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Abstract: COVID-19 causes acute respiratory illness in humans. The direct consequence of the spread
of the virus is the need to find appropriate and effective solutions to reduce its spread. Similar to other
countries, the pandemic has spread in Algeria, with noticeable variation in mortality and infection
rates between regions. We aimed to estimate the proportion of people who died or became infected
with SARS-CoV-2 in each provinces using a Bayesian approach. The estimation parameters were
determined using a binomial distribution along with an a priori distribution, and the results had a high
degree of accuracy. The Bayesian model was applied during the third wave (1 January—15 August
2021), in all Algerian’s provinces. For spatial analysis of duration, geographical maps were used.
Our findings show that Tissemsilt, Ain Defla, Illizi, El Taref, and Ghardaia (Mean = 0.001) are the
least affected provinces in terms of COVID-19 mortality. The results also indicate that Tizi Ouzou
(Mean = 0.0694), Boumerdes (Mean = 0.0520), Annaba (Mean = 0.0483), Tipaza (Mean = 0.0524), and
Tebessa (Mean = 0.0264) are more susceptible to infection, as they were ranked in terms of the level
of corona infections among the 48 provinces of the country. Their susceptibility seems mainly due
to the population density in these provinces. Additionally, it was observed that northeast Algeria,
where the population is concentrated, has the highest infection rate. Factors affecting mortality due to
COVID-19 do not necessarily depend on the spread of the pandemic. The proposed Bayesian model
resulted in being useful for monitoring the pandemic to estimate and compare the risks between
provinces. This statistical inference can provide a reasonable basis for describing future pandemics in
other world geographical areas.

Keywords: Bayesian approach; binomial model; COVID-19; Algeria; mortality and infection rates

1. Introduction

The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which can cause acute respiratory disease in humans, emerged in late 2019 as a new global
epidemic [1]. The virus originated in Wuhan, a city in China’s Hubei province, and was
identified in late December 2019 as responsible of the coronavirus 2019 disease (COVID-
19) [2]. Currently, more than 576 million confirmed cases and over 6.4 million deaths have
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been reported due to COVID-19 as of 30 July 2022 [2]. The entire world population is
currently facing great challenges (particularly socio-economic). As an example, in Italy
this emergency led to a structural and organic deficiency that impacted on both the costs
of managing infections in healthcare facilities and peoples’ health related behaviors [3,4].
A study from USA showed that recent COVI-19 related job loss causes were significantly
related with suicide specifically in the lockdown phase [5]. In Spain, it caused a declining
economic activity while expenditure must rise to combat the infection and its social and
economic consequences generated huge public deficits hard to finance [6]. According
to Elkhashen et al. [7], the pandemic’s primary impact on the Egyptian economy was
the slowdown in all domestic activities and the significant fall in income from tourism,
remittances, and Suez Canal have severely eroded household incomes, pushing millions of
people in poverty.

Moreover, the emerging SARS-CoV-2 variants have resulted in multiple waves of
pandemic over the time. At the moment, a vast surge in COVID-19 cases is being observed
worldwide, mainly due to the recently emerged Omicron (B.1.1.529) variant of concern [2,8].

Therefore, studying the pandemic is essential for acquiring comprehensive analytical
knowledge about the new phenomenon and finding appropriate measures to control
the spread of the disease [9,10], also based on previous experience in infectious diseases
control [11]. Global efforts have resulted in identifying several antiviral drugs, and a few
vaccines have been developed [12,13], however, no clinically approved treatments have
been identified, despite many trials of drug repurposing [14,15].

Each affected country reacted in managing the spread of the disease mainly through
self-distancing and lockdown policies, increasing testing, vaccination, and treatment, and
reducing large-scale meetings [16].

In recent years, the application of mathematical models in epidemiology has in-
creased [17], showing the importance of interdisciplinary. Mathematical and health science
employ models as tools to analyze data and direct decision-making. Mathematical model
construction makes it easier to conduct thorough analysis and enables quantitative fore-
casting of changes in disease burden and the effects of interventions [17].

With regard to Africa, several studies have been conducted on COVID-19 spread and
modelling. Ababsa et al. examined the spread of COVID-19 and the effect of climatic factors
in Algeria [18]. Fatih et al. investigated the transmission of the virus in Algeria, Egypt, and
South Africa [19]. Kadi et al. studied the association between population density and the
spread of COVID-19 in Algerian cities [20]. Other authors used the susceptible-infected-
recovered (SIR) model to predict the daily number of COVID-19 cases in Algeria [21].

However, no previous studies shed light on the arrangements of the countries by the
infection rate or death rate due to the virus.

With the rapid development of contemporary science, the Bayesian paradigm becomes
an asset, since it offers reasoning well suited to the use of the different sources of information
involved in decision-making in an environment of uncertainty. The Bayesian approach
appears as a powerful and solidly integrated approach in the new technology, where the
relations exist between information technology [22]. As a matter of fact, the Bayesian
paradigm makes it possible to integrate a priori information in a natural way, unlike the
frequentist paradigm [23].

Bayesian modeling also captures a priori information to rank provinces of a country
based on the epidemic spread and death rates [18-20,24].

Estimation of the Bayesian model using OpenBUGS (Supplementary Materials) is
made with the greatest number of iterations to produce an estimate that is more accurate
and closer to the true values of the parameters by providing OpenBUGS software codes
through which other users can analyze, with a priori information, and subsequently develop
these packages.

To our knowledge, no studies were conducted on COVID-19 using the Bayesian
approach in Algeria, though there are some examples of using this approach from Africa
such as in Morocco [25], Tunisia [26], and Egypt [27].
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This study aims to identify the spatial distribution of COVID-19 in Algeria, using
the Bayesian approach. This spatial analysis classifies provinces according to the risk of
contagion and death, which makes it possible to understand the relationship between
different regions during different epidemic stages and enables national authorities to
contribute to the fight against this pandemic in a most effective and efficient way. This
study also aims to build a stable predictive model to predict the probability of infection
and severity that can be adapted to other countries.

2. Materials and Methods

A model for estimating epidemic risks and measuring their magnitude between the
different Algerian provinces during a given period was developed.

2.1. Study Period

This study covers the third wave of the COVID-19 pandemic (between 1 January 2021,
and 15 August 2021) and classifies provinces according to the risk of infection and death.

2.2. Data Acquisition

The data were obtained, on request, from the Algerian Ministry of Health. The
data included a 227-days-period (from 1 January 2021 to 15 August 2021), the number
of confirmed cases, and the number of deaths. In addition, these data were divided into
48 provinces, and the total number of infections and deaths for each day during this period
was calculated.

Figures 1 and 2 report the incidence of confirmed cases and the mortality rate by
COVID-19 in Algeria, respectively.
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Figure 1. The number of COVD-19 cases in Algeria in the period between 1 January 2021 and
15 August 2021.
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Figure 2. Mortality due to COVD-19 in Algeria in the period between 1 January 2021 and 15 August 2021.
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2.3. Statistical Analysis
2.3.1. Bayes’ Formula and Posterior Distribution

The Bayesian concept differs from the classical ones because the parameter has become
arandom variable with “a priori distribution” [28-30]; through this conception, the analysis
allows to consider all the qualitative and quantitative information on the uncertainty in the
model. Then, using Bayes’ theorem, which allows making parameters as values of random
nature, it is possible to deduce the distribution “a posteriori”, which allows us to construct
inferential procedures in the most natural way. In the Bayesian approach, all priors are
informative in some way [28-30].

If we consider n disjoint hypotheses (H) being mutually exclusive and temporarily
exhaustive, at any point in time, it is possible to collect all hypotheses that have been con-
structed, in light of available knowledge, into an hypothesis set H; (Hj, Hy, . .., Hy) [28-30].
As more information is gathered, the competing hypotheses would progressively surface.
The “correct” hypothesis is difficult to get, but there is a tendency to accept one of the alter-
natives, as being more likely than the others. In other words, compared to the alternatives,
there may be a greater degree of certainty/uncertainty that one hypothesis is correct. The
uncertainty is described in terms of probability in Bayesian analysis. In this situation, the
occurrence of an event E of non-zero probability is represented as:

E=(ENH)U(ENHE)U. - U(ENH) (1)

According to the theory of total probabilities [31], the probability of the event E is:
P(E) = P(E(\Hh) +P(E(Ha) +- -+ P(E( Hy) )

If we consider P(H;) as the probability assigned to the “hypothesis H;”, and P(E/H;)
the conditional probability [13] of the event observed under hypothesis H;, it is possible to
consider the probability of observing the event P(E), over all possible hypotheses, as:

n
P(E) = }_ P(E/H;)P(H;) = E" (P(E/H;)) ®)
i=1
where Ef! indicates an expectation taken with respect to the prior distribution of the hypotheses.
Using the last two formulas, it is possible to get the last definition for P(E/H;):
P(ENHj) P(E/H;)P(H;)

P(H;/E) = P(E) Y, P(E/H;P(H) ?

The validity of the Formulas (1)-(4) have already been demonstrated and is not
reported in depth [32].

This standard conditional probability conclusion may refer to the Bayes theorem, or
“inverse probability”. According to this, the likelihood of a hypothesis H;, given event E, is
inversely correlated with the product of the prior probability assigned to the hypothesis,
P(H;) and the conditional probability of witnessing the event E under hypothesis H;.

Bayes used the continuous version of this theorem, taking two random variables x
and y. Therefore, the conditional distribution of y knowing x is given by:

_ flx/y) x f(y)
/) = [ f(x/y) x f(y)dy ©

Equation (5) allows us to make inferences from the distribution of the parameter 0
conditional on the observations x, called the a posteriori distribution [33], and is defined by:

f(x/6) x 7(6) f(x/8) x 7(6)

m(0/x) = [ f/0) x m(@)de — m(x) ©)
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We pose the marginal distribution of x:
m(x) = [ fx/0)m(0)do @)
€]

This a posteriori distribution is the combination of:

f(x/0) : the density function of x knowing the value of the random variable 6;
71(0): the a priori density function on 6;
m(x): the marginal distribution of x.

Equation (6) represents what is known and unknown before, with respect to the
parameter considering the observed data [34]. Moreover, it is an update of () after the
observation of our sample.

Once the data are available, the amount of m(x) is a normalization constant that
guarantees that 77(6/x) is a posteriori probability distribution. Therefore, 7w(6/x) is di-
rectly proportional to f(6/x) x 7t(6), which means that the Bayesian inference verifies the
likelihood principle “a posteriori”, and the information from the data comes exclusively
from the likelihood f(x/6).

It is frequent to construct a logarithm to simulate the correlated observations, so one
relies on the internal process of the simulated samples. For this objective, we used the
Markov chain Monte Carlo method [35,36] and the natural conjugate laws [37].

2.3.2. The Estimation Model

It is assumed that the number of deaths or infections in the considered time interval is
a realization of a binomial distribution, written respectively as:

de; ~ Bin(ny;, q1;) 8)

Ie; ~ Bin(nai, q2i) )

where, 17;, n; are the total number of deaths and infections, respectively, in the study
period for province i, and 4y;, »; are the probability (proportion) of deaths or infections,
respectively, during the study period for province i.

The application of Bayes’ theorem appears to be an “updating” principle. From the
likelihood function of a sample of m individuals, it is possible to obtain the posterior
probability (proportion) of deaths or infections, respectively, during the study period for
province i:

7t(q1;/dc;) is directly proportional to f(dc;/q1;)7(q1;) (10)

71(qai/ Ic;) is directly proportional to f(Ic;/q2i)7t(q2;) (11)

The probabilities of death (from infection) are considered independent, and identically
distributed (i.i.d). From a Bayesian point of view, we assume an a priori distribution for g;.
As the natural conjugate of a binomial distribution is a beta prior, we obtain:

qi ~ Be(“/ ;3) (12)

The flexibility of the form of the beta distribution, the ease of constructing the a
posteriori distribution, and the support of the distribution allow an analysis of the different
phenomena. In the case of a uniform measure with respect to the Lebesgue measure [38],
the a priori distribution is not invariant by re-parametrization. Generally, we obtain:

gi ~ Be(1,1) (13)

A conjugate distribution can be determined by considering the form of the likelihood
f(x/0) and by taking a prior distribution of the same form as the latter. The conjugate prior
laws obtained by this process are known to be the natural conjugate laws [38].
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In this model, we assume different locations (i.e., a difference between the provinces),
the same for the whole duration between the days i = 1, ...m, and for a province denoted
by jsuch thatj =1,...,48, we can write, respectively:

dcij ~ Bin(n1j,417) (14)
ICi]' ~ ,Bi?l(i’lzj, q2]) (15)
and:
q1j ~ Be(1,1) (16)
q2j ~ Be(1,1) 17)
3. Results

3.1. Modeling Mortality Rates

The death rate due to the virus in each province was calculated by dividing the num-
ber of deaths due to the virus in one province during all the studied period and dividing
it by the number of deaths in the whole country. The COVID-19 mortality rates in the
counties are shown in Table 1. To approach this, we employed OpenBUGS with a num-
ber of 30,000 iterations in order to perform MCMC simulations to calculate Equation (8),
considering the great quantity of data to be analyzed.

Table 1. Mortality rate due to COVID-19 in the provinces 1

Provinces Mean Provinces Mean Provinces Mean Provinces Mean
Adrar 0.002 Tlemcen 0.016 Constantine 0.045 Tindouf 0.002
Chelef 0.008 Tiaret 0.007 Médéa 0.006 Tissemsilt 0.001

Laghouat 0 0.013 Tizi Ouzou 0.056 Mostaganem 0.013 El Oued 39 0.005
Oum El Bouaghi 0.012 Alger 0.474 Msila 0.008 Khenchela 0.006
Batna 0.03 Djelfa 0.002 Mascara 9 0.004 Souk Ahras 0.005
Béjaia 0.022 Jijel 0.019 Ouargla 0.009 Tipaza 0.025
Biskra 0.011 Sétif 0.038 Oran 0.046 Mila 0.004
Béchar 0.003 Saida 0.006 El Bayadh 0.004 Ain Defla 0.001
Blida 0.012 Skikda 0.007 Ilizi 0.001 Naama 0.005
Bouira 0.015 Sidi Bel Abbes 0.012 Bordj Bou Arreridj 0.004 Ain Timouchant 0.01
Tamanrasset 0.002 Annaba 0.03 Boumerdes 0.024 Ghardaia 0.001
Tébessa 2 0.024 Guelma 0.005 El Taref 0.001 Relizane 0.01

1 The most affected provinces are indicated in bold black.

According to Figure 3, Algiers province had the highest mortality rate, which means that
the risk of death in this province by COVID-19 between 1 January 2021, and 15 August 2021,
is nine times higher than the other provinces (Tizi Ouzou and Oran).

In the figure below, the mortality risk was divided according to the different provinces
into ten sections or levels in order to facilitate reading and clarify the content. According
to Figure 4, we found differences across the Algerian regions. For example, the northeast,
where most of the population is concentrated, was the region that suffered the most deaths.

According to Figure 5, most provinces with high COVID-19 mortality rates were the
most populated.

Thanks to the advent of marginal distributions in the use of the Bayesian approach,
the classification of mortality risks between provinces was possible using several statistic
measures (the mode, the median, etc.). In our analysis, we used the a posteriori mode in
the classification, which gave decimal digits (without commas).

Figures 3, 6 and 7 provided a more accurate and detailed view of the level of mortality
risks by province. The provinces of Batna and Tizi Ouzou showed higher risks, and this
means that besides the population density component already demonstrated [20], there are
other factors related to the distribution of the number of deaths in the country [10]. The
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three provinces with the largest population density (Algerirs, Oran, and Constantine) were
at the forefront of the ranking with the provinces of Tizi Ouzou, Setif, and Batna.

According to Figure 8, we found a Gaussian shape for the mortality rate estimators for
the first eight provinces. This exhibits a good sign of convergence for this model. Moreover,
marginalization allows Bayesian analysis to eliminate nuisance parameters, in another
way, it reduces the dimension of the parameter “space” to be estimated. Based on this
characteristic, we found marginal distributions in Figure 8. Through these distributions,
the posterior mass is provided and the comparison between the risks will be easier. In
Figure 8, we saw that all the a posteriori values are located to the right of the value “0”,
which means that the risk of mortality is significant in the provinces represented.
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Figure 7. Risk classification of the mortality rate of the top 10 provinces.

3.2. Modeling of Infection Rates

The rate of infections due to the virus in each province was calculated by dividing the
number of cases infected with the virus in one province during all the study period and
dividing it by the number of infections in the whole country.

Figures 9 and 10 showed the rates of infection in different provinces. In particular,
the radar chart in Figure 10 provides an illustrative data for the spread of the virus within
the scope of the country, or even a group of countries in some cases. It is evident that the
majority of the provinces were concentrated within a band, which means that the dispersion
is low in most of the provinces with regard to infection, which is more prominent in the
provinces of Algiers, Annaba, Tizi Ouzou, Setif, Constantine, Oran, Tipaza, Boumerdes, and
Batna. Figures 9 and 10 also showed that Algiers Province had a very high peak infection
rate, indicating that the risk of COVID-19 infection in this province between 1 January
2021 and 15 August 2021 is higher than the risk in the other provinces (Tizi Ouzou, Sétif,
Constantine, and Oran provinces).

Table 2 presented the COVID-19 infection rates in the country, where we used Open-
BUGS with 30,000 iterations in order to use Equation (8) on a large amount of data.

Table 2 showed that the provinces of the Sahara are the least affected by COVID-19.
Moreover, the risk of infection in Algiers province was twice higher than in Oran province.
This observation, together with the mortality rate, indicated a mutual risk of mortality and
infection in this province.
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Figure 8. The post hoc risk distribution for the first 8 provinces.
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Figure 10. Radar plot of Morbidity rates in the provinces (48 provinces) by COVID-19 between
1 January 2021 and 15 August 2021.

Table 2. Provincial COVID-19 infection rates 1.

Provinces Mean Provinces Mean Provinces Mean Provinces Mean
Adrar 0.0010 Tlemcen 0.0170 Constantine 0.0694 Tindouf 0.0024
Chelef 0.0066 Tiaret 0.0078 Médéa 0.0076 Tissemsilt 0.0048

Laghouat 0.0148 Tizi Ouzou 0.0694 Mostaganem 0.0204 El Oued 0.0086

Oum El Bouaghi 0.0168 Alger 0.1999 Msila 0.0143 Khenchela 0.0112
Batna 0.0425 Dijelfa 0.0018 Mascara 0.0053 Souk Ahras 0.0107
Béjaia 0.0238 Jijel 0.0196 Ouargla 0.0152 Tipaza 0.0524
Biskra 0.0119 Sétif 0.0557 Oran 0.0861 Mila 0.0064
Béchar 0.0048 Saida 0.0071 El Bayadh 0.0053 Ain Defla 0.0024
Blida 0.0155 Skikda 0.0082 Mlizi 0.0011 Naama 0.0084
Bouira 0.0186 Sidi Bel Abbes 0.0171 Bordj Bou Arreridj 0.0041 Ain Timouchant 0.0129

Tamanrasset 0.0019 Annaba 0.0483 Boumerdes 0.0520 Ghardaia 0.0041
Tébessa 0.0264 Guelma 0.0113 El Taref 0.0030 Relizane 0.0141

! The four most affected provinces are indicated in bold black.

In the above figure, the infection risk was divided according to the different provinces
into ten sections or levels in order to facilitate reading and clarify the content. Figure 11
showed the distinction across the Algerian regions. The northeast, where the population
is concentrated, was the most affected region by COVID-19 and had the highest infection
rate. The province of Ouargla in southern Algeria also showed a high infection rate, which
may result from economic activity (specifically related to oil and gas, as they are the main
products of this province). The economy may be the most important explanatory factor of
this finding.
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Figure 11. Risk distribution of COVID-19 infection by province.

According to Figure 12, the province of Laghouat presented a significant risk of
infection, whereas the province of Djelfa does not. This means that the infection rate was
distributed in a random manner between Algeria’s northern and central provinces.

0 100 200 km
[ —
Legend
Source : Ministry of
0.0018=0.0048 0.0066-0.0082 N 0.014-0.0168 | 0.0425-0.0557 health
0.0048=0.0066 0.0082-0.0112 [ 0.0168-0.0196 | 0.0557-0.1999

[ 0.0112-0.014 N 0.0196-0.0425
Figure 12. Risk distribution of COVID-19 infection in the Northern provinces.

Figures 13 and 14 provided a more accurate view of the risk of infection by province.
The provinces of Tizi-Ouzou, Boumerdes, Annaba, Tipaza, and Tébessa showed higher
risks in relation to their population size, which means that the rate of infection between
provinces is based on several explanatory variables beyond the size of the population,
economic activity, and even distance from the borders.
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Figure 13. Risk classification of the COVID-19 infection rate of the top 10 provinces.
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Figure 14. Classification of infection rates in Algerian provinces (48 provinces) by COVID-19 between
1 January 2021 and 15 August 2021.

The classification of infection risks between regions using a variety of statistics is now
straightforward due to the development of marginal distributions in the application of the
Bayesian technique (the mode, the median, etc.). In our investigation, we classified data
using the mode method given the shape of the marginal distributions.

In Figure 15, the infection rates showed a Gaussian shape of the estimators, showing
a good sign of convergence for the Bayesian estimators by using the Bayes factor. This
method allows us to conduct parametric tests of comparison between the risk of infection
and death in two separate provinces.
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Figure 15. The post hoc distribution of infection rates for the first provinces.

4. Discussion

This study presents COVID-19 related infection and death models in Algeria between
1 January 2021 and 15 August 2021, with the aim of investigating the differences between
provinces. To our knowledge, this is the first study in Algeria to aggregate a large amount
of data into clear and readable metrics over a seven-month period, whereas past studies
are limited to a single day analysis [39].

It is well known that the SIR model and its variants have been commonly applied to
the current COVID-19 outbreak. Tang et al. [24] investigated an estimated epidemiological
model for COVID-19 based on a classic susceptible-exposed-infected-recovered (SEIR)
model. Wu et al. [40] proposed an extended SEIR model to predict the spread of COVID-19
within and outside Mainland China. However, both models suggested that the exposed
population was not contagious, which may not be sufficient for COVID-19 spreading. Yang
et al. [41] predicted the epidemic trend of the virus outbreak in China using a combination
of the SEIR model and a machine-learning artificial intelligence approach.

In general, the strength of a model is not measured by its complexity, degree of
statistical significance, or statistics of model choice, and there is usually no statistical model
that is entirely correct; however, they offer useful research tools [42,43]. In this study, we
have considered the nature of biased data in Algeria, which may be neglected in previous
studies [44]. By using the proportional relationships between the number of infections and
the number of deaths at other times, the result was the genesis of a consistent model with
reality. This can be very useful in decision making, since it is currently undeniable that
managing pandemics is always difficult [45,46].

In our study, we observed that the provinces of Tissemsilt, Ain Defla, Illizi, El Taref,
and Ghardaia were the least affected by COVID-19 mortality. These findings are different
from the results of Kadi and Khalfaoui [20], showing that the cities that were, until now,
considered the most spared are characterized by high mortality in the cluster analysis of
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the first wave. In addition, the risk of infection in Algiers province is twice as high as that
in Oran province (the second largest city of Algeria), which is consistent with previous
studies [47]. Our results showed that the risk of death in the province of Algiers from
COVID-19 during the study period was nine times greater than that in the other provinces,
which reflects the reality given that Algiers is the largest and most populous city in Algeria
and a centralized place of ministries and important institutions [48].

In contrast, the province of Tizi Ouzou has a high risk of death from COVID-19,
despite its medium population density. To date, no study has reported this in Algeria,
and the reasons can be multiple. Nevertheless, some studies (mainly from Canada and
the USA) showed that suburban areas had higher rates than the major larger city [49-51].
In our case, the most logical explanation is non-compliance with the protective measures,
especially in a political and social context historically tense in this geographical area [33].
Another expected result comes from the fact that in the Algerian regions in the northeast,
where the population is concentrated, is the region with the highest rate of COVID-19
infection. This finding is confirmed by studies focusing on larger geographical areas in
Algeria [52]. Nonetheless, there are many other factors that could explain a medium size
population experiencing higher rates of COVID-19, such as movements of population
(e.g., immigrants and tourists). The province of Ouargla in southern Algeria shows a
high infection rate, which may be the result of economic activity in this province and the
influx of illegal immigration [53], underlining the importance of screening for infectious
diseases [54]. It is worth noting that according to this study, population size is not a linear
factor. Other factors may influence the spread of the epidemic and its relative mortality,
such as economic activity and geographical location [55]. Indeed, the spatial maps in this
study are not an exhaustive solution, but they can provide information on the means to
study infection and mortality rates in a simple form and via the Bayesian approach, where
a priori information can be incorporated, if available. In the present study, spatial point
analysis provides concentrated information and makes us better understand COVID-19
waves and their propagation, which has never been tackled in Algeria. According to
Figure 10, the provinces of Algeria, Sétif, Annaba, Tipaza, Oran, Constantine, Boumerdes,
Bejaia, and Tizi Ouzou represent regions where the epidemic is most widespread, which is
closer to the reality and is in line with previous findings [56]. The Bayesian Markov chain
Monte Carlo (MCMC) method confirms that it is relatively easy to implement and provide
a set of suitable techniques for estimating duration models [57].

The results must be interpreted within the limitations of the methods used. Undoubt-
edly, this study introduces an analysis model based on Bayesian theory that needs to be
further tested and demonstrate its validity. Moreover, we found that the point of vul-
nerability lies in the absence of explanatory (independent) variables. It is important to
note that the findings may be biased by variables not included in the study. Based on
our findings, further studies are needed, using as many explanatory variables as possible
within a multivariate model. In addition, the quality of the model prediction depends
on the availability of data. In our case, as specified in the methodology section, the data
acquired to implement this study were from official sources (Algerian Ministry of Health).
Given that the number of infections was based on PCRs only, the official number of cases is
surely underreported.

This study can be the basis for improving the use of modeling in general, and Bayesian
methods in particular, for researchers who work on COVID-19, not only in Algeria.

5. Conclusions

This study provides several important insights. Factors affecting mortality due to
COVID-19 seem not necessarily dependent on the spread of the pandemic. This remark is
evident when comparing the rankings of the provinces by the risk of death or infection.
The two rankings are partially equivalent. Moreover, the used methodology contributes
to scientific research on Bayesian analysis concerning the risk assessment of infection and
mortality applied to the current COVID-19 pandemic. In addition, the proposed Bayesian
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model is a useful tool for both monitoring the pandemic and estimating and comparing
the risks across provinces of a country. Updating the estimates daily would make the tool
more efficient and useful. Finally, this type of statistical inference can be a reasonable basis
for possible use to describe future pandemics in other geographical areas, given that the
proposed model can be easily implemented in other countries and regions.
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