Skip to main content
. 2022 Aug 7;16:2463–2476. doi: 10.2147/OPTH.S377262

Table 1.

Summary Characteristics of Included Studies

First Author, Publication Year Study Design Disease Type (Other Diseases Studied) Country of Publication Study Purpose Sample Size Classes of AI Statistical, AI, Bioinformatics Methods Biofluids Biomarker(s) Analyzed Significant Biomarker(s) and Key Pathways
Acar,28 2020 Cross-sectional AMD Netherlands Disease characteristics 6608 2 Unsupervised: PCA Statistical method: Univariate logistic regression, linear regression Plasma Metabolic profile 146 metabolites, including those involved in large and extra-large HDL subclasses, VLDL, amino acid 73, citrate, complement activation
Arai,60 2020 Prospective cohort AMD, nAMD, PCV Japan Treatment decisions 48 1 Statistical method: Multiple regression analysis Aqueous humor Cytokines MCP-1, IL-10 (baseline BCVA); MCP-1, CXCL13 (better BCVA in 12 months); MMP-9, CXCL12, IL-10 (increased number of injections required)
Boekhoorn,29 2007 Prospective cohort AMD Netherlands Risk factors 4606 1 Statistical method: Cox proportional hazards regression Serum CRP CRP
Buch,30 2005 Prospective cohort AMD Denmark Risk factors 359 1 Statistical method: Univariate logistic regression, multivariate logistic regression Serum Limited lipid profile Total cholesterol, apolipoprotein A1, apolipoprotein B
Chaker,31 2015 Prospective cohort AMD Netherlands Risk factors 5573 1 Statistical method: Cox proportional hazards regression Serum Thyroid markers Free thyroxine
Cougnard-Gregoire,32 2014 Prospective cohort AMD France Risk factors 963 1 Statistical method: Generalized estimating equation logistic regression Serum Lipids HDL
Gao,16 2020 Prospective cohort nAMD Singapore Treatment decisions 100 4 Supervised: PCA Unsupervised: OPLS-DA Bioinformatics: Pathway analysis Statistical method: Logistic regression Serum Metabolic profile LysoPC (18:2), PS (18:0/20:4), glycerophosphocholine
Han,33 2020 Cross-sectional wAMD China Disease characteristics 46 (20 cataract controls, 26 wAMD) 3 Supervised: PCA Unsupervised: OPLS-DA Bioinformatics: KEGG Aqueous humor Metabolic profile Deoxycarnitine, N6, N6, N6-trimethyl-L-lysine, glycine betaine, itaconic acid, cis-aconitate, 5-aminopentanoic acid, norleucine, L-phenylalanine, carnitine, γ-glutamylglutamine, hetisine, 3-phenyllactic acid, LPC 18:2, coumaroyl agmatine, N-acetylhistidine, creatine, N-fructosyl isoleucine, L-proline (Carnitine-associated mitochondrial oxidation pathway, carbohydrate metabolism pathway, activated osmoprotection pathway)
Joachim,34 2015 Prospective cohort AMD Australia Risk factors 3654 1 Statistical method: Discrete logistic regression models Serum Limited lipid profile None
Jonasson,35 2014 Prospective cohort AMD, GA Iceland Risk factors 2868 1 Statistical model: Multivariate logistic regression Serum Cardiovascular health profile HDL-cholesterol
Kersten,36 2019 Cross-sectional AMD Netherlands Disease characteristics 144 (72 cases, 72 control) 2 Supervised: sPLS-DA Statistical method: Logistic regression Serum Metabolic profile Glutamine, glutamate, glutaminolysis, phosphatidylcholine diacyl C28:1 (PC aa C28.1)
Klein,37 2019 Prospective cohort AMD USA Risk factors 4972 1 Statistical method: Logistic regression, linear regression, multi-state Markov Serum Limited lipid profile None
Kuiper,38 2017 Cross-sectional AMD (idiopathic non-infectious uveitis, primary vitreoretinal
lymphoma, rhegmatogenous retinal detachment)
Netherlands Disease characteristics 175 3 Supervised: Decision tree Unsupervised: Hierarchical cluster analysis Statistical method: SMOTE, k-nearest neighbors Aqueous humor Proteomic profile IL-10, IL-21, ACE
Lai,22 2009 Randomized control trial nAMD Hong Kong Treatment decisions 50 1 Statistical method: Multivariate logistic regression Aqueous humor VEGF, PEDF Baseline VEGF
Laíns,39 2018 Cross-sectional AMD USA Disease characteristics 120 2 Unsupervised: PCA Statistical method: Multivariate logistic regression Bioinformatics: Pathway analysis Plasma Metabolic profile 87 differentially expressed metabolites (48 across all AMD stages), including linoleoyl-arachidonoyl-glycerol, stearoyl-arachidonoyl-glycerol, oleoyl-arachidonoyl-glycerol, 1-Palmitoyl-2-arachidonoyl-GPC, 1-stearoyl-2-arachidonoyl-GPC, adenosine, glycerophospholipid pathway
Laíns,24 2019 Cross-sectional AMD USA Disease characteristics 491 (196 with 47 controls in Boston, 295 with 53 controls in Portugal) 3 Unsupervised: PCA Bioinformatics: Pathway analysis, KEGG Statistical method: Multivariate logistic regression Plasma Proteomic profile 28 metabolites, including those from the lycerophospholipid, purine, taurine, hypotaurine, and nitrogen metabolism pathways
Luo,40 2017 Cross-sectional wAMD China Disease characteristics 40 (20 AMD, 20 controls) 3 Supervised: PLS-DA Unsupervised: PCA, hierarchical cluster analysis Bioinformatics: KEGG Plasma Metabolomic profile N-Acetyl-L-alanine, N1-Methyl-2-pyridone-5-carboxamide, L-tyrosine, L-phenylalanine, L-palmitoylcarnitine, L-methionine, L-Arginine, isomaltose, hydrocortisone, biliverdin
Lynch,41 2019 Cross-sectional AMD USA Disease characteristics 30 (10 AMD, 10 GA, 10 cataract controls) 2 Bioinformatics: Pathway analysis Statistical method: Linear regression Plasma Proteomic profile AMD: Vinculin, CD177 AMD pathways: Cargo trafficking to the periciliary membrane, FGFR3b ligand binding and activation, VEGF binds to VEGFR leading to receptor dimerization/VEGF ligand-receptor interactions, common pathway of fibrin clot formation GA: Neuroregulin 4, soluble intercellular adhesion molecule-1 GA pathways: SHC1 events in ERBB4 signaling, PI3K events in ERBB4 signaling, SHC1 events in ERBB2 signaling, GRB2 events in ERBB2 signaling, nuclear signaling by ERBB4, NADE modulates death signaling, PI3K events in ERBB2 signaling, signaling by BMP, interleukin receptor SHC signaling, regulation of beta-cell development, regulation of commissural axon pathfinding by SLIT and ROBO, reversible hydration of carbon dioxide, tetrasaccharide linker, cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding, ERBB4
Lynch,42 2020 Cross-sectional AMD USA Disease characteristics 109 2 Bioinformatics: Pathway analysis Statistical method: Linear regression, Cox proportional hazards regression, univariate logistic regression Plasma Proteomic profile TCL1A, CNDP1, lysozyme C, TFF3, RNAS6, SAP3 Pathways: Tumor necrosis factor binding, digestion and absorption, activin signaling, TGF-β family signaling
Mendez,43 2021 Cross-sectional AMD USA Disease characteristics 71 1 Statistical method: Unspecified multilevel mixed-effects linear model Plasma Metabolic profile Metabolites: linolenate, mannitol, sorbitol, glycosyl ceramide (d18:2/24:1, d18:1/24:2), beta-alanine, 3-methyl-2-oxovalerate, 3-methylglutaconate, isoleucine Pathways: polyunsaturated fatty acid (n3 and n6), fructose, mannose and galactose Metabolism, fatty acid metabolism (acyl choline), hexosylceramides (HCER), pyrimidine metabolism, uracil, leucine, isoleucine and valine metabolism
Millen,44 2015 Retrospective cohort AMD USA Risk factors 913 1 Statistical method: Logistic regression Serum Vitamin D, CRP Vitamin D
Millen,45 2017 Retrospective cohort AMD USA Risk factors 9734 1 Statistical method: Logistic regression Serum Vitamin D, lipid profile None
Mitchell,52 2018 Cross-sectional nAMD USA Disease characteristics 292 4 Supervised: PLS-DA, SV_RFE, random forest Unsupervised: Hierarchical cluster analysis Bioinformatics: Pathway analysis Statistical method: Linear regression, linear models for microarray data, variable importance for projection Plasma Metabolic profile 159 metabolites from the carnitine shuttle pathway (fatty acid metabolism) and bile acid biosynthesis pathway
Ngai,46 2011 Prospective cohort AMD UK Risk factors 934 1 Statistical method: Logistic regression, multivariable regression Serum Limited metabolomic and lipidomic profile Total triglycerides, CRP
Nielsen,53 2019 Prospective cohort GA, nAMD Denmark Risk factors 110 1 Statistical method: Linear regression Plasma Cytokines, inflammatory markers IL-6, IL-8, IL-10, TNF-R2, CRP
Osborn,54 2013 Cross-sectional nAMD USA Disease characteristics 45 (26 AMD, 19 control) 3 Supervised: OPLS-DA, SVM Unsupervised: PCA Bioinformatics: KEGG Serum Metabolomic profile 52 metabolites including those from the tyrosine, sulfur amino acid, and urea metabolism pathways
Robman,47 2007 Case–control AMD Australia Risk factors 630 (197 AMD, 433 control) 1 Statistical method: Logistic regression Serum Chlamydia pneumoniae related markers None
Robman,48 2010 Case–control, retrospective cohorta AMD Australia Risk factors Case–control: 5.44 (312 AMD, 232 control) Cohort: 254 1 Statistical method: Univariate and multivariate logistic regression Serum CRP CRP
Sato,56 2018 Prospective cohort nAMD Japan Treatment decisions 43 (21 nAMD patients, 22 cataract controls) 1 Statistical method: Logistic regression Aqueous humor Inflammatory cytokines and growth factors IL-6, IP-10, VEGF
Sato,55 2019 Cross-sectional nAMD Japan Disease characteristics 82 (62 AMD, 20 cataract control) 2 Unsupervised: PCA, hierarchical cluster analysis Statistical method: Binomial logistic regression, EFA Aqueous humor Cytokines IL-6, IL-7, IP-10 MCP-1, MIP-1β, VEGF
Schori,17 2018 Cross-sectional AMD, nAMD (PDR, ERM) Switzerland Disease characteristics 34 (6 dry AMD, 10 nAMD, 9 PDR, 9 ERM) 2 Unsupervised: Hierarchical Pearson clustering Bioinformatics: GO Vitreous humor Proteomic profile 677 proteins including cholinesterase and oxidative stress pathway in dry AMD, focal adhesion in nAMD, and serine carboxypeptidase in all AMD
Subhi,57 2019 Prospective cohort nAMD, PCV Denmark Treatment decisions 81 1 Statistical method: Multiple linear regression, Pearson correlation coefficient Plasma CD11b+ circulating monocytes CD11b+ circulating monocytes
Ueda-Consolvo,58 2017 Retrospective cohort nAMD Japan Treatment decisions 64 1 Statistical method: Multiple regression Unknown HbA1c Unknown
Vanderbeek,49 2013 Retrospective cohort AMD USA Risk factors 486,124 (107,007 for nonexudative AMD analysis, 113,111 for exudative AMD analysis, 10,753 for progression to exudative AMD analysis) 1 Statistical method: Cox proportional hazards regression Serum Lipid profile HDL, LDL
Yao,50 2013 Cross-sectional wAMD China Disease characteristics 12 1 Bioinformatics: GO Aqueous humor Proteomic profile 68 proteins, including those from the inflammation, apoptosis, angiogenesis, and oxidative stress pathways
Yi,59 2020 Prospective cohort nAMD (CRVO, DME, BRVO, pmCNV) China Treatment decisions 144 1 Statistical method: Multivariate linear regression Aqueous humor Cytokines ICAM-1, IL-6, VEGF
Yip,51 2015 Prospective cohort AMD, GA UK Risk factors 5344 1 Statistical model: Multivariable logistic regression Serum Cardiovascular health profile HDL-cholesterol, CRP

Notes: aRelevant study phase.

Abbreviations: AMD, age-related macular degeneration; AI, artificial intelligence; PCA, principal component analysis; nAMD, neovascular age-related macular degeneration; PCV, polypoidal Choroidal Vasculopathy; CRP, c reactive protein; OPLS-DA, Orthogonal Projections to Latent Structures Discriminant Analysis; wAMD, wet age-related macular degeneration; KEGG, Kyoto Encyclopedia of Genes and Genomes; GA, geographic atrophy; sPLS-DA, Sparse Partial Least Squares Discriminant Analysis; SMOTE, Synthetic Minority Oversampling Technique; EFA, exploratory factor analysis; PDR, proliferative diabetic retinopathy; ERM, epiretinal membrane; GO, gene ontology; CRVO, central retinal vein occlusion; DME, diabetic macular edema; pmCNV, pathologic myopia associated choroidal neovascularization.