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ABSTRACT: Existing computational methods for estimating pKa
values in proteins rely on theoretical approximations and lengthy
computations. In this work, we use a data set of 6 million theoretically
determined pKa shifts to train deep learning models, which are shown to
rival the physics-based predictors. These neural networks managed to
infer the electrostatic contributions of different chemical groups and
learned the importance of solvent exposure and close interactions,
including hydrogen bonds. Although trained only using theoretical data,
our pKAI+ model displayed the best accuracy in a test set of ∼750
experimental values. Inference times allow speedups of more than 1000× compared to physics-based methods. By combining speed,
accuracy, and a reasonable understanding of the underlying physics, our models provide a game-changing solution for fast
estimations of macroscopic pKa values from ensembles of microscopic values as well as for many downstream applications such as
molecular docking and constant-pH molecular dynamics simulations.

■ INTRODUCTION
Many biological processes are triggered by changes in the
ionization states of key amino acid side-chains.1,2 Exper-
imentally, the titration behavior of a molecule can be measured
using potentiometry or by tracking free-energy changes across
a pH range. For individual sites, titration curves can be derived
from infrared or NMR spectra. Detailed microscopic
information can be quickly and inexpensively obtained with
computational methods, and several in silico pKa calculations
are widely used to provide insights about structural and
functional properties of proteins.3−5

In Poisson−Boltzmann (PB) based methods, the solvent is
implicitly described while proteins are represented by point
charges in a low-dielectric medium.3,4,6,7 These continuum
electrostatics (CE) methods assume that pKa

single (the proton
binding affinity for a chemical group in a given conformation,
often called pKhalf in theoretical calculations) is a good estimate
for the macroscopic pKa value. This assumption holds when
the protein structure is sufficiently representative of the
conformational ensembles corresponding to both protonation
states. Experimentally determined structures exhibit conforma-
tions at a the minimum energy state, which in turn is related to
a specific protonation state. However, biomolecular systems
can explore different energy basins, which may exhibit
alternative protonation states. Energy minima can be affected
by experimental conditions, such as temperature, ionic
strength, and pH. Inaccuracies in pKa predictions due to
limited conformational rearrangements can be reduced by
increasing the protein dielectric constant from its default value

(2−4), which only accounts for electronic polarization. The
dielectric constant can be used as an empirical parameter to
mimic the effect of mechanisms responding to a local electric
field that is not explicitly taken into account in the model.8−12

A more computationally expensive approach is to explicitly
include protein motion by sampling conformers via Monte
Carlo (MC) or molecular dynamics (MD) simulations and
applying conformational averaging.4,13−15 Finally, by coupling
the sampling of protonation states at given pH levels and
conformations, constant-pH MD methods16−20 provide greater
insights into pH-dependent processes.21−25

As larger data sets of experimental pKa values have become
available, a new class of purely empirical methods has been
developed. These models rely on statistical fits of empirical
parameters, weighting the different energetic contributions into
simplified functions. PROPKA,5 arguably the most popular of
such methods,26 has been shown to perform competitively
even when compared to higher-level theory methods.6,27 The
empirical methods are much faster than the physics-based
ones, although at the cost of providing fewer microscopic
insights. Additionally, their predictive power is unknown on
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mutations or proteins dissimilar to those that compose the
training set.
The accuracy of most predictors is bound to the estimation

of the same quantity, the so-called ΔpKa. This is the free
energy of transferring the ionizable residue from the solvent to
the protein compared to that of its neutral counterpart. Since
pKa values for all amino acids in water have been
experimentally determined, the pKa

solvent term can be fixed
and, in practice, can also be adjusted to incorporate systematic
errors. The ΔpKa can be regarded as a sum of mostly
electrostatic contributions stemming from the residue micro-
environment. Therefore, the accurate prediction of pKa values
for a given conformation requires a correct description of the
residue’s interactions with both the surrounding protein
charges and the solvent.
At their core, deep learning (DL) models are complex

nonlinear empirical functions fitted to best map input variables
to output properties. Considering chemical properties such as

pKa values, which are dictated by molecular configurations, it is
possible to train a model to map this relationship without the
need to solve nonlinear equations in 3D or to sort through the
massive space of possible states, provided that enough
examples are presented.
In this paper, we have developed two DL-based pKa

predictors, namely, pKAI and pKAI+, for pKa
single and

experimental pKa values, respectively. These models were
trained on a database with ∼6 million pKa values estimated
from ∼50,000 structures using the continuum electrostatics
method PypKa.6 pKAI+ displays an unrivaled performance by
predicting experimental pKa values on a data set with ∼750
members. Also, pKAI exhibits an accuracy comparable to that
of the PB-based predictor used to generate the training set
while being approximately 10−1000× faster. By applying
explainable artificial intelligence (XAI) analysis, we show that
these simple models are able to implicitly model most of the
required energetic contributions, such as Coulomb inter-

Figure 1. (A) Overview of the data split and the similarity exclusion performed on the pKPDB and PKAD databases.28,31 (B) pKAI model
architecture. (C) Illustration of the encoding of the titratable amino acid environment. Only nitrogen, oxygen, and sulfur atoms (shown as spheres)
within a 15 Å cutoff (green circle) are included, while all carbon (shown as sticks) and hydrogen atoms (omitted) are ignored. The included atoms
are represented by the inverse of their distance to the titratable residue in an OHE vector featuring 16 categories of atom classes (Supplementary
Table S6). The titratable residue is represented by an OHE vector comprised of eight classes. (D) Performance of pKAI+ with different
regularization weights in the experimental test set.
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actions, desolvation, and hydrogen bonding. Therefore, the
presented models feature the best characteristics of CE-based
methods�accuracy and interpretability�with the speed of
empirical approaches.

■ METHODS
Data Set. To train our DL models, we used a large publicly

available data set of estimated pK values, namely, the pKPDB
database.28 This data set of ∼3 million pKa values was created
by running the PypKa tool with default parameters6 over all
the protein structures deposited on the Protein Data Bank.
The PB solver DelPhi11 was used with a dielectric constant
equal to 15 and an ionic strength of 0.1 M. A two-step focusing
procedure was employed with a coarser grid spacing of 1 Å,
and the subsequent calculation was employed using a finer grid
with 0.25 Å between the nodes. Monte Carlo sampling was
used to sample protonation microstates and tautomers.
The target values to be fitted by our model are theoretical

pKa
single values estimated with a PB-based method. This implies

that pKAI will inherit the assumptions and limitations of this
class of predictors. Our approach contrasts with the one usually
adopted for training empirical predictors, which entails the use
of experimental values to fit the model’s parameters. The main
advantage of this novel approach is that we can train models
with significantly more parameters, such as deep learning ones,
since there is now a much larger abundance of training data. As
a comparison, in PROPKA3, only 85 experimental values of
aspartate and glutamate residues were used to fit 6
parameters.5 Recently, traditional ML models have been
trained on ∼1500 experimental pKa values.29,30 However,
testing the real-world performances of such methods is
difficult, as there is a high degree of similarity among available
experimental data. Our larger data set translates into more
diversity in terms of protein and residue types and, more
importantly, a wider variety of residue environments. It also
helps our models avoid the undesired overfitting. Furthermore,
the relationship between a structure and our target property is
deterministic contrary to that of experimental pKa values,
which suffers from the lack of entropic information.
The ultimate goal of these methods is to accurately predict

experimental pKa values; thus, we have assessed the model’s
performance with ∼750 experimental pKa values taken from
the largest compilation of experimentally determined pKa
values of protein residues reported in the literature, namely,
the PKAD database.31 The 97 proteins in the experimental test
set are reported in the Supplementary Table S1. We compare
our experimental results with a Null model (attributing to each
titratable group the corresponding pKa value in water), PypKa
(the method used to generate the training set), and PROPKA
with default settings (the empirical method of reference).
Before training our models on our data set, we applied a

curated data split (Table 1A) to ensure that the training,
validation, and test sets did not contain proteins with a high
degree of similarity and to prevent overfitting. First, we
randomly selected 3000 proteins from the full data set of
∼120,000 proteins as our holdout test set of theoretical pKa
values. The program mmseqs32 was then used to exclude all
proteins that contained at least one chain similar to any of the
chains found in either the experimental or theoretical test sets.
Chains were considered to be similar if they presented a
sequence identity over 90%. From the remaining set of
proteins, 3000 more were randomly assigned to the validation
set, while the rest became the training set. Finally, we excluded

proteins similar to those of the validation set from the training
set. In the experimental data set, we excluded all duplicated
proteins, nonexact pKa values (e.g., >12.0), and residues for
which PypKa or PROPKA failed to produce an estimate.

Model Architecture and Implementation. pKAI was
implemented and trained using PyTorch ver. 1.9.033 and
PyTorch Lightning ver. 1.2.10.34 The model has a simple
architecture comprised of three fully connected hidden layers
in a pyramidal configuration fitted to the pKa shifts of titratable
amino acids (Figure 1B). The simplicity of the architecture is
intentional; it has a simple architecture proof-of-concept so
that deep learning models can capture the effect of electrostatic
interactions in the pKa of titrable residues. Recent work has
shown that it is possible to have an ML model that accurately
predicts electrostatic solvation energies of proteins.35 However,
pKa estimations are even more complex, requiring at least 2 PB
calculations per residue state for the physics-based counterpart
(e.g., in PypKa, each carboxylic acid has 5 states, hence 10 PB
calculations are required for each Asp/Glu residue).
The encoding of the environment of each titratable residue

has been simplified to retain only the most important
electrostatic descriptors (Figure 1C). Considering the decay
rate of the electrostatic potential, we decided to truncate the
contributions to the environment of a residue by applying a
cutoff of 15 Å around the labile atom(s) of the titratable
residue. In practice, this cutoff is slightly smaller for some
residue environments, as the necessary input layer size
normalization resulted in the truncation of the closest 250
atoms. It is expected that larger proteins will have a higher
occurrence of residues with a cutoff less than 15 Å.
Nevertheless, the truncation only excludes quite distant
atoms, and 14.85 Å was the minimum cutoff value observed
in the test set. A further approximation was made by
considering only highly charged atoms, as they have the
strongest electrostatic interactions with the titrable site, and
assuming that solvent exposure can be inferred from the
distances from the titrable residues to nearby atoms (similar to
the half-sphere exposure36). This simplification can be slightly
compensated by using atom classes instead of charges or
element names, as they implicitly provide information about
adjacent atoms. The atoms were one-hot encoded (OHE) and,
to reduce the input layer size, chemically similar atoms were
assigned to the same category (Supplementary Table S6).
While carboxylic oxygen atoms (C-termini OXT, aspartates
OD1 and OD2, and glutamates OE1 and OE2) and primary
amine atoms (arginines NH1 and NH2) atoms were merged,
others with similar names but different chemical properties
were separated (glutamines OE1 and NE2 from glutamates
OE1 and histidines NE2, asparagines OD1 from aspartates
OD1, and main-chain N from N-termini N).
The final 4008-sized input layer consisted of 250 atoms

represented by 16 OHE classes concatenated to an 8-
dimension OHE vector that corresponded to the titrating
amino acid. Each atom’s OHE was multiplied by its reciprocal
distance to the titrating residues to include this valuable
information without increasing the size of the input layer.
pKAI is freely available as a python module that can be

installed via pip. The source code can be found at https://
github.com/bayer-science-for-a-better-life/pKAI.

Training. Training was performed with mini-batches of 256
examples and the Adam optimizer37 with a learning rate of 1 ×
10−6 and a weight decay of 1 × 10−4. Dropout regularization
was applied to all fully connected layers with the exception of
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the last one. Hyper-parameter optimization was performed
with Optuna38 using the performance in the validation set.
Training these models takes approximately 10 min on an
NVIDIA Tesla M40 24 GB system using 16-bit precision and
an early stopping strategy on the minimization of the cost
function with a Δ of 1× 10−3 and a patience of five steps.
The pKAI model was trained on an MSE cost function,

while for pKAI+ we added a regularization parameter α to
penalize ΔpKa predictions (y). Thus, the loss function of pKAI
+ becomes

J y y y y y( , , ) (1 )( )i i i i i
2 2= + (1)

where yi is the true value and ŷi is the estimation. Different
regularization weights were tested to check for overfitting
(Figure 1D). While we selected an α of 50%, any value in the
40−70% range would lead to a similar improvement.
Moreover, the same trend was observed when the experimental
test was divided into five folds (Supplementary Figure S1).

XAI Methods. For each input atom feature a ̂ = (a, ra),
where a indicates the atom class and ra indicates the
corresponding distance to the liable atom(s) of the titrating
residue, we computed the corresponding attribution I(a)̂ with
the Integrated Gradients (IG) algorithm39 as implemented in

the shap package.40 I(a)̂ measures the sensitivity of the
network output with respect to changes in the input a.̂ A large
absolute value of I(a)̂ indicates that the network assigns a high
importance to this feature, while the sign of I(a)̂ indicates
whether the feature contributes positively or negatively to the
output. Given that the most important contributions to ΔpKa
are of an electrostatic nature, one can try to explain the model-
inferred charges for each atom class a by computing the
distant-independent score C as follows:

C a r I a r I a( ) ( ) ( )a
1

a
1= [ ] [ ]+ (2)

where I− and I+ are negative and positive I values, respectively.
The C score of an atom class is thus the difference between the
distance-weighted average of examples with negative and
positive I values over a large subset (10 000 samples) of the
test set. The sign of C(a) in eq 2 resembles the charge that the
network, on average, assigns to a given atom type. For example,
if an atom class is perceived by the model as contributing
negatively to the ΔpKa ( r I a r I a( ) ( )a a

1 1[ ] > [ ]+ , hence
C(a) > 0), this would mean that the network learned that this
particular atom stabilizes the deprotonated state, which is
characteristic of positively charged groups.

Figure 2. (A) Comparison of the RMSE values between from the Null model and pKAI (values are shown in Supplementary Table S2). The Null
model is defined as the pKa values of the residues in water taken from ref 41. (B) Performance at predicting the dependency of the pKa

single values on
the magnitude of solvent exposure (SASA). The calculations were performed for the pKAI and Null models using the PypKa predictions as a
reference. (C) Execution time comparison between PypKa and pKAI (values are shown in Supplementary Table S3). This benchmark was executed
on a machine with a single Intel Xeon E5−2620 processor. (D) Effect of the size of the training set on the model performance for the validation set.
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The solvent-accessible surface area (SASA) values shown in
Supplementary Table S2, and in the XAI subsections were
taken from pKPDB.28

■ RESULTS
The main goal of pKAI is to mimic the pKa-predictive ability of
PB-based methods with a significant improvement in the
computational performance. Our training set was comprised of
pKa values calculated using PypKa on a large number of
proteins taken from the Protein Data Bank.28 An elaborate data
split was performed to minimize data leakage from the training
set to the validation and test sets (see Methods). pKAI was
designed to be a simple and interpretable model, as it uses the
minimum structural features that still capture the electrostatic
environment surrounding every titratable residue. The model
has been trained on ΔpKa values rather than on absolute
values. The pKa shift is, in fact, a more appropriate quantity to
learn, less dependent on the chemical peculiarities of individual
amino acids, and more sensitive to the local electrostatic
environment. For example, residues that share a common side-
chain chemical group (such as glutamate and aspartate, which
share a carboxylic acid) are influenced by the same
environment in a similar way.
We wanted our model to capture the electrostatic depend-

ence between the environment of a residue and its consequent
pKa shift while keeping the input layer as small as possible (see
Methods). By ignoring all carbon and hydrogen atoms, we
greatly reduced the dimensionality of our input layer while
retaining most of the information regarding charged particles.
There is, of course, a significant loss of topological information,
although much can be inferred from the positions of the
included atoms. In fact, there is no performance gain when
solvent exposure measurements (e.g., SASA and residue depth)
are added to the environment embedding. Considering that
solvent exposure entails topological information and that the
model is not able to extract additional information from it, we
conclude that the model was already estimating, to some
degree, these molecular properties (see Model Explainability).

pKAI: Predicting Theoretical pKa. The performance of
the model on the test set is reported in Supplementary Table
S2 and Figure 2A. The null model used for comparison
consists of the reference pKa value in water for each residue
type, corresponding to 0 in the ΔpKa scale. Overall, pKAI
reproduces the PB-based ΔpKa values with an MAE value of
0.31, an RMSE of 0.52, and an R2 of 0.93. However, in this
case, we are only predicting theoretical values with a well-
defined relationship between structure and pKa

single (pK value of
a single conformation). Estimating experimental pKa values is a
much more complex task, since the pKa

single values that
correspond to the different conformations spanned by the
protein should be weighted according to their occurrence
probability at equilibrium. The performance of pKAI is
impressive considering the high complexity of the dependence
between pKa and the electrostatic environment of the site, as
illustrated by the high RMSE value of the Null model (1.89).
Some residues are easier to predict (e.g., LYS and termini
residues), while others are more challenging (e.g., CYS and
TYR). This can be explained by their solvent exposure
distribution (Figure 2B): well-solvated residues exhibit small
ΔpKa values, while more buried ones are more affected by the
desolvation effect and establish more interactions with other
residues, causing their pKa values to shift. There is a clear
dependency between the solvent exposure of a residue, its

ΔpKa value, and the prediction difficulty (Supplementary
Figure S2). The excellent performance of pKAI is also
demonstrated by the fact that most predictions (81.2%)
exhibit an error below 0.5 pK units, which is sufficient for most
use cases.
The main advantage of DL models is the potential speedup

they can provide. Since continuum electrostatics (CE) pKa
estimations need to sample thermodynamic equilibrium
microstates, several iterative simulations have to be performed
on each protonation state and the environment of every
residue. On the other hand, pKAI merely needs to apply its
learned function over each residue; as such, it is remarkably
faster (Figure 2C). Moreover, the convergence of the CE
simulations becomes harder to achieve as the protein size
increases. Consequently, in PypKa, as the protein size
increases, so does the time required to estimate each pKa
value. In contrast, the run time of pKAI’s DL model has a
different dependence on the protein size. Since the larger the
protein is, the larger is the amount of calculations that can be
performed simultaneously, the model loading cost becomes
less significant and the average per-residue execution time
becomes faster. This results in a sublinear scaling performance
and a pKAI speedup that can exceed over a 1000× compared
to its CE counterpart. As such, pKAI is a particularly valuable
tool for dealing with very large systems with thousands of
residues, where the only added computational cost stems from
the prepossessing of the structure.
Another important factor contributing to the high accuracy

obtained is the considerable size of the training set. Despite
using the largest repository of experimental protein structures
and the largest pKa database available,

28 we show that there is
still a correlation between the number of examples in the
training set and the accuracy of the model (Figure 2D). This
indicates that our model can still be improved by providing
further examples of pKa values.

pKAI+: Predicting Experimental pKaValues. The main
goal of pKa predictors, such as PypKa, is to estimate the
macroscopic pKa values for titratable residues using structures
(usually experimental ones). Since pKAI aims to reproduce the
pKa

single value calculated with PypKa at a fraction of the
computational cost, it is not expected to outperform the PB-
based method in predicting experimental values. When using
PB to predict experimental pKas, a higher dielectric constant
for the solute is often adopted to compensate for the lack of
conformational flexibility in the method and the lack of
representation in the experimental input structure. A similar
approach can be implemented in pKAI by introducing a
regularization weight to the cost function (pKAI+). This
regularization penalizes the magnitude of the ΔpKa prediction.
In practice, this procedure biases our estimates toward the pKa
values in water, similarly to what is done by the increased
solute dielectric constant in PB-based approaches. However,
the analogous effect is applied evenly to all residues
independent of the solvent exposure. Thus, adding the
regularization penalty is different from training pKAI with a
data set generated with a higher protein dielectric constant.
Furthermore, we previously benchmarked PypKa on a range of
dielectric constants (4−20) and showed that there was no
benefit to increasing the dielectric constant to values greater
than 15.6 It should be noted that pKAI+ was not trained on
experimental pKa values but rather on the same training set as
pKAI.
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To evaluate the performance of our model, we benchmarked
it using a data set of 736 titratable residues in 97 proteins with
experimentally determined pKa values (Figure 3A). Remark-
ably, pKAI+ (RMSE of 0.98) is able to outperform both PypKa
(RMSE of 1.07) and PROPKA (state-of-the-art empirical pKa
predictor, RMSE of 1.11). Furthermore, the improvement over
the other methods is significant for most residue types (Figure
3B) and can be quantified using metrics that are more (RMSE,
0.9 quantile) or less (MAE, error percentage under 0.5)
sensitive to the presence of outliers (Supplementary Table S4).
Cysteine residues are particularly difficult to predict because
they naturally occur less frequently and are more buried than
all other titratable residues. This leads to an under-
representation of these residues in the training set, while
they exhibit the largest pKa shifts. To illustrate the difficulty of
this data set, note that some methodologies are not able to
improve on the Null model (RMSE of 1.09). The reported
deviations are specific to this data set. Even though our
benchmark is one of the largest ever used to validate a pKa
predictor, it is likely still insufficient to quantify the true
accuracy of these methods. Furthermore, besides being limited,
the test sets used to validate new pKa predictors tend to always
be different. This makes it very hard to compare methods

without rerunning them. In this benchmark, PypKa represents
the PB-based methods like DelPhiPKa7 and H++.3 More
computationally expensive methods such as MCCE43 and
constant-pH MD are not represented here. These methods are
expected to outperform PB-based methods that rely on a single
structure, although the exact improvement on this test set is
hard to predict. DeepKa is a recently published convolutional
neural network trained on theoretical pKa values from
constant-pH MD (CpHMD) simulations.44 As expected,
CpHMD implemented in the Amber suite45 (RMSE of 1.02)
outperformed PROPKA (RMSE of 1.12) in the test set, which
only includes the four residues (Asp, Glu, His, and Lys)
predicted by DeepKa (RMSE of 1.05).
The difficulty of estimating pKa values is not the same for all

residues. pKa predictors are usually valuable tools for predicting
residues in which the shift is significant. For example, if a
residue is completely exposed to the solvent and performs no
other interactions, its pKa will be equal to its known value in
water. To assess our model’s performance while avoiding
cherry-picking, no particular cases were analyzed. Instead, we
classified the residues according to their solvent exposure level
(Supplementary Figure S3) and the magnitude of the
experimental pKa shifts. pKAI+ shows RMSE values com-

Figure 3. (A) Experimental pKa benchmarks of several methods for a data set of 736 residues from 97 proteins (values are shown in Supplementary
Table S5). The Null model values are the pKa values of each amino acid substituted in an alanine pentapeptide (Ace−AA−X−AA−NH2).

41,42 (B)
Comparison between the Null model and the pKAI+ performance by residue type. (C) Prediction errors of the different models given the
experimental pKa shift (ΔpKa). (D) Accuracies of several methods for predicting representative protonation states derived from experimental pKa
values. Residues at a pH within 1.5 units of the experimental pKa are considered not to have a representative protonation state.
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parable to those of PypKa for both the most solvent-exposed
and buried residues. Interestingly, it is also able to surpass the
PB-based model for partially exposed residues. Notably, pKAI+
only improves the PypKa predictions for pKa shifts smaller
than 1 pK unit (Figure 3C). This indicates that pKAI+ corrects
the pKa values of partially exposed residues, which establish
nonrepresentative interactions in the experimental structure.
Since there is a large number of residues with these
characteristics in the test set,28 the overall performance
improvement is significant (Supplementary Table S5).
From the pKa value of a residue, it is possible to derive the

residue’s most likely protonation state at a given pH. To
perform this conversion, one must assume that the
Henderson−Hasselbalch (HH) equation can describe the
residue’s protonation behavior, implying that no other titrable
residues influence its titration. According to the HH equation,
at a pH equal to the pKa value, the protonated and
deprotonated species exist in the same proportion. Hence, at
this pH value, there is no most probable protonation state. At a
pH value that is 1.0 unit away from the pKa value, the least
likely protonation state still occurs 30% of the time. To
account for this fact and alleviate the aforementioned
approximation, when calculating the most representative
protonation state of a residue from pH 0 to 12, only residues
with an experimental pKa at a minimum distance of 1.5 units
were considered at each pH value. The 1.5 pH cutoff is
arbitrary, but the same trend was observed when slightly
different values (0.5−2) were used. The most abundant

protonation states obtained from pKAI predictions are in good
agreement with those derived from experiments and outper-
form those of PROPKA in a wide range of pH values
(Supplementary Figure S4). Moreover, pKAI is the best model
for assigning a fixed protonation state to a protein at
biologically relevant pH values (Figure 3D), arguably the
most common task pKa predictors are used for. In contrast to
the poor performance of the Null model and PROPKA in the
physiological pH range, both models outperform pKAI and
PypKa at pH levels lower than 4.0. In the acidic region, most
Glu and Asp residues, which make up around 60% of the
experimental test set, are titrated. PROPKA was trained on
some of these Glu and Asp residues,5 which may have resulted
in an overoptimistic evaluation of its performance at lower pH
values. pKAI+ is biased to predict pKa values between those of
pKAI and the Null model. This bias has granted the model an
edge in experimental pKa estimations. However, in tasks in
which the Null model does not perform well, pKAI+’s ability is
also affected. This can be seen in the biological range at the
more basic pH values.

Model Explainability. The main driving force for pKa
shifts in proteins is electrostatic in nature. In our model, each
atom of the environment represents the contribution of a
chemical group or part of a residue. This individual
contribution toward the final ΔpKa prediction can be estimated
(see XAI in the Methods section for further details) and is
shown in Figure 4A. Remarkably, although our model is given
no information about atomic charges, it assigns contributions

Figure 4. Charge scores attributed by pKAI to all considered input atoms classes (Supplementary Table S6) of (A) all atoms and (B) atoms closer
than 6 Å. C) Influence of the closest atom on the pKAI performance. (D) Impact of changing the distance of the closest atom on pKAI predictions
of residue TYR-315 from structure 2BJU. For reference, we have included PypKa predictions of the same residue in the state presented in the
experimental structure (closest distance of 2.8 Å) and in a modified structure in which the closest atom is absent.
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that are in agreement with the expected overall charge of the
atom class. Cationic amine groups (NZ_LYS, NH_ARG,
NE_ARG, and NE2_HIS) are clearly assigned positive scores
(i.e., destabilize the protonation of the titratable residue) and
are easily distinguishable from the anionic carbonyl groups
(O_COOH from Glu, Asp, and C-termini residues). These
scores provide a general insight into the network’s
interpretation of each atom and should not be used for more
quantitative analysis. Since the atom score is an averaged
measure across the test set, an imbalance of closely interacting
atoms of a specific class can dramatically skew its median
contribution.
Hydrogen bonds are some of the strongest interactions

found in proteins; as such, their proper description is crucial to
obtain accurate pKa predictions. By comparing Figures 4 A and
B, we can observe marked differences between the atom scores
at close proximity and those farther away from the titrating
residue. For example, the average scores of the very abundant
classes of primary amines (N and N_AMIDE) and carbonyl
groups (O and O_AMIDE) are much lower compared to their
short-range contributions, where these become hydrogen
donors and acceptors, respectively. The anionic Tyr residue
is perceived to have an overall negative contribution except
when it is close to another titratable residue; in this case, there
seems to be no preferred state, as like any titratable residue it
can act both as a donor and as an acceptor. On the other hand,
the contribution of neutral nontitrating alcohol groups
(OG_SER and OG1_THR) is almost exclusively attributed
to their potential to form hydrogen bonds at short range.
Beyond the general understanding shown before, hydrogen

bond contributions are hard to account for compared to other
interactions. As shown in Figure 4C, the closer another residue
(blue curve) is to the titrating one, the harder its is for the
model is to correctly describe their interaction. The difficulty
of the prediction increases dramatically at the typical distance
of hydrogen bonds (2.5−3.2 Å). This is even more marked if
one considers interactions established between two titratable
residues (red curve). In this case, the network has to solve for
the pKa values of both residues simultaneously and in many
instances is unable to do so. Hence, predicting the contribution
of the remaining environment is easier than predicting that of a
single hydrogen bond. This is illustrated in Figure 4D, where
the agreement with the physics-based method is much higher
when the closest atom is removed from the structure than
when it is kept in its original position. Although many other
profiles can be observed (Supplementary Figure S6), this trend
is generally conserved. Considering that the model did not
receive explicit information about hydrogen bonds, it is quite
remarkable that it was able to correlate this type of interaction
with larger pKa shifts.
Solvent exposure is another property that is usually a key

contributor to pKa shifts. The models are trained without
explicit knowledge of the 3D structure of the protein and are
deprived of information regarding carbon atoms. Nevertheless,
they seem to learn about the solvent exposure contribution.
We compared the correlations (the Pearson correlation
coefficient r and Spearman’s rank correlation coefficient ρ)
between the calculated SASA and the pKa shifts over the entire
test data set. Using the known ΔpKa, we obtained rΔpKa =
−0.68 and −0.60, while using the predicted ΔpKa, we got rpred
= −0.66 and −0.62, respectively. The similarity between these
values indicates that the model learned the correct correlation
between the SASA and the pKa shift. Additionally, we tested

different solvent exposure metrics as an additional input and
observed virtually no performance improvement (Supplemen-
tary Table S7).
Finally, it is worth mentioning that the XAI analysis was a

driving factor in the development of pKAI. In fact, the
importance that the model assigns to each atom class (similar
to Figure 4) was pivotal in the selection of the final set of atom
classes aimed at describing the surrounding environment
residues.

4. DISCUSSION
We have introduced pKAI and pKAI+, two deep DL models,
to predict theoretical and experimental ΔpKa values,
respectively. pKAI offers unprecedented efficiency, exhibiting
a remarkable trade-off between accuracy and computational
speed, and performance rivals those of CE-based methods,
such as PypKa. pKAI could be used as a replacement for such
methods, especially when dealing with large proteins or
applications requiring multiple CE calculations, such as
constant-pH MD simulations.16−20 Considering the latest
advances in sequence-to-structure predictions,46 faster meth-
ods, such as pKAI, will likely be of use as exponentially more
structures become available. Furthermore, when optimizing
new structures for binding to specific targets (e.g., in the design
of enzymes or antibodies), it is vital to have an accurate
prediction of the protonation states.
While we strive for optimal accuracy, we are aware that

many applications will only require a binary decision (hence, a
qualitative prediction of pKa shifts would be sufficient). For
example, when selecting the most likely protonation state of a
protein to run MD simulations, one only needs to predict
whether each pKa is larger or smaller than the pH value of
interest. As intended, pKAI shows a performance similar to
that of a PB-based model. Furthermore, it significantly
surpasses PROPKA and the Null model in the physiological
pH range.
Several other applications only require an estimation of the

proton binding affinity using a fixed conformation. This
quantity, termed pKa

single, renders a good prediction of the
macroscopic pKa when averaged over a representative
ensemble of conformations. From pKa

single values, the most
abundant or representative protonation states for a particular
conformation can be calculated, improving the realism of
methods such as molecular dynamics16−20 and molecular
docking.47 pKAI is nearly perfect at mimicking representative
protonation states given by PypKa, and it is particularly
effective at physiological pH, achieving an astounding accuracy
of 99.4% (Supplementary Figure S5). In a conformational
ensemble, there are always many representative protonation
states that differ significantly from the one calculated using the
macroscopic pKa values. Therefore, coupling pKa

single calcu-
lations with conformational sampling techniques is very
appealing in theory but difficult in practice due to the
computational cost. By using pKAI instead of PypKa (or any
other PB-based method), one would drastically decrease the
computational overhead (up to 1000×).
pKAI does not handle all residues with the same

performance. Difficult cases are caused by low representation
in the training set, low solvent exposure, or close residues
providing hydrogen bond interactions. These peculiar environ-
ments usually present high ΔpKa values, which are not handled
very well by the method. One clear way to improve our models
would therefore be to introduce more training examples.
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Furthermore, the inclusion of more training data with rare
environments would definitely enhance the performance. To
avoid limiting the scaling rate by the availability of new
experimental protein structures, we plan to generate new
uncorrelated protein structures using conformational sampling
methods, such as MD and MC. Another advantage of using
computational methodologies is the ability to guide the protein
conformational sampling to achieve electrostatic environments
that are underrepresented in the training set. To better handle
interactions with neighboring titratable groups, a change of
environment encoding would be needed. One approach to be
explored in future work would be to represent the whole
protein as a graph and use graph neural network algorithms to
learn the ΔpKa values.
Although pKAI excels at predicting pKa

single values, its
performance is modest when estimating experimental pKa
values. Inspired by the observation that increasing the
dielectric constant in PB-based methods improves the
agreement with experimental results, we introduced a
regularization parameter into the cost function. Similar to
the dielectric constant, this regularization weight biases all
predictions toward the residue’s pKa values in water. The new
model, pKAI+, outperformed all methods tested in this work,
including PypKa, which was used to create the training set.
However, this improvement, while significant for partially
exposed residues that would otherwise exhibit overestimated
pKa shifts, penalizes the accuracies of more shifted residues.
In this work, we made the conscious decision to train our

models solely on theoretical pKa values and to use all the
available experimental data as a test set. The reason for this
choice is twofold. First, there are not enough experimental data
points to successfully train large models such as DL ones. This
issue could be circumvented with pretrained embeddings,
assuming these representations hold the necessary information
for the new task. Gokcan et al. used molecular representations
encoding quantum mechanical information to obtain a neural
network model with an RMSE of 0.5−0.75 for most titrable
residues.29 The second problem with this approach is that the
available data is quite limited in variability. Since a model
trained on experimental data will not be exposed to a wide
variety of environments, in real-world applications it will likely
need to extrapolate in many cases. Both these issues contribute
to the risk of model overfitting and poor generalizability. Chen
et al. trained tree-based machine learning models, such as
XGBoost or LightGBM, on experimental data, and their best
model exhibited an RMSE of 0.69.30 To compare pKAI with
these models and illustrate the data leakage problem at hand,
we have refined our pKAI model by training it on same data
split reported in ref 30. This new model seems to have an
unparalleled performance (RMSE of 0.32 and MAE of 0.21).
However, this level of accuracy likely cannot be expected for a
rigid body calculation due to the missing entropic information.
Furthermore, at the moment there are only 18 and 23
experimental pKa values reported for Cys and Tyr residues,
respectively. Even considering some degree of information
transfer from other residue types, it is extremely unlikely that a
few dozen residues are able to convey enough information to
create a model with a robust predictive ability at inference.
Contrarily, pKAI was trained on millions of environments, and
as such we believe that the reported performance estimates are
much better reflections of its predictive ability. Finally, it must
be noted that experimental data (both structures and pKa
values) should not be taken as absolute truths with no

associated errors. In fact, old measurements of a popular
benchmark protein (hen egg-white lysozyme) were evaluated
with modern NMR spectroscopy, and discrepancies of more
than one pH unit were found.48 It is reasonable to assume that
at least some of the ≈1500 available experimental values have
comparable errors, which only reinforces the importance of
blind prediction exercises such as the pKa Cooperative.

49

With pKAI and pKAI+, we are introducing the first DL-
based predictors of pKa shifts in proteins trained on continuum
electrostatics data. The unique combination of speed and
accuracy afforded by our models represents a paradigm shift in
pKa predictions. pKAI paves the way for accurate estimations
of macroscopic pKa values from ensemble calculations of
pKa

single values, overcoming previous computational limits. By
design, the models were trained using a very simplified view of
the surroundings of the titratable group, accounting only for
residues within a 15 Å cutoff and ignoring all carbon and
hydrogen atoms. This informed design choice allowed the
models to stay small and fast. Explainability methods
confirmed that this input information was enough for the
model to capture crucial features such as electrostatics, solvent
exposure, and environment contributions. The initial success of
these models introduces several opportunities for further
research, including problem encoding, accounting for con-
formational flexibility, interactions with other molecule types
(i.e., small molecules, nucleic acids, and lipids), and adding
further target properties that could be of interest for other
applications.
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