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ABSTRACT: Missing data is a significant issue in metabolomics
that is often neglected when conducting data preprocessing,
particularly when it comes to imputation. This can have serious
implications for downstream statistical analyses and lead to
misleading or uninterpretable inferences. In this study, we aim to
identify the primary types of missingness that affect untargeted
metabolomics data and compare strategies for imputation using
two real-world comprehensive two-dimensional gas chromatog-
raphy (GC × GC) data sets. We also present these goals in the
context of experimental replication whereby imputation is
conducted in a within-replicate-based fashion�the first descrip-
tion and evaluation of this strategy�and introduce an R package
MetabImpute to carry out these analyses. Our results conclude
that, in these two GC × GC data sets, missingness was most likely of the missing at-random (MAR) and missing not-at-random
(MNAR) types as opposed to missing completely at-random (MCAR). Gibbs sampler imputation and Random Forest gave the best
results when imputing MAR and MNAR compared against single-value imputation (zero, minimum, mean, median, and half-
minimum) and other more sophisticated approaches (Bayesian principal component analysis and quantile regression imputation for
left-censored data). When samples are replicated, within-replicate imputation approaches led to an increase in the reproducibility of
peak quantification compared to imputation that ignores replication, suggesting that imputing with respect to replication may
preserve potentially important features in downstream analyses for biomarker discovery.

Untargeted metabolomics analyses geared toward bio-
marker discovery are at the forefront of the clinical

metabolomics field. Mass spectrometry hyphenated with
chromatography, including gas and liquid chromatography
(GC and LC, respectively), are commonly used methods for
investigating the metabolism of various systems, including in
vitro microbial and tissue cultures and ex vivo samples such as
blood, urine, and breath. The use of multidimensional
chromatography (e.g., GC × GC and LC × LC) is a
significant advancement over traditional one-dimensional
chromatography in that it allows for the characterization of a
much larger number of metabolites in these highly complex
samples.1−3 It is especially common in untargeted analyses
using GC × GC or LC × LC to detect several thousands of
compounds. This increase in chromatographic capacity,
however, presents challenges in data preprocessing and
downstream statistical analyses.2 In addition to the high-
dimensional nature of the acquired data, which typically yields
many more features than samples, high instances of missing
values�upward of 80% for some features�is a major
problem. Missing data severely limit even the most robust

tools available in the statistical toolkit, creating uncertainty
around population estimators of location (means, medians)
and dispersion (variances). This decreases statistical power and
can lead to inconclusive or misleading inferences. Subse-
quently, more sophisticated multivariate and statistical learning
approaches are also handicapped.
Missing values in metabolomics data sets arise from a variety

of technical and biological sources. Data points can be absent
because of instrumental limitations (e.g., detection limits),
ineffective processing of the acquired data, or because the
peaks are truly not present in the sample. These drivers can be
broadly classified into three missingness mechanisms: missing
completely at-random (MCAR), missing at-random (MAR),
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and missing not-at-random (MNAR).4,5 Data points are
MCAR if they are missing due to wholly random events or
errors, not related to whether data are present or absent, and
occur over the entirety of the data distribution.4 For example,
in volatile metabolomics, data points missing due to issues with
sample preparation techniques or an instrumental issue can be
deemed MCAR. Missingness of the MAR type are data points
whose missingness is dependent on or associated with other
observed values.4 This can arise as a result of suboptimal data
processing steps related to peak alignment and/or deconvo-
lution or from the choice of a sampling modality or
chromatographic column that is selective for some chemical
characteristics (e.g., polarity) over others. Finally, MNAR is
due to the variable itself, for example, data that are missing due
to factors such as limits of quantification or detection (LOQ or
LOD, respectively).4,6

One of the most common strategies for handling missing
data is a combination of removing features that have high
proportions of missingness and replacing the remaining
missing data points with zero. An application of this approach
is the “80% rule” whereby features that have missing data
points in more than 20% of samples (i.e., “frequency of
observation” <80%) are removed from the data set, after which
the remaining missing values are replaced with zeros.7 A
variation of the 80% rule aimed at reducing the possibility of
losing potentially important features is the “modified 80%
rule,” which restricts the rule to within sample groups or
classes.8 While this can reduce the sparsity of the data set, a
disadvantage of imputing missing data points to zero (or to a
similarly small value such as half of the global minimum) is
skewing the distribution or underestimating measures of
variance,9 despite the assumption that the missingness might
be due to the LOD and the distribution is left-censored. As
such, it is important that more careful thought be given to
addressing missingness in metabolomics data, and the
implications on preprocessing and downstream statistical
analyses, especially as they relate to the missingness type.
Characterizing the missingness type is challenging, primarily

due to the difficulty of identifying the mechanisms that led to
the missingness; this creates problems because many
imputation solutions require the missingness type be
known.10 While it may be possible to test for a necessary
condition of MCAR explicitly, this is not the case for MAR.10

Testing for MAR versus MNAR is also difficult unless there is a
strong a priori assumption for MNAR.11 When testing for
MAR versus MCAR, it is important to note that because MAR
is a condition of MCAR, tests of MCAR are thus only testing a
necessary condition of that missingness type and should only
be applied if an assumption of MAR holds a priori.10 In
addition, the missingness type falls into two general categories
of “ignorable” and “nonignorable.”10 MCAR and MAR can be
considered ignorable in that virtually any imputation method
can be used without serious negative consequences. There are
numerous approaches for testing the condition of MCAR and
MAR against the MNAR alternative, including Little’s test (for
MCAR) and likelihood ratio tests (MAR versus MNAR,
although only if there is a strong a priori assumption for
MNAR).10 MNAR is considered nonignorable, and the
imputation approach used should be carefully considered.
Addressing missingness of this type is difficult in part due to
the ambiguity surrounding its driver(s). Consequently, tests for
MNAR are much more limited and generally not confident in
evaluating the MNAR assumption.10

In an effort to better understand missingness mechanisms
and their implications for preprocessing in untargeted
metabolomics data, we explore two real-world GC × GC
data sets. We have three goals for this study. First, we aim to
gain some level of insight into the missingness mechanism(s)
of multidimensional metabolomics data. Second, based on
inferences surrounding missingness type, we compare the
performance of nine widely known methods for imputing
missing data: zero, mean, median, minimum, half-minimum
(HM), Random Forest (RF), Bayesian principal component
analysis (BPCA), quantile regression imputation of left-
censored data (QRILC), and Gibbs sampler imputation
(GSImp). Third, we introduce an imputation approach that
takes into account the availability of replicate measurements in
the data set and the effect of imputation on reproducibility.
Analyzing samples in replicate can provide valuable informa-
tion about missing values, specifically to the question of
whether they are “truly” missing or rather missing due to
stochastic events. This approach, along with strategies to assist
in evaluating missingness in metabolomics data sets, is
wrapped into an R package we created called MetabImpute.
The strategy of imputing in the context of replication has
significant implications in data preprocessing and subsequent
statistical analysis, and, to our knowledge, this study is the first
to describe a replication-based imputation approach and is the
first systematic examination of the effect of imputation on
reproducibility.

■ EXPERIMENTAL SECTION
Metabolomics Data Sets. Two real-world metabolomics

data sets were used for this study and are described
previously.12,13 The first data set�hereafter referred to as
the fungal data�is composed of six strains each of the fungi
Coccidioides immitis and C. posadasii, each grown in biological
triplicate in either the mycelia or spherule life cycle, and three
uninoculated liquid media controls per life cycle, for a total of
78 samples. The second data set�hereafter referred to as the
bacterial data�contains 81 Pseudomonas aeruginosa cystic
fibrosis chronic lung infection isolates analyzed in biological
triplicate, including uninoculated liquid media controls, for a
total of 258 samples. For both experiments, headspace volatile
compounds were extracted using solid-phase microextraction
(SPME) and analyzed by comprehensive two-dimensional gas
chromatography coupled to time-of-flight mass spectrometry
(GC × GC-TOFMS). After data cleanup (artifact and
contaminant removal), a total of 767 chromatographic features
were identified for the fungal data set and 979 chromato-
graphic features for the bacterial data set. The full methods for
data preprocessing were previously published,12,13 including a
comprehensive list of artifacts removed during data cleanup.13

Evaluation of the Missingness Mechanism. Pairwise
correlations (Pearson and Spearman) between each feature’s
missingness vector (where present values are replaced with 1
and missing values with 0) and all other features in the data set
were calculated. Features were considered MCAR if no
significant correlations were found between any pair of features
(Benjamini−Hochberg-corrected P ≤ .05); features were
grouped as MAR or MNAR otherwise. Additionally, the
strength of the pairwise correlations regardless of significance
was used to assess missingness in which moderate or stronger
correlations (≥0.5) were suggestive of MCAR. The Kolmogor-
ov−Smirnov (KS) goodness-of-fit test and the Cucconi test
with Benjamini−Hochberg correction were applied to the

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c04093
Anal. Chem. 2022, 94, 10912−10920

10913

pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c04093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


remaining features to determine whether their distributions
were left-truncated, indicative of possible MNAR missing-
ness.14 Features with left-truncated distributions when
compared to left censored normal distributions were
characterized as MNAR, and MAR otherwise. Features with
greater than 60% missingness were excluded from analysis as
the KS test fails in left truncated vectors above this missingness
threshold.15

Simulation and Missing Value Generation. Simulated
complete data sets of identical dimensionality were created by
generating matrices based on the estimated covariance
structure of the incomplete fungal and bacterial data sets
using an approach described previously.15 For both simulated
data sets, we utilized the approach detailed by Kokla et al. to
simulate MAR, mixed (1:1) MAR/MNAR, and MNAR
missingness mechanisms for missing proportions from 5 to
50%.15 This process involves sequentially choosing two
features at random and removing a select proportion of the
largest values in one of these features in the case of MAR. For
MNAR, we consider only left-truncated missingness. Here,
single variables have a random proportion of their lowest
values removed, and this process is repeated until the desired
missingness proportion is reached.
Missing Value Imputation. Nine common imputation

methods were evaluated (descriptions in Supplementary
Information). Minimum, half-minimum (HM), mean, and
median imputation methods are “single-value” imputation
methods that impute missing values of a feature to the global
values indicated by the respective methods. For zero
imputation, missing values were replaced with zeros. For the
MAR, MNAR, and mixed MAR/MNAR simulated data sets,
zero imputation was excluded because simulated data were
drawn from a normal distribution based on covariance
matrices. Because this distribution is continuous with no
clear lower bound, there is no obvious numeric choice that is
analogous to zero. For analyses involving the fungal and
bacterial data sets, zero imputation was utilized as the basis of
comparison between imputation methods. Four additional
algorithmic approaches�Bayesian principal component anal-
ysis (BPCA),16 Random Forest (RF),17 quantile regression
imputation of left-censored data (QRILC),18 and Gibbs
sampler imputation (GSImp)19�were considered. Addition-
ally, for every method above, an approach that considers
replication was devised. First, for samples in which there are 1/
3 present values within the set of three replicates, the present
values within the replicate group are permuted to zero and the
missing values are imputed to zero (i.e., all values in the
replicate group are set to zero). Second, for samples in which
there were 2/3 present values within the set of replicates, the
present values are left unchanged while missing values are
imputed using one of the nine imputation approaches
described above: for minimum (RepMin), half-minimum
(RepHM), mean (RepMean), and median (RepMedian),
using the present values within the replicate samples; for
BPCA (RepBPCA), RF (RepRF), QRILC (RepQRILC), and
GSImp (RepGSImp), using the present values across the entire
data set. For zero (RepZero), the missing values within the
replicate are imputed with zeros. All imputation was performed
prior to any normalization.
Performance Evaluation. Normalized root-mean-square

error and PCA-Procrustes analysis were used to evaluate model
performances.15,20 Intraclass correlation coefficients (ICC)
were used as a measure of reproducibility for each feature.21

ICCs were classified as: excellent ≥0.90, good 0.75−0.89,
moderate 0.50−0.74, and poor <0.50.22 The overall change in
ICC was measured for an imputation method by taking the
mean change in ICC over n number of features (F) versus two
baselines, the original data (with missing values), and the zero-
imputed data:

n
ICC

(ICC ICC )F F F
imputed

imputed baseline
=

■ RESULTS AND DISCUSSION
Evaluation of Data Set Missingness Types. We first set

out to identify the missingness profiles of two metabolomics
data sets, one from an analysis of fungal volatile metabolites
and the other from an analysis of bacterial volatile metabolites.
Because the acquisition of metabolomics data involves many
confounding factors that can affect the presence or absence of
a metabolite, such as instrumental LOD/LOQ, numerous
method parameters, and sampling methodologies, we posit that
missingness of the completely at-random type is unlikely.
Using Pearson and Spearman correlation analyses between
missing and present volatiles, it was found that every feature
was significantly correlated (P ≤ .05) to the missingness of at
least one other feature for both data sets (pairwise correlations
not shown). Thus, there were likely not any features that could
be categorized as MCAR using this method. By exclusion, we
determined that our data was composed of either MAR,
MNAR, or a mixture of the two. Furthermore, we assumed that
the most likely mechanism of left-censored MNAR is due to
below-limits of detection, a commonly presumed cause of
missingness in metabolomics.6 The Kolmogorov−Smirnov
(KS) test, which tests for a left-truncated distribution, was
used to investigate this. The missingness profiles of both data
sets were evaluated by the proportion of features classified as
each missingness type (relative to the total number of features)
and by the contribution of individual missing values (relative
to the total number of missing values). Results suggested a
large number of volatile features possessing left-truncated
distributions, and we characterized these to be predominantly
MNAR. The largest proportion of features across the entirety
of both data sets were considered MAR, followed by features
that could not be evaluated due to high degrees of missingness
(≥60%). In both data sets, features that were excluded from
the analysis of the missingness type (detected in <60% of
samples) had the highest contribution to the overall
missingness followed by those with MAR (Figure 1).
It is reasonable to conclude that volatiles with more than

60% of their data missing (excluded in order to apply the KS
test) contributed largely to the overall missingness. Although it
is impossible to know with certainty the mechanism of
missingness for these features, pairwise correlation analysis
suggested that there was a low degree of MCAR when using
only significant correlations (classified as MCAR if Benjamini−
Hochberg-corrected P < .05 for all pairwise correlations).
When assessing MCAR using correlation coefficients regardless
of significance, inferences are less clear as strong correlations
(≥0.7) suggest the presence of small proportions of MCAR
(16 and 19% for the fungal and bacterial data sets,
respectively). Between MAR and MNAR, however, there is
more ambiguity. This is largely due to the fact that the KS test
assumes a normal distribution and is testing whether or not the
distributions of the volatile features are approximately normal
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(Gaussian) versus left-censored. Density plots of these data
sets show that many features’ distributions are skewed to the
right, consistent with data that are missing due to LOD/LOQ
(Figure S1). Cullen and Frey plots, which can be used to infer
the distributions of these features, show that normal
distributions are not common in either data set (Figure 2).
Because of this, it is likely that models dependent on normal
distributions poorly fit the data and give spurious inferences
about missingness. To bolster the results from the KS test, we
applied the nonparametric Cucconi test, which compares the
location and scale between two distributions. Results from the
Cucconi test differed from those of the KS test in that they
indicated higher proportions of MAR data (Figure 1). These
conflicting results speak to the difficulty in characterizing
distributions and identifying missingness mechanisms.
While it was found that a majority of volatiles appear to be

MAR or MNAR, there are limitations to these approaches,
primarily due to the difficulty in identifying the true
distribution of metabolomic features. Distribution analysis
showed that there is a wide variation in potential “true”
distributions of features, and this analysis is itself limited by
high degrees of missingness. Often, assumptions must be made
by researchers regarding the likeliest missingness mechanism in
order to properly select an imputation method; however, clear
guidelines do not exist to select appropriate methods. It is
important to note that the choice of an imputation method
should not be taken lightly, as biases may be introduced into
the data. These relationships can skew statistical results and
subsequent inferences. Although we did not explore other
methods here, inferences about the missingness type might be

made by examining frequencies of observation of features
within groups, such as sample replicates or sample classes.
Examining the signal-to-noise ratio of features can also aid in
inspecting the missingness type. Information gleaned from
these strategies can inform what imputation approaches may
be the most appropriate, as well as how to impute with respect
to the experimental design (i.e., imputation across the data set
as a whole, or imputation within sample classes or replicates).
Imputation Evaluation of Simulated Complete Data.

To evaluate the impacts of imputation on the data sets,
simulated complete data matrices based on the covariance
structure of the real data were generated for each data set.
Matrices with missingness levels ranging from 5 to 50% were
also generated with intervals of 5% in three types of
missingness mechanisms: MAR, MNAR, and mixed (1:1)
MAR/MNAR. Imputation methods were applied, and
normalized root-mean-square error (NRMSE) and PCA-
Procrustes (PCA-P) analyses were performed to compare the
imputed matrices to the complete matrices, where smaller
values indicate better relative performance. In the MAR
mechanism, we find that RF imputation outperformed other
imputation methods in both performance metrics for the MAR
mechanism of missingness, and GSImp outperformed other
imputation methods for the MNAR when analyzed by NRMSE
(Figure 3), confirming the findings of other studies.15,19 The
PCA-P analysis of the MNAR data showed that HM and
QRILC perform equally well as GSImp, even at high levels of
missingness. In the mixed missingness mechanism approach
combining MAR and MNAR, we find that RF is the highest
performing imputation method when evaluated by NRMSE,
while PCA-P scores suggest that at low proportions of
missingness (up to 20%), all but mean and median imputation
methods perform well. However, as the proportion of
missingness increases, BPCA begins to perform poorly, and

Figure 1. Percent missingness type by volatile features (number of
features of each missingness type divided by the total number of
features), and percent contribution of each volatile feature’s
missingness to the overall missingness profile (number of missing
values within each feature for each missingness type divided by the
total number of missing values). (A) Classification using Pearson
correlation and the KS test. (B) Classification using Pearson
correlation and Cucconi test. “Excluded” refers to features that
could not be evaluated by the KS test because of high degrees of
missingness (≥60%). MCAR was not detected in either data set.

Figure 2. Cullen and Frey plots of estimated distributions of all
variables in each data set.
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while HM, Minimum, GSImp, QRILC, and RF all continue to
perform quite well, GSImp was superior at the highest levels of
missingness. GSImp may be particularly robust as an
imputation method as it employs Elastic Net regularization
to overcome the problem of high dimensionality (p features ≫
n observations) and better accommodates unique correlation
structures. The degradation in the performance of BPCA could
be due to the use of expectation maximization (EM) to
estimate variance−covariance parameters, which requires a
large sample size and MAR missingness.23−25 High proportions
of missingness and the presence of MNAR could be decreasing
the robustness of this estimation. EM is also more suited for
models that require the assumption of linearity, a characteristic
that may not be inherent to this data.
Notably, two of the worst performing imputation methods

by NRMSE score�HM and QRILC�performed well by
PCA-P (Figure 3). The discrepancy in performance of QRILC

between these two metrics may be due to the assumption of
normality required for QRILC. These results also indicate that
different imputation methods could be more useful depending
on what downstream analysis is used, a conclusion that
previous research also suggests.26 For example, RF may be a
good choice for imputation when the data are dominated by
MAR or a mixture of MAR and MNAR, which are the two
most likely scenarios for the bacterial and fungal data (Figure
1). With respect to single imputation methods (mean, median,
minimum, etc.), it is important to note that these methods can
underestimate variability and introduce bias.27,28 This analysis
of imputation methods, however, does not address the degree
to which imputation affects sample reproducibility when
replicate data are available, as they are for both the fungal
and bacterial data.
Effects of Imputation on Replication. The samples in

the bacterial and fungal data sets were analyzed in biological

Figure 3. Performance of imputation methods applied to various proportions of MAR, MNAR, and mixed (1:1) MAR:MNAR missingness
simulated from the fungal and bacterial data sets, where smaller values indicate better relative performance. HM = half-minimum, BPCA = Bayesian
principal components analysis, GSImp = Gibbs sampler imputation, QRILC = quantile regression imputation of left-censored data, and RF =
Random Forest.
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replicates of three, and therefore, these correlated samples
contain additional information that can be leveraged to
improve the reproducibility of the samples via imputation of
missing values. A simple measure of reproducibility is the
intraclass correlation coefficient (ICC). ICC thresholds have
been used by us and others as a filter during data cleanup and
postprocessing to simplify the data structure and aid in the
identification of important features. This is accomplished by
removing those features that have low reproducibility while
retaining potentially important rare features.12,13,29−31 We
measured the reproducibility of the metabolomes within these
triplicates before and after imputation using the nine standard
(nonreplicate) imputation methods, as well as the same
methods adapted for replicate data. The replicate imputation
approaches assign all values for a feature in a replicate group to
zero if the within-group missingness exceeds 50% for that
feature (where a group is defined as a set of biological
replicates); alternatively, if within-group missingness is less
than 50%, the missing values are imputed based on one of the
standard imputation approaches. This “majority−minority”
imputation approach treats peaks that are detected in a
majority of sample replicates as more likely to be a product of
the metabolism being studied, and peaks that are detected in a
minority of sample replicates as more likely to be present due

to chance. Using the mean of the change in ICC between the
original data or the zero-imputed data (as a baseline), and the
standard and replicate imputation methods, we found that all
of the standard imputation methods decreased feature ICC
compared to the original data containing missing values, while
replicate imputation methods increased ICC across all features
for both the data sets when compared to the original data
(Figure 4A) or standard zero imputation (Figure 4B).
Furthermore, the replicate imputation method outperformed
the equivalent standard imputation method in all cases, when
measured by ICC (Figure 4).
We analyzed the driving factors of the increase in ICC

observed when employing within-replicate imputation and
found that a large proportion of features possessed excellent
ICC after imputation of missing values, whereas with standard
imputation methods, there was a higher proportion of features
with poor ICC (Figure 5). Taking a closer look, we observed
large numbers of features with great increases in ICC in the
majority of replicate imputation methods when compared to
both zero-imputed data as a baseline and no imputation. For
example, RepHM imputation results in 346 and 464 volatiles
shifting from poor ICC to excellent ICC in the fungal and
bacterial data sets, respectively (Figure 6 and Table S1). We
hypothesized that this upward shift in feature ICCs was

Figure 4. Mean change in ICC across all individual features between imputation methods compared to (A) original un-imputed data with missing
values, and (B) zero-imputed data as a baseline using standard imputation (blue) or replicate imputation (green) methods. Whiskers represent the
nonsimultaneous 95% confidence intervals. HM, half-minimum; BPCA, Bayesian PCA; GSImp, Gibbs sampler imputation; QRILC, quantile
regression imputation of left-censored data; and RF, Random Forest.

Figure 5. Proportion of features in each ICC category following imputation. HM = half-minimum, BPCA = Bayesian PCA, GSImp = Gibbs sampler
imputation, QRILC = quantile regression imputation of left-censored data, RF = Random Forest, Rep = replicate version of imputation. Excellent:
≥0.90; Good: 0.75−0.89; Moderate: 0.50−0.74; Poor: <0.50.
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primarily due to the permutation of replicate groups to zero in
the case that only a single value out of three was present. To
explore this hypothesis, the proportion of replicate groups that
was permuted to zero of all the groups present was plotted
against the change in ICC of all imputation methods compared
to the zero imputed data (as a baseline) for each feature.
Scatter plots of these results show that features in which there
are a large number of replicates permuted entirely to zero tend
to have large positive ICC changes (Figure S2). Pearson
correlations of the ICC changes to proportion of features
permuted to zero in the fungal and bacterial data ranged from
0.78 to 0.89 (P = 0+) and 0.62 to 0.83 (P = 0+), respectively,
depending on the within-replicate imputation method used
(Table S2), suggesting that permuting features of a replicate
group to zero if the majority of values are missing is an
important mechanism for increasing ICC.
MetabImpute for Exploring Missingness and Per-

forming Replicate Imputation. The replicate imputation
methods described in this study can be adapted for any
number of replicates, and the threshold for the percentage of
missing values that are imputed may also be modified. Based
on the analyses performed in this study, we developed an R
package called MetabImpute to explore various aspects of
metabolomics data sets, especially those with technical or
biological replicates. Included in the package are tools to
evaluate missingness mechanisms, variable distributions, to
impute using all the methods described in this study, and
finally, to evaluate the effects of imputation on ICC. Table S3
lists the package dependencies and adapted/modified packages
utilized in MetabImpute.
Limitations. Several important limitations and areas for

future investigation exist. While we considered many
commonly utilized imputation methods, others including k-
nearest neighbors, singular value decomposition, local least
squares, and random imputation are available. Our analysis also
did not evaluate the impact of imputation and missing values
on approaches for normalizing compound abundances (e.g., to
an internal standard, probabilistic quotient normalization, etc.).
In our case, we imputed prior to normalization and estimated
ICCs after normalization. The effects of the order of these
operations, to our knowledge, have not been extensively
studied.
In our classification of missingness type, certain variables

have a small sample size due to high proportions of
missingness. For Pearson correlation, small sample sizes
could impact the robustness of the correlation estimation;

however, as we did not consider variables with 60% or greater
missingness, the minimum sample size for a given variable
would be 30 in the fungal data set and 103 in the bacterial data
set. Prior research suggests that 30 samples are enough to make
sound inferences from Pearson correlation.32

In some cases, researchers may wish to evaluate a model’s
predictive ability and utilize a training and testing set. Some
predictive models allow missing values while others do not,
and if imputation is required, two main points must be
considered. If data are held out when building a model, certain
methods of imputation (i.e., those that use the rest of the data
set to impute a given variable’s missing values) should be used
on each set independently to reduce bias. Further research is
needed to explore this.
In the MetabImpute package, users have the option of

choosing a replicate threshold specifying what percentage of
missing values are imputed to either zero or a nonzero value
using the chosen imputation approach and what present values
are permuted to zero. There may be instances where users have
different numbers of replicates than what is presented in this
study (e.g., more than three). We explored the effect of various
thresholds using a third data set composed of ten samples
(eight bacterial cultures and two uninoculated media samples),
each with six replicates. Results showed that the most optimal
replicate imputation method(s) were not the same as those
identified for the bacterial and fungal data (data not shown).
This is likely due to the significantly smaller sample size of this
third data set (which was also more sparse) and makes it
difficult to generalize the effect of different thresholds to larger
data sets with more than three replicates. It is therefore
advisable to use the MetabImpute package to evaluate
multiple replicate thresholds and imputation methods to
determine the most appropriate approach for the data at hand.

■ CONCLUSIONS
Handling missing data is an important issue in metabolomics
data postprocessing and can significantly affect downstream
analysis. Methods do exist to assess mechanisms of
missingness; however, many rely on inherent assumptions
about the missingness mechanisms themselves, and others
cannot be utilized in metabolomics data that commonly
contain significantly more features than samples. Additionally,
certain methods of excluding features with high missingness,
such as the 80% rule, introduce the risk of excluding potentially
important features (e.g., biomarkers).
In this study, we took two real-world GC × GC volatile

metabolomics data sets that were collected in biological
triplicates and evaluated their missingness profiles and the
mechanisms that underlie them. We concluded that out of the
features we were able to analyze, the missingness profiles in
both the data sets were likely not MCAR, but a mixture of
MAR and MNAR, with a higher proportion of the former. A
large number of volatiles also possessed high degrees of
missingness and followed many different distributions. Using
simulated data, RF imputation appeared to outperform other
imputation methods with MAR data, while GSImp out-
performed other imputation methods with MNAR data. In
mixed missingness data, results were less clear; however, RF
and GSImp outperformed other methods.
In the setting of data with biological or technical replicates,

the effects of imputation have not been studied previously. We
introduced and evaluated a methodology described as replicate
imputation, where features that have a high percentage of

Figure 6. Network plot of ICC shifts of volatile features following
within-replicate half-minimum (RepHM) imputation. Excellent:
≥0.90; Good: 0.75−0.89; Moderate: 0.50−0.74; Poor: <0.50.
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missingness within the replicates are permuted to zero, and
missing value imputation is performed on the remaining
features using the present values within the sets of replicates.
Uniformly, utilizing the replicate imputation method led to
higher overall ICC, which may preserve relationships within
replicate groups and more features for downstream analysis
that could be important for biomarker discovery. We
conveniently present these missingness evaluation and
imputation strategies in an R package called MetabImpute
such that explorations into missingness in metabolomics data
sets can be easily incorporated into a data preprocessing
pipeline.
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