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Abstract: Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult
brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential
roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging,
cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF
levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of
central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or
otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results
were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude
of murine models of neurological and psychiatric diseases. However, varying mechanisms have been
proposed to underlie the observed therapeutic effects, and many findings indicate the engagement
of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects
all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor
signaling, the disruptions of which vary between brain regions across different pathologies leading
to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of
BDNF transmission and signaling and classify the converging and diverging molecular mechanisms
underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection,
synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and
preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings
suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological
agents used in the treatment of neurological and psychiatric illness.

Keywords: brain-derived neurotrophic factor; TrkB signaling; neuroprotection; synaptic plasticity;
neuromodulation; neurodegeneration; neuroinflammation; oxidative stress

1. Introduction

Various neurotrophic peptides are expressed across the central nervous system (CNS)
and primarily function as viability signals. During development, neurotrophins promote
neurogenesis in addition to neural differentiation and maturation [1]. In the adult brain,
neurotrophins serve to maintain the function and survival of neurons [2]. The most abun-
dant among these is brain-derived neurotrophic factor (BDNF), which is expressed in many
organs and by neurons and glial cells, especially astrocytes, throughout the brain [3]. Addi-
tional neurophysiological roles for BDNF have been identified, including the modulation
of neural activity, synaptic transmission, and plasticity [4] with key roles in cognition [5],
sensory function [6,7], motor learning [8], and memory performance [9,10]. The expression
level of BDNF is, at least partly, activity-dependent, as observed in the human cerebral
cortex [11] as well as murine models, such that enriched environmental experiences and sen-
sory stimulation increase BDNF levels in primary sensory cortices and hippocampus [12,13],
while sensory deprivation leads to the opposite [14,15]. However, the synthesis and release
of BDNF is heavily regulated by various physiological and pathological stimuli [3,16] and
show significant genotype-expression interactions [17] and polymorphic variations [18]. In
addition, altered central and peripheral plasma BDNF levels are significantly associated
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with numerous brain pathologies and, thus, have been described as biomarkers of a wide
array of neuropsychiatric disorders [19,20]. Although the association between reduced
BDNF levels and CNS pathologies is not necessarily causal, reduced BDNF levels are linked
to increased neuronal impairment and degeneration, as observed in Parkinson’s disease
patients [21]. Furthermore, reduced levels or hindered transmission of BDNF are expected
to alter its corresponding cognitive and behavioral functions. Augmenting BDNF trans-
mission, therefore, has been extensively investigated as a promising therapeutic approach
in multiple brain pathologies. In this review, we describe the neurophysiology of BDNF
transmission and receptor signaling and discuss the molecular and cellular mechanisms
underlying its therapeutic potentials in neuropsychiatric disorders.

2. BDNF Transmission

In humans, the proBDNF protein is encoded by the BDNF gene, which includes
11 exons and 9 promoters, with tissue and brain region-specific functionality producing
alternatively spliced transcripts and regulated by various non-coding anti-sense ribonucleic
acids (RNAs) from the anti-BDNF or BDNFOS gene [22]. Subsequent to translation, folding,
and pre-sequence cleavage, the resultant proBDNF becomes packaged into vesicles for
either constitutive (spontaneous) or regulated release [23]. The 32 kDa proBDNF can be
cleaved by intracellular and extracellular proteases (e.g., plasmin and matrix metallopro-
teinases) to produce the mature ~14 kDa BDNF (mBDNF) and the propeptide proteins.
When intracellularly cleaved, mBDNF and the propeptide can also be stored in dense core
vesicles located in excitatory neuronal presynaptic terminals [24]. Therefore, neurons can
release both the mature BDNF, as a primary trophic signal or neuromodulator, and the
precursor proBDNF forms from presynaptic terminals (Figure 1). However, BDNF can also
be released in a retrograde manner from postsynaptic cells to alter presynaptic activity [25]
and mediate other specific functions such as synapse elimination in the developing cerebel-
lum [26]. The mature form of BDNF signals primarily via the tropomyosin receptor kinase
B (TrkB) receptor, while proBDNF binds to and activates the sortilin and p75 neurotrophin
receptor (p75NTR), the latter of which is mainly expressed during development with lesser
but maintained levels during adulthood [27]. Contrasting to the TrkB-mediated effects of
mBDNF, the activation of sortilin and p75NTR, which is localized in dendritic spines and
axon terminals by proBDNF, promotes cell death and attenuation of synaptic transmission
through long-term depression (LTD), in addition to increasing anxiety and depression-like
behaviors [28-31]. On the other hand, mBDNF actions mainly involve enhanced neuronal
survival, growth, and synaptic activity [32]. However, mBDNF actions mediated via the
TrkB receptor are highly diverse and can vary based on multiple factors. The multitude of
TrkB-mediated functions is dependent on the specific BDNF mRNA species, pre- versus
postsynaptic release, and receptor location, and intrinsic cell-specific interactors with the
TrkB receptor [33]. Additionally, differential molecular alterations and cellular functions,
such as synaptic activity and plasticity, are observed between acute and gradual activation
of the TrkB receptor, and thus TrkB downstream signaling [34]. Similarly, transient acti-
vation promotes dendritic growth and spine morphogenesis, while sustained activation
facilitates dendritic arborization and spinogenesis [35]. Another source of regulation is
the activity-dependent modulation of TrkB receptor trafficking and cell-surface expression
and translocation depending on the cell- and potentially synapse-specific degree of activity
and BDNF release [36]. Furthermore, glial cells including astrocytes, which regulate BDNF
recycling, oligodendrocytes, and microglia are also important targets and sources of BDNF,
leading to yet another order of regulation and activity mediation [37—40]. Lastly, various
TrkB receptor isoforms have been identified and mediate different functions, as discussed
below. These findings indicate highly and tightly regulated control of endogenous BDNF
synthesis, release, and transmission, allowing adequate direction of its diverse functions.
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Figure 1. BDNF synthesis and release.

3. TrkB Receptor Signaling and Cellular Functions
3.1. TrkB Receptor Isoforms

The primary target of mBDNE, or simply BDNF, is the TrkB receptor, which belongs
to the Trk family of tyrosine-kinase membrane receptors that mediate neurotrophins’
actions [41]. BDNE, as well as neurotrophin-4/5 peptides, bind the TrkB receptor with
high affinity. It is encoded by the human TrkB gene and, under the influence of various
promoters and splicing sites, transcribed into three main TrkB receptor splice variants.
These include the primary full-length isoform (TrkB-FL), a truncated alternative isoform
that lacks the intracellular tyrosine-kinase domain (TrkB-T1), and is hence unable to produce
the fast downstream cytoplasmic signals, and another truncated isoform (TrkB-T2 or
TrkB-T-Shc), also lacking the catalytic domain but exhibiting an additional Shc binding
site [42]. However, evidence indicates that the truncated isoforms can regulate the activity of
intracellular kinases [43,44]. Accordingly, differential effects are observed for the activation
of TrkB receptor variants [45].

3.2. Truncated TrkB Receptor

The TrkB-T1 isoform exhibits a dominant-negative functionality to inhibit TrkB-FL
signaling in neurons and sequester BDNF; however, it is also responsible for other functions
such as the regulation of cytoskeletal rearrangement [46]. The loci of expression between
the splice variants also differ, and in glial cells TrkB-T1 has more than 100-fold higher
expression than TrkB-FL. Additionally;, it is found to induce inositol-1,4,5-trisphosphate
(IP3)-mediated intracellular calcium signals in astrocytes, indicating key roles in neuroglial
communication [47], and mediates astrocyte morphogenesis essential for downstream
astrocytic support of neurons and synaptic function [48] as well as energy homeostasis
and regulation of glutamate clearance [49]. During gliogenesis, BDNF-induced activation
of truncated TrkB stimulates G-protein and protein kinase C (PKC) activation in neural
stem cells to form glial progenitors and astrocytes [44]. The TrkB-T1 receptor can also
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alter cell signaling via Rho protein regulation. Using glioma cells, TrkB-T1 activation is
found to dissociate the Rho guanine nucleotide dissociation inhibitor (Rho GDI1), thereby
reducing the activity of RhoA, Rho-associated kinase (ROCK), p21-activated kinase (PAK),
and extracellular-signal regulated kinase-1/2 (ERK1/2) [50]. Regulation of Rho proteins
via TrkB-T1 is also found to inhibit glycine reuptake by astrocytes through endocytosis of
glycine transporter [51]. On the other hand, little is known about the signaling mechanisms
of TrkB-T1 in neurons, and its knockout mice have normal development in addition to
hippocampal morphology, memory, basal transmission, and long-term potentiation (LTP).
However, these mice showed increased anxiety and abnormal neurite length and complex-
ity in basolateral amygdala neurons [52]. Very little is known regarding neuronal TrkB-T2
receptor signaling and functions; however, it shares similar properties with TrkB-T1, in-
cluding the kinetics of signaling [43] and the inhibitory effect on TrkB-FL activation [53].
Nonetheless, these findings indicate that truncated TrkB isoforms are functionally indepen-
dent receptors that alter cell signaling and balance BDNF-induced cellular functions. In
fact, the imbalance between TrkB-FL and truncated TrkB-T1 activity is observed in various
models of CNS injury and neuropathic pain, especially via TrkB-T1 upregulation [54].

3.3. Full-Length TrkB Receptor

The predominant receptor isoform mediating the neurotrophic pro-survival effects,
calcium signaling, and excitatory and inhibitory balance of BDNF in neurons is the non-
truncated full-length TrkB-FL receptor exhibiting the tyrosine kinase catalytic subunit [55-57].
The binding of BDNF to the TrkB-FL receptor results in receptor phosphorylation, which
leads to recruitment of intermediary proteins to bind various docking sites such as Shc
adapter protein and activation of phospholipase C (PLC). Three main signaling cascades are
subsequently triggered: the Phosphoinositide 3-kinase/Protein kinase B (PI3K/PKB-Akt)
pathway, the mitogen activated protein kinase (MAPK) pathway, which is also known
as the Ras-Raf-MAPK/ERK kinase (MEK)-ERK pathway, and the PLC pathway, which
involves PLC-IP3-Ca2* and PLC-diacylglycerol (DAG)-PKC signaling [58,59].

3.3.1. The PI3K/ Akt Pathway

The PI3K/ Akt pathway interacts with the mammalian target of rapamycin (mTOR)
and other downstream effectors and promotes protein synthesis, growth, proliferation, and
survival [60]. Its upregulation, and subsequent BDNF-dependent activation, in neurons
is supported to underlie the attenuation of ischemia-induced apoptosis by quercetin [61]
and hippocampal neuronal injury in stroke via heme oxygenase 1 [62] as well as the cogni-
tive enhancing action of L-3-n-butylphthalide in Alzheimer’s mice [63], anti-parkinsonian
neuroprotection of curcumin [64], improved recovery from traumatic brain injury (TBI) by
simvastatin [65], alleviation of oxidative glutamate toxicity by huperzine A [66], and the
antidepressant action of liquiritigenin [67]. Additionally, activating the PI3K/Akt pathway
via BDNF leads to increased dendritic translocation of postsynaptic density-95 (PSD-95)
protein following N-methyl D-aspartate (NMDA) receptor activation, thus implicating
this pathway in activity-dependent synaptic potentiation [68]. Indeed, BDNF-mediated
PI3K/ Akt signaling prevents the downregulation of synaptic plasticity-associated proteins
in hippocampal neurons induced via hyperglycemia [69]. This is consistent with the loss of
spine density and impaired synaptic plasticity and cognition concurrently with reduced
BDNF levels due to insulin resistance [70], while improved insulin signaling upregulates
BDNEF, increases Akt phosphorylation, enhances cognition, and halts neuroinflammation
and oxidative stress in Alzheimer’s disease [71,72]. Under physiological conditions, the
BDNF-mediated activation of the PI3K/Akt/mTOR pathway controls the size of neuronal
soma and dendrites; however, concomitant and coordinated activation of the MAPK path-
way was found necessary to increase dendritic complexity [73]. These two pathways, both
recruited via neurotrophins including BDNEF, show bidirectional interactions to promote or
inhibit one another, allowing further signal processing refinement [74].
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3.3.2. The MAPK Pathway

Upon TrkB stimulation, a cascade of kinases, namely Ras-Raf-MEK-ERK, become acti-
vated and trigger the second major signaling pathway. This MAPK pathway is an essential
controller of the cell cycle [75], and similar to the PI3K/Akt pathway mediates, particularly
via ERK1/2, various anti-apoptotic neuronal processes, both cytoplasmic and transcrip-
tional, following BDNF stimulation [76]. Certain other MAPK subtypes mainly produce
pro-apoptotic effects such as C-Jun N-terminal kinase (JNK) and p38-MAPK; however, the
different MAPKSs show complex interactions and exhibit the ability to promote opposing
cellular actions depending on the type, intensity, and duration of cellular stimuli [77]. Apart
from neuroprotection, MAPKSs play key roles in a wide range of neuronal cellular processes
in response to BDNEFE. These include anterograde dendrite-to-nucleus signaling and induc-
tion of immediate early gene expression [78], cyclic adenosine monophosphate (cAMP)
response element-binding protein (CREB)-dependent LTP induction and dendritic Arc
synthesis-dependent maintenance of LTP [79], and synapsin-dependent axonal growth [80]
and presynaptic neurotransmitter release [81]. Additionally, BDNF-mediated MAPK sig-
naling induces a-amino-3-hyroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor
trafficking and synaptic delivery [82]. As shown in the nucleus accumbens, however, BDNF
effect on AMPA receptor surface expression is bidirectional as it can promote its synaptic de-
livery, and thus potentiation through ERK, or down-scaling following acute and sustained
activation, respectively [83]. Accordingly, various observations support key roles for BDNF
in glutamatergic plasticity in the nucleus accumbens and addiction-related activity modula-
tion [84]. The above findings reveal a wide range of cellular actions, both fast cytoplasmic
and slow transcriptional, mediated by BDNF-induced MAPK pathway signaling.

3.3.3. The PLC Pathway

The third main signaling pathway of TrkB is triggered through PLC activation, espe-
cially PLCy, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) into the second
messengers DAG and IP3. The latter activates IP3 channel receptors in the endoplasmic
reticulum membrane, causing the release of stored Ca?* into the cytosol [85]. Elevation of
neuronal cytosolic Ca?* concentration leads to a variety of downstream actions, particularly
via calmodulin. These include the opening or enhanced permeability of various types
of channels such as the membrane transient receptor potential-C (TRPC) cation channels
in a store-operated mechanism [86], ligand-gated membrane channels such as NMDA
receptors [87], and Ca®*-activated K+ channels, leading to long-lasting currents [88]. On
the other hand, PLC-dependent but Ca?*-independent BDNF signaling also modulates
Kv7/KCNQ potassium channels, as observed in parvalbumin-positive interneurons [89].
Additional actions include the Ca2+-depender1t exocytotic [90], non-exocytotic [91], and
reverse transport [92] neurotransmitter release, and activation of protein kinases including
Ca?* /calmodulin-dependent protein kinases (CAMKs), which have key roles in BDNF-
induced synaptic plasticity [93,94] and alteration of gene transcription via CREB [95]. The
other messenger recruited via PLC activation is DAG, which mainly signals through PKC
activation. This pathway is implicated in BDNF-mediated neuronal differentiation [96],
survival [97], neurite outgrowth of dopaminergic neuron [98], NMDA receptor phosphory-
lation [99], AMPA receptor phosphorylation [100], y-aminobutyric acid (GABA) receptor
transcription [101], GABA-A receptor internalization during memory consolidation [102],
spinal motor potentiation [103], and hippocampal activity integration and plasticity facili-
tation [104].

3.3.4. Rapid Modulation of Ion Channels

BDNF actions mediated through the above signaling cascades occur mainly over
periods of minutes to hours; however, BDNF is also observed to alter neuronal excitability
within the second and even millisecond timescales, causing strong depolarization and
trains of action potentials at nanomolar concentrations [105]. This rapid neurotransmitter-
like BDNF signaling is mediated via direct modulation of membrane channels, especially
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voltage-gated ion channels [106]. This is observed for tyrosine kinase-dependent BDNF-
induced excitation via NaV1.9 sodium channels [107] and calcium transients in dendritic
spines via voltage-gated calcium channels, leading to LTP induction [108]. On the other
hand, BDNF also modulates NaV1.2 channels through fast inactivation, resulting in reduced
inward currents, thereby reducing excitability [109].

The above findings on TrkB-mediated signaling indicate that BDNF essentially affects
all aspects of neuronal function, including the cell cycle, synaptic structure, neurotransmit-
ter release, excitability, and plasticity. The diversity of TrkB-mediated cellular processes
through its multiple signaling pathways (Figure 2) cross-talk with other cellular stimuli,
directly interacting effectors and its bidirectional control nature, and therefore highlight the
importance of balanced and coordinated spatiotemporal BDNF release in the maintenance
of neuronal homeostasis. Insufficient or imbalanced BDNF transmission can thus have
detrimental consequences on neuronal viability and function under certain pathological
conditions. Accordingly, restoring or augmenting BDNF transmission and TrkB signaling,
ideally in a differential and targeted manner, has emerged as a promising therapeutic
approach in the potential management of various neuropsychiatric disorders through the
engagement of multiple mechanisms.
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Figure 2. BDNF receptor signaling pathways. (*) different signaling pathways and cellular functions
are triggered with heterodimer forms.

4. Therapeutic BDNF Mechanisms
4.1. Neuronal Protection and Survival

BDNF is essential for neuronal survival under physiological conditions, and its mu-
tation or deficiency lead to cell death that is more overt in specific neuronal popula-
tions [110,111]. In addition, exogenous supply of BDNF to neuronal cultures promotes
survival by preventing apoptosis [112]. These pro-survival roles of BDNF can be through
direct anti-apoptotic actions and/or via indirect protection from neuronal injury. Accord-
ingly, BDNF-mediated signaling is able to block hypoxia-induced caspase-3 activation [113]
and halt the upregulation of various apoptotic proteins, including phosphorylated C-Jun
and cytochrome C due to cortical ablation [114]. The inhibition of p53 tumor suppressor
protein and its upregulated modulator of apoptosis (PUMA) is also implicated in BDNF
anti-apoptotic action [115]. Additionally, BDNF pre-treatment in neuronal cultures prevents
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excitotoxicity-induced apoptotic morphology and caspase activity through PI3K and MAPK
pathways while increasing B-cell lymphoma 2 (Bcl-2) protein levels [116]. Although BDNF-
mediated upregulation of NMDA receptor increases its calcium response and neuronal
vulnerability to glutamate-induced necrosis, BDNF is still protected against excitotoxic
apoptosis [117]. Furthermore, BDNF blocks caspase-3-independent cell death [118], po-
tentially through the inhibition of apoptosis-inducing factor (AIF) mitochondrio-nuclear
translocation, as observed in retinal photoreceptors [119]. Apart from ablative lesions, is-
chemia, and excitotoxicity, BDNF also exerts protective effects against metabolic stress, such
as glucose deprivation-induced apoptotic cell death [120]. Another form of neuroprotection
by BDNF involves its anti-oxidative effects, which attenuate neuronal injury under patho-
logical conditions involving oxidative stress. Indeed, BDNF treatment or incubation can
lead to reduction in markers of oxidative stress and upregulation of anti-oxidant enzymes
such as glutathione reductase, glutathione peroxidase, and superoxide dismutase [121-123].
Lastly, BDNF exerts inhibitory effects on autophagy due to mitochondrial dysfunction [124],
which is implicated in the multifaceted protective roles of BDNF in neurodegenerative
disorders [125].

4.2. Synaptic Maintenence

The synaptic repair therapeutic strategy takes advantage of the dynamic nature of
synaptic structure and function, which is the regenerative ability and reversibility of
malfunction, and encompasses three main synaptic aspects: transmission, growth, and plas-
ticity [126]. Accordingly, various neurodegenerative disorders are characterized by synaptic
loss, which associates with sensory, motor, and cognitive impairments [127]. It is established
that BDNE, generally, promotes both excitatory and inhibitory synaptic transmission via
different mechanisms [128], induces dendritic growth and branching [129,130], increases
synaptic number and density [131], and alters spine morphology and motility [132]. In
addition, evidence indicates that BDNF-mediated synaptic modulation is bidirectional
and regulates resting synaptic strength and functional plasticity within useful or optimal
limits [133,134]. Accordingly, indirect evidence supports targeting BDNF transmission to
enhance PKC activation for the prevention of synaptic loss in Alzheimer’s disease [135].
Indeed, more recent findings show that upregulated astrocytic BDNF production, condi-
tioned to astrogliosis, improves cognitive deficits and recovers spine density, morphology,
and markers such as PSD-95 in Alzheimer’s mice [136]. Various TrkB activating molecules
have also been shown to prevent synaptic loss, such as 7,8-dihydroxyflavone (DHF) [137].
Therefore, the restoration and maintenance of synaptic activity, density, and structure
represent a potentially disease-modifying therapeutic strategy in neurodegeneration.

4.3. Immunomodulation

Neuroinflammation is often described as a common pathological feature of multiple
neurological and psychiatric disorders. While neuroinflammation is indeed central to
some disorders, such as stroke, TBI, and infection, the involvement or alteration of certain
immunological processes or mediators, which may not necessarily indicate inflammation,
is a more accurate description in many others [138]. Accordingly, microglial activation or
elevations in common indicators of an immune component, such as cytokines, are observed
in a spectrum of CNS disorders, including many neurodegenerative diseases, epilepsy,
depression, bipolar disorder, autism spectrum disorder (ASD), and schizophrenia [139-141].
BDNF-induced effects on microglial activity, astrocyte reactivity, and CNS cytokines within
the context of halting disease progression or pathology will, therefore, be referred to as the
immunomodulation mechanism. It should also be stressed that certain immune reactions
or mediators may have damaging effects in one disorder while providing beneficial out-
comes such as healing and repair in others [138]. Regarding the roles of BDNF and TrkB
signaling, opposing actions are observed using different preparations and under different
conditions. In microglial cultures, for instance, BDNF exerts activating effects while its
sequestration inhibits microglial activation, motility, and production of tumor necrosis
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factor-o (TNF-or) [142]. Additionally, BDNF promotes astrocytic and microglial activation
in the spinal dorsal horn of rats exhibiting cystitis-induced allodynia and upregulates vari-
ous inflammatory markers such as TNF-o and interleukin-1f3 (IL-1$3), while the opposite
is observed upon TrkB blockade [143]. On the other hand, knockdown or pharmacolog-
ical blockade of hippocampal BDNF increases microglial density, motility, surveillance
area, and engulfment of synapses, as observed through in vivo and in vitro experimenta-
tion [144]. While many previous studies focused on the alterations of BDNF levels in CNS
disorders in regards to their immunological or inflammatory components [145], definitive
causal relations cannot be concluded. Nonetheless, recent studies directly investigated the
immunomodulatory roles of BDNF showing “anti-inflammatory” actions counteracting
brain “neuroinflammation” using various models. Indeed, the overexpression of BDNF
blocks hyperglycemia-induced microglial activation and prevents the elevations in TNF-«,
IL-1B, and nuclear factor-«B (NF-«B) [146], thereby reducing the central neuroinflamma-
tory components associated with diabetic memory and cognitive impairments [147,148].
Additionally, BDNF supplementation prevents aging-related microglial sensitization and
lipopolysaccharide (LPS)-induced dopaminergic neuronal loss and microglial activation, in-
cluding morphological alterations; proinflammatory cytokine production; and p38-MAPK,
JNK, and NF-kB signaling [149]. Similar immunoinhibitory effects attenuating astrocy-
tosis, microcytosis, and cytokine production are observed via BDNF supplementation,
together with fibroblast growth factor-2 (FGF-2) in a model of status epilepticus, leading
to a significant reduction in seizure frequency [150]. Further supporting evidence for
the therapeutic BDNF/TrkB immunomodulation mechanism is observed in models of
post-stroke injury [151], depression [152], multiple sclerosis [153], and TBI [154] through
anti-inflammatory effects that would protect from the potential damaging consequences of
neuroinflammation or signaling disruptions by its mediators [155].

4.4. Plasticity Facilitation

Synaptic plasticity, the activity-dependent modulation of synaptic transmission, en-
codes environmental experiences, thereby mediating various brain functions including
development, learning, and memory, which ultimately shape cognition and behavior [156].
The induction of synaptic plasticity is governed by various rules and signals [157]. Among
these is neuromodulatory input, which influences transmission to gate behavior-dependent
plasticity induction and thus learning and memory [158]. BDNF acting as a neuromodulator
facilitates synaptic plasticity via multiple mechanisms including the modulation of calcium
dynamics, which regulate AMPAR trafficking [159] and retrograde signaling [160], attenua-
tion of synaptic fatigue [161], excitability regulation of induction threshold [162], suppres-
sion of inhibitory transmission [163], neuronal synchronization by diminishing spike time
jitter [164], functional synaptic clustering [165], and suppression of autophagy [166]. In ad-
dition, BDNF signaling serves in the synaptic tagging and capture of plasticity-related prod-
ucts [167] and maintenance of LTP [168,169]. Various studies have investigated the effects of
reduced BDNF availability on synaptic plasticity using a mouse model (BDNFMet/Met mice)
that recapitulates the phenotype of a common human BDNF polymorphism (Val66Met),
which leads to reduced activity-dependent BDNF release [170]. Indeed, BDNEFMet/Met pice
exhibit synaptic plasticity impairments in the hippocampus [171], prefrontal cortex [172],
amygdala [173], and striatum [174], thus implicating BDNF deficits in affective and cog-
nitive aspects of neuropsychiatric disorders [175]. On the other hand, augmenting BDNF
transmission rescues plasticity impairments in certain brain regions in murine models of
Alzheimer’s disease [176], Huntington’s disease [177], fragile X syndrome [178], chronic
intermittent hypoxia [179], schizophrenia [180], and aging [181]. As synaptic plasticity
is impaired, or otherwise maladaptive, in various neuropsychiatric disorders [182,183]
including depression [184], its facilitation by BDNF represents an important potential
therapeutic mechanism. However, BDNF-induced spinal LTP of C-fiber synapses [185]
can lead to hyperalgesia [186] via central sensitization, which, if it becomes maladaptive,
can result in or promote chronic pain [187]. This is not restricted to the spinal dorsal horn
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as BDNF transmission is also implicated in orofacial neuropathic pain development and
hypersensitivity, the treatment of which is challenging with few effective pharmacological
therapeutic options [188-191]. These findings highlight the importance of selective regional
targeting of BDNF transmission and TrkB signaling.

4.5. Secondary Neuromodulation

Although BDNF itself exerts neuromodulatory effects on glutamatergic and GABAer-
gic transmission, it also interacts with and affects other neuromodulators. Therefore, the
BDNF-induced transmission or signaling alterations of neuromodulators, especially sero-
tonin and dopamine, will be referred to as the secondary neuromodulation mechanism.
Early evidence showed that BDNF administration, via midbrain or intracerebroventricular
infusion, increases monoamine transmission, particularly serotonin and to a lesser extent
dopamine, in various brain regions [192]. In relation to dopamine, BDNF is found to
increase dopamine turnover [193] and potentiate its release in the striatum [194] and hip-
pocampus [195]. In addition, BDNF upregulates the D3 receptor, which triggers levodopa
sensitization [196] and potentiates the responses to D3 agonists, leading to improvements
in motor behavior and recovery of striatal innervation and dendritic spines [197]. Accord-
ingly, augmenting BDNF is a promising therapeutic strategy in Parkinson’s disease, not
only by protecting from dopaminergic neuronal degeneration but also via augmenting
dopaminergic transmission, as supported by preclinical and clinical evidence [198]. The
effects of BDNF on hippocampal serotonin transmission, on the other hand, are mainly
mediated by alteration of serotonin reuptake transporter (SERT) activity such that acute
single injection of BDNF in the hippocampus leads to higher serotonin reuptake, lower
extracellular levels, lower KCl-evoked increase in serotonin, and diminished signal am-
plitudes triggered by infused serotonin [199]. BDNF downregulation using heterozygous
mice leads to opposite effects on serotonin by reduced hippocampal SERT activity, and
these effects were observed to be region-specific [200]. Chronic administration of BDNF in
the rat dorsal raphe nucleus causes significantly less-regular firing pattern of serotonergic
neurons, suggesting that increased serotonin turnover could produce behavioral changes,
including antidepressant effects [201]. Indeed, accumulating evidence indicates significant
associations between reduced BDNF levels and depression and strong BDNF-mediated
anti-depressant actions [202]. Genetic studies revealed interactions between BDNF poly-
morphisms and serotonin transporter variants on psychiatric functioning [203]. In addition,
genetic interactions between BDNF and catechol-o-methyl transferase (COMT), the en-
zyme responsible for dopamine and norepinephrine degradation, translate into cognitive
and behavioral alterations [204] and impact schizophrenia symptoms [205]. Interestingly,
mutant mice that lack activity-driven BDNF expression exhibit reduced mRNA levels of
5-hydroxy tryptamine 1b (5-HT1b), 5-HT2a, and 5-HT5b serotonin receptors as well as
dopamine D, receptor subtype and alpha-la/1d adrenergic receptors but increased levels
for dopamine Dy receptor subtype in the frontal cortex. These mice showed depression-like
behavior, impaired response inhibition, and inflexible learning, supporting the idea that
reduced BDNF may lead to depression and schizophrenia through monoaminergic trans-
mission alterations [206]. BDNF is important for dopamine sensitivity and the expression
of dopamine D3 receptor subtype [207], the mRNA of which is decreased in patients with
schizophrenia or bipolar disorder and increases following treatment; however, higher Ds
levels correlated with negative schizophrenic symptoms [208]. In addition, higher frontal
D, /3 binding potential also significantly correlates with positive symptoms [209]. On the
other hand, BDNF heterozygous mice exhibit elevated extracellular dopamine levels com-
pared to control but also show impairments in electrically evoked release and uptake of
dopamine, suggesting differential roles of BDNF on tonic vs. phasic dopaminergic transmis-
sion [210]. Although the relationship between BDNF and schizophrenia is complex [211],
these findings suggest that the degree of BDNF transmission can be targeted to alter, and
potentially restore, the balance of dopaminergic transmission in schizophrenia [212]. This
also applies for the complex BDNF-serotonin interactions in the understanding and treat-
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ment of various psychopathologies [213], especially in mood disorders such as anxiety and
depression [214]. Interestingly, stress-induced BDNF dysregulation is brain region-specific,
as observed in post-traumatic stress disorder (PTSD) in which BDNF mRNA is differentially
downregulated in certain brain regions while being upregulated in others [215,216]. This
further supports the BDNF stress-sensitivity hypothesis that BDNF dysregulation, as with
the Val66Met polymorphism, predicts vulnerability to stress [217]. Indeed, TrkB receptor
blockade enhances defeat-induced avoidance and PTSD-like symptoms in models of acute
social and single-prolonged stress, which were mitigated by TrkB activation [218,219]. It
should be stressed that secondary modulation of dopaminergic and serotonergic transmis-
sion by BDNF represents one mechanism affecting anxiety, depression, and schizophrenia
as previously described mechanisms such as neuroinflammation, oxidative stress, and plas-
ticity impairments are also involved and modulated by BDNE. Furthermore, the secondary
neuromodulation mediated by BDNF could also impact other disorders such as delirium,
which is commonly observed in critically ill elderly patients, either drug-induced or fol-
lowing trauma, and characterized by imbalanced neurotransmission including increased
dopaminergic activity and altered serotonergic transmission [220,221]. Accordingly, BDNF
might be expected to worsen or precipitate delirium by potentiating dopamine activity;
however, evidence shows that lower BDNF levels are associated with reduced delirium
recovery [222] and higher risk of postoperative delirium occurrence [223]. Interestingly,
evidence suggests that corticotropin-releasing hormone-mediated BDNF depletion and
spine loss could underlie delirium-like syndrome following trauma [224]. These findings
highlight the significant impact of BDNF, via euromodulateon and other mechanisms, on
various neuropsychopathologies and associated cognitive and behavioral impairments.

4.6. Preservation of Neurovascular Unit Integrity

The integrity of the blood brain barrier (BBB) and neurovascular unit’s (NVU) cellular
function is essential for CNS homeostasis via the regulation of influx/efflux transport and
neurovascular coupling, ensuring adequate cerebral perfusion, while providing a protective
barrier against potentially harmful molecules in the peripheral circulation [225]. Various
pathological stimuli can lead to disruption or otherwise altered permeability and function
of the BBB, such as ischemia, oxidative stress, and inflammation [226]. This is commonly
observed in neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and Hunting-
ton’s disease as well as multiple sclerosis, leading differentially to microbleeds, leakage,
impaired transport function, cellular infiltration, and NVU cellular degeneration [227].
However, multiple other neuropsychiatric disorders have been shown to involve aspects of
BBB disruption, including stress disorders such as depression and anxiety [228] as well as
ASD [229], epilepsy [230], and schizophrenia [231]. As previously discussed, BDNF levels
are reduced in the majority of aforementioned disorders, and its supplementation engages
various converging therapeutic mechanisms to counteract associated pathologies that un-
derlie BBB disruptions such as inflammation and oxidative stress. However, accumulating
evidence indicates potentially direct roles for BDNF in the preservation of neurovascular
integrity and function. The BDNF Val66Met polymorphism, for instance, is associated
with poor angiogenic response following stroke through upregulated anti-angiogenic me-
diators [232]. In addition, BDNF is found to alleviate hyperglycemia-induced endothelial
cell injury in the brain microvasculature [233], protect the integrity of the blood-spinal
cord barrier following spinal cord injury [234], mediate cholic acid-induced protection of
BBB integrity and NVU neuronal viability against hypoglycemic and ischemic injury [235],
enhance vasculature-associated migration of neuroblasts towards ischemic lesions [236],
facilitate BBB recovery from ischemia following release from astrocytes surrounding blood
vessels [237], and trigger robust angiogenesis and promote brain endothelial cell sur-
vival [238]. These findings indicate that BDNF has direct protective effects on BBB integrity
and NVU cell viability, representing yet another potential therapeutic mechanism in neu-
ropsychiatric disorders. The various pathological processes potentially targeted by BDNF
are summarized in Figure 3.
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Figure 3. Summary of neuropsychiatric pathological alterations targeted by BDNE.

5. Neuropsychiatric Therapies Converge on BDNF: A Common Mediator

The therapeutic effects of BDNF essentially represent the target actions of various
pharmacological agents used in the treatment of neurological and psychiatric illness. Many
studies have investigated the effects of a wide range of medications on BDNF expression
and its relation to associated therapeutic actions. In this regard, the focus was mainly
directed towards certain anti-Alzheimer’s medications, antidepressants, and other miscel-
laneous synthetic drugs and natural compounds. Numerous pharmacological agents and
herbal preparations have been identified and tested for the management of Alzheimer’s
disease; however, only a few agents have been approved: the neuroprotective NMDAR
antagonist memantine and the acetylcholinesterase inhibitors donepezil, rivastigmine,
and galantamine [239,240]. In relation to memantine, it is found to upregulate BDNF
expression [241], an effect supported to mediate memantine-induced enhancement of
vascularization and recovery from stroke [242]; prevention of plasticity and memory im-
pairment in a model of dopaminergic neurotoxin-induced Parkinson’s disease [243]; and
antidepressant action counteracting chronic unpredictable stress-induced mitochondrial
dysfunction, excitotoxicity, and oxidative stress [244]. Similarly, donepezil treatment causes
a significant elevation of hippocampal BDNF expression in Alzheimer’s rats, mediating its
cognitive enhancing action, attenuation of neurodegeneration, and restoration of synapse
dendritic spines density [245-247]. The upregulation of BDNF is also observed for herbal
preparations including gingko biloba, which leads to memory enhancement, prevention of
neuronal apoptosis by lead poisoning, and neuroprotection against ischemic stroke [248-251].
In addition, various findings support the upregulation of BDNF as the mechanism under-
ling the beneficial actions of many other botanical compounds in multiple neurological
pathologies [252]. Furthermore, several lines of evidence indicate the upregulation of
BDNF as a common transducer of anti-depressant action of many classical antidepres-
sants and other agents such as ketamine [253]. Other medications shown to upregulate
BDNF expression include second-generation antipsychotics such as olanzapine and cloza-
pine [254], dopamine agonists such as rotigotine [255], the anesthetic dexmedetomidine,
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which enhances neuroprotection from cerebral ischemia/reperfusion injury [256,257], and
delta opioid receptor agonists, which exert neuroprotective, anxiolytic, and antidepressant
actions [258,259]. These findings support the notion that BDNF is potentially a common
mediator of the therapeutic efficacy of centrally acting medications across an array of neu-
ropsychiatric disorders. Although this is evident for few medications, definitive conclusions
for most cannot be drawn based on associations. Therefore, further direct investigations
are still required to evaluate whether attenuating drug-induced BDNF expression changes
interfere with the intended therapeutic efficacy and if differences exist between agents of
the same pharmacological class.

6. Current Status and Future Directions

Extensive research has been conducted to evaluate the therapeutic potential of BDNF in
a wide range of brain pathologies, showing highly promising results. However, many limi-
tations were recognized, especially regarding its delivery and central availability. Nonethe-
less, novel developments have been made to tackle this issue through various approaches
such as gene therapy [260] and carrier-free stabilizing nanoencapsulation [261], which
allows intranasal administration [262]. Other approaches include the use of TrkB receptor
ligands such as DHEF, small-molecule BDNF mimetics, and agonistic antibodies [263,264] as
well as compounds boosting BDNF synthesis, transmission, and signaling, including natu-
ral products [126,265]. However, these direct and indirect approaches collectively referred
to as BDNF-based therapies still face many other challenges [266]. Additionally, further
research is still required to elucidate the network-specific functionality of BDNF, decipher
how this modulates cognition and behavior, and uncover BDNF transmission disruptions
in a disease-specific manner. Other considerations to take into account include systemic
side effects, interactions with other disorders in which elevated BDNF levels can have
harmful long-term consequences, and the potential impact of different polymorphisms on
the efficacy of BDNF-based therapies.

To conclude, BDNF-mediated TrkB signaling controls a manifold of neuronal cellular
functions and engages a multitude of converging and diverging molecular mechanisms
that counteract multiple pathophysiological processes underpinning key aspects of neu-
ropsychiatric disorders. These include (1) neuroprotection from apoptosis-inducing stimuli
and stressors such as ischemia, excitotoxicity, energy imbalance, and oxidative stress;
(2) synaptic regeneration and maintenance of activity and structure; (3) immunomodula-
tion against microglial hyperactivity and abnormal production of inflammatory mediators;
(4) facilitation and rescue of impaired and maladaptive synaptic plasticity; (5) secondary
neuromodulation to alter dopaminergic and serotonergic transmission; and (6) preservation
of BBB integrity and NVU cellular viability. Therefore, BDNF-based therapies carry signifi-
cant therapeutic potentials in various neuropsychiatric disorders, but a set of challenges
are still to be tackled.
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Abbreviations

5-HT: 5-hydroxy tryptamine; AIF: Apoptosis-inducing factor; AMPA: x-amino-3-hyroxy-5-
methyl-4-isoxazole-propionic acid; ASD: Autism spectrum disorder; BBB: Blood brain barrier; Bcl-2:
B-cell lymphoma 2; BDNEF: Brain-derived neurotrophic factor; CAMK: CaZt/ calmodulin-dependent
protein kinase; cAMP: Cyclic adenosine monophosphate; CNS: Central nervous system; COMT:
Catechol-o-methyl transferase; CREB: cAMP response element-binding protein; DAG: Diacyl glyc-
erol; DHEF: 7,8-dihydroxyflavone; ERK: Extracellular-signal regulated kinase; FGF-2: Fibroblast
growth factor-2; GABA: y-aminobutyric acid; IL-13: Interleukin-13; IP3: Inositol-1,4,5-trisphosphate;
JNK: C-Jun N-terminal kinase; LPS: Lipopolysaccharide; LTD: Long-term depression; LTP: Long-term
potentiation; MAPK: Mitogen activated protein kinase; mBDNF: Mature BDNF; MEK: MAPK/ERK
kinase; mTOR: Mammalian target of rapamycin; NF-«B: Nuclear factor-«B; NMDA: N-methyl D-
aspartate; NVU: Neurovascular unit; P75NTR. P75 neurotrophin receptor; PAK: P21-activated kinase;
PI3K: Phosphoinositide 3-kinase; PIP2: Phosphatidylinositol 4,5-bisphosphate; PKB/Akt: Protein
kinase B; PKC: Protein kinase C; PLC: Phospholipase C; PTSD: Post-traumatic stress disorder; PSD-95:
Postsynaptic density-95; PUMA: P53 upregulated modulator of apoptosis; Rho GDI1: Rho guanine
nucleotide dissociation inhibitor; RNA: Ribonucleic acid; ROCK: Rho-associated kinase; SERT: Sero-
tonin transporter; TBI: Traumatic brain injury; TNF-a: Tumor necrosis factor-«; TrkB: Tropomyosin
receptor kinase B; TrkB-FL: Full-length TrkB receptor; TrkB-T: Truncated TrkB receptor; TRPC: Tran-
sient receptor potential-C.
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