings to a great extent. Further analysis and validation will be needed prior 

to any application of the findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TABLE 1

Simulation: mean, median, standard deviation (SD) of K, and percentage (per) of K equal to the true number 

of subgroups

K Bn ρ β Mean Median SD per Mean Median SD per

Simulation 1 pr = (0.5, 0.5) pr = (0.3, 0.7)

2 10 0 1 2 2 0 1 1.74 2 0.443 0.74

2 2.02 2 0.141 0.98 2.04 2 0.198 0.96

0.3 1 2 2 0 1 1.96 2 0.198 0.96

2 2 2 0 1 2.04 2 0.198 0.96

0.7 1 1.98 2 0.141 0.98 1.98 2 0.141 0.98

2 2 2 0 1 2 2 0 1

5 0 1 1.95 2 0.221 0.95 1.82 2 0.388 0.82

2 2 2 0 1 2 2 0 1

0.3 1 2 2 0 1 1.96 2 0.198 0.96

2 2 2 0 1 2 2 0 1

0.7 1 2 2 0 1 1.94 2 0.24 0.94

2 2 2 0 1 2 2 0 1

Simulation 2 pr = (1
3 , 1

3 , 1
3) pr = (0.3, 0.3, 0.4)

3 10 0 2 2.84 3 0.468 0.82 2.98 3 0.589 0.88

0.3 2 3 3 0 1 3 3 0 1

0.7 2 3.02 3 0.141 0.98 3.62 3 3.276 0.88

Simulation 3 pr = (0.5, 0.5) pr = (0.3, 0.7)

2 10 0 1 1.88 2 0.328 0.88 1.68 2 0.471 0.68

2 2 2 0 1 2 2 0 1

0.3 1 1.96 2 0.198 0.96 1.82 2 0.388 0.82

2 2 2 0 1 2.02 2 0.141 0.98

0.7 1 1.82 2 0.431 0.783 1.78 2 0.465 0.74

2 2 2 0 1 2 2 0 1
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TABLE 2

Simulation 1: accuracy rate of correctly identifying subgroup memberships (accuracy), mean squared error, 

TP, and FP rates

K Bn ρ β Index

pr = (0.5, 0.5) pr= (0.3, 0.7)

Proposed Oracle KC True Fitted Underfitted Proposed Oracle KC True Fitted Underfitted

2 10 0 1 Accuracy 0.826 0.498 0.837 0.777 0.514 0.798 0.551 0.872 0.839 0.546

MSE 0.541 0.054 7.563 1.206 2.185 6.605 2.318 0.068 6.757 0.059 1.676 7.061

TP 1 1 0.260 0.960 1 0.408

FP 0.004 0.014 0.202 0.007 0.023 0.187

2 Accuracy 0.914 0.503 0.910 0.828 0.519 0.939 0.549 0.942 0.908 0.561

MSE 0.525 0.074 29.675 1.618 6.879 24.996 0.684 0.088 26.868 0.064 36.437 25.509

TP 1 1 0.288 1 1 0.490

FP 0.002 0.014 0.206 0.005 0.014 0.211

0.3 1 Accuracy 0.868 0.499 0.863 0.815 0.541 0.879 0.553 0.901 0.858 0.578

MSE 0.293 0.056 7.804 1.451 2.149 7.069 0.655 0.057 6.803 0.064 1.764 7.013

TP 1 1 0.205 1 1 0.390

FP 0.001 0.014 0.208 0.005 0.014 0.209

2 Accuracy 0.914 0.495 0.922 0.886 0.495 0.951 0.537 0.952 0.935 0.591

MSE 0.577 0.026 31.438 0.035 1.054 28.642 0.x326 0.106 27.596 0.071 2.191 30.680

TP 1 1 0.375 1 1 0.510

FP 0.003 0.010 0.427 0.004 0.013 0.249

0.7 1 Accuracy 0.864 0.513 0.901 0.836 0.627 0.904 0.594 0.921 0.852 0.676

MSE 0.613 0.109 7.687 0.114 10.881 9.202 0.560 0.149 7.421 0.134 12.588 10.278

TP 0.940 1 0.272 0.970 0.998 0.410

FP 0.008 0.017 0.232 0.010 0.020 0.200

2 Accuracy 0.940 0.500 0.951 0.899 0.655 0.960 0.531 0.959 0.930 0.699

MSE 0.262 0.131 30.561 0.107 12.624 30.766 0.315 0.177 32.172 0.128 40.788 43.618

TP 1 1 0.348 1 1 0.415

FP 0.027 0.016 0.349 0.009 0.017 0.312

5 0 1 Accuracy 0.781 0.500 0.853 0.577 0.503 0.781 0.558 0.880 0.671 0.526

MSE 0.785 0.047 7.483 0.048 5.053 6.705 1.951 0.055 6.534 0.062 2.928 6.753

TP 0.962 1 0.331 0.998 1 0.395

FP 0.010 0.020 0.223 0.013 0.020 0.208

2 Accuracy 0.906 0.503 0.922 0.675 0.506 0.895 0.542 0.924 0.753 0.516

MSE 0.592 0.071 29.489 0.05 15.422 26.435 0.781 0.080 26.542 0.056 9.353 30.065

TP 1 1 0.292 1 1 0.445

FP 0.002 0.009 0.204 0.008 0.017 0.187

0.3 1 Accuracy 0.848 0.503 0.885 0.627 0.509 0.826 0.562 0.903 0.699 0.524

MSE 0.295 0.057 7.475 0.060 5.829 7.500 0.938 0.125 6.397 0.075 4.557 8.343

TP 1 1 0.238 1 0.998 0.430

FP 0.002 0.011 0.231 0.008 0.015 0.212

2 Accuracy 0.923 0.501 0.935 0.695 0.509 0.922 0.527 0.943 0.823 0.528
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K Bn ρ β Index

pr = (0.5, 0.5) pr= (0.3, 0.7)

Proposed Oracle KC True Fitted Underfitted Proposed Oracle KC True Fitted Underfitted

MSE 0.291 0.071 29.631 0.051 20.094 37.952 2.721 0.072 26.921 0.070 7.417 29.544

TP 1 1 0.264 0.986 1 0.500

FP 0.001 0.011 0.261 0.020 0.013 0.299

0.7 1 Accuracy 0.864 0.525 0.911 0.660 0.545 0.859 0.586 0.918 0.744 0.556

MSE 0.295 0.084 7.958 0.102 8.008 10.778 1.079 0.348 7.122 0.173 15.904 10.603

TP 1 1 0.293 0.982 0.980 0.388

FP 0.003 0.013 0.233 0.012 0.026 0.216

2 Accuracy 0.934 0.509 0.931 0.702 0.537 0.911 0.536 0.941 0.751 0.560

MSE 0.307 0.135 32.608 8.184 93.655 51.923 1.255 0.188 34.588 0.141 38.747 62.379

TP 1 1 0.338 1 1 0.533

FP 0.026 0.015 0.312 0.138 0.016 0.361
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TABLE 3

Data analysis using the proposed approach: identified imaging features for the three subgroups

Imaging feature Group 1 Group 2 Group 3

Texture-AngularSecondMoment-ImageAfterMath-3-01 5.620 7.587

Texture-SumAverage-ImageAfterMath-3-03 −5.473 −3.318

Texture-SumVariance-ImageAfterMath-3-02 −0.047 2.873 2.873

AreaShape-Zernike-7-3 4.988 −0.098

Granularity-10-ImageAfterMath.1 −1.579 −1.048

Granularity-15-ImageAfterMath.1 −1.278 0.028

Threshold-WeightedVariance-Identifyhemasub2 −0.114 −0.245

AreaShape-Zernike-5-5 −0.259

Location-Center-Y.3 −0.099 −0.099

AreaShape-Zernike-4-2 0.168

Texture-Entropy-ImageAfterMath-3-02 0.039

AreaShape-Zernike-4-0 −0.622 −0.622 0.047

Texture-InfoMeas1-maskosingray-3-00 −0.384 −0.384

Granularity-1-ImageAfterMath 0.815 0.958

Texture-SumVariance-maskosingray-3-03 0.059 0.069

AreaShape-FormFactor 0.059 0.059 0.059

AreaShape-Zernike-3-3 0.038 0.038 −0.011

Granularity-1-ImageAfterMath.1 −0.012 −0.054

Texture-InfoMeas2-ImageAfterMath-3-00 0.062

Granularity-4-ImageAfterMath.1 −0.016 −0.016 0.017

Texture-SumVariance-ImageAfterMath-3-00 −0.017 −0.017 0.011

Texture-SumEntropy-maskosingray-3-01 −0.014

Texture-InverseDifferenceMoment-ImageAfterMath-3-03 −0.011
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