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Abstract: It is of great academic and engineering application to study the evolution of microstructure
and properties of age-strengthened aluminum alloys during heat treatment and to establish quantita-
tive prediction models that can be applied to industrial production. The main factors affecting the
peak aging state strength of age-strengthened aluminum alloys are the precipitates, solid solution
elements, grain size effects, and textures formed during the material processing. In this work, these
multi-scale factors are integrated into the framework of the knowledge graph to assist the following
crystal plasticity finite elements simulations. The constructed knowledge graph is divided into
two parts: static data and dynamic data. Static data contains the basic properties of the material
and the most basic property parameters. Dynamic data is designed to improve awareness of static
data. High-throughput computing is performed to further obtain clear microstructure-property
relationships by varying the parameters of materials properties and the characteristics of the structure
models. The constructed knowledge graph can be used to guide material design for 6XXX Al-Mg-Si
based alloys. The past experimental values are used to calibrate the phenomenological parameters
and test the reliability of the analysis process.

Keywords: knowledge graph; high-throughput computing; microstructure design; crystal plasticity;
Al alloys

1. Introduction

Aluminum alloy combines the advantages of low density, good electrical conductivity,
high corrosion resistance, good heat dissipation, high specific strength, and easy processing
and is widely used in transportation, aerospace, and other industries [1–3]. The relationship
between “process-structure-performance” of aluminum alloy industrial production is quite
complex. Specifically, the process includes determining the composition, heat treatment,
deformation processing, etc.; the structure involves grain shape and orientation, composi-
tion segregation, and second equivalence. The performance includes elasticity, plasticity,
fracture toughness, etc.

The concept of Integrated Computational Materials Engineering (ICME) [4] was in-
troduced by the US government in 2008 to integrate the tools of computational materials
science into a holistic and systematic materials development process to achieve efficient
development, manufacturing, and use of advanced materials by bridging the gap between
materials design and manufacturing. ICME is now widely recognized and adopted by
industry and academia and will play a significant role in materials development.

The primary strengthening mechanism of 6xxx-series aluminum alloys is the obstruc-
tion of dislocation movement by second-phase particles precipitated during aging, and
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microstructural parameters such as morphology, size, number, and distribution of the
second phase determine the strengthening effect [5,6]. The precipitation process of the
second phase is mainly influenced by the process parameters such as alloy composition,
aging temperature, and aging time. By establishing a quantitative model between process
parameters and microstructure and correlating microstructure parameters with alloy prop-
erties, the influence of process parameters on alloy properties can be quantitatively studied,
which is of great value for the rational design of alloy composition, optimization of heat
treatment conditions, and improvement of alloy properties.

In general, the macroscopic mechanical properties of a material depend on the mi-
crostructure, spanning several scales from micro to macro. A complete multi-scale sim-
ulation starts from first-principles calculations, molecular dynamics, and Monte Carlo
simulations to calculate material physical property parameters such as elastic constants,
intrinsic strains, interfacial energies, diffusion coefficients, etc. Then around the specific
production process parameters, based on the phase diagram thermodynamics and kinetics
to summarize the phase transition law, using the phase-field method, the meta-cellular
automata method can be obtained microstructure. Finally, the stress-strain behavior of the
material is simulated using finite elements. Figure 1 shows a schematic of multi-scale calcu-
lations, from component design through performance simulation, and finally improving
component design based on performance simulation results.
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2. Knowledge Graph

The knowledge graph is a semantic network composed of nodes and edges that map
the real world to the data world. Nodes represent entities or concepts in the physical world,
and edges represent entities’ attributes or relationships [7]. A knowledge graph was first
proposed by Google in 2012 [8] for better serving searches. Nowadays, the application
fields of knowledge graphs are becoming wider and wider. In the face of finance, medical
and other industries, it is also possible to construct knowledge graphs belonging to specific
fields. Through information acquisition, knowledge fusion, and knowledge processing, the
facts in the original data are refined, analyzed, and formed into a graph. The machine can
find the potential associations in the complex relationship and complete the work of case
analysis and anti-fraud. In traditional material calculation, experimental data is scattered.
The calculation data of a single process is stored and analyzed separately. We calculate the
correlation between data by analyzing materials, obtaining material-oriented related laws
and knowledge, and establishing a material knowledge graph. The specific implementation
process is as follows: mining the input factors and result in performance/property sets
and their corresponding relationships of each link in the material simulation calculation
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process, constructing the corresponding knowledge graph structure according to the associ-
ation relationship, and filling the experimental calculation data into the knowledge graph
structure through mining analysis and processing to form the knowledge graph. Based
on the material knowledge graph, reasonable input parameter value recommendations
can be provided for actual simulation calculations. Based on the analysis process shown
in Figure 1, we divide the aluminum alloy simulation calculation process data into two
categories: one is static data such as key performance, computational simulation methods,
and basic simulation elements and simulation steps (Figure 2). The other is the input
and output data of the software that can be changed in the processing flow, which we
call dynamic data (Figure 3). The static data part mainly reflects the relationship between
materials and software and calculation types. The active data part mainly records the
calculation process data.

Materials 2022, 15, x FOR PEER REVIEW 3 of 17 
 

 

obtaining material-oriented related laws and knowledge, and establishing a material 
knowledge graph. The specific implementation process is as follows: mining the input 
factors and result in performance/property sets and their corresponding relationships of 
each link in the material simulation calculation process, constructing the corresponding 
knowledge graph structure according to the association relationship, and filling the ex-
perimental calculation data into the knowledge graph structure through mining analysis 
and processing to form the knowledge graph. Based on the material knowledge graph, 
reasonable input parameter value recommendations can be provided for actual simula-
tion calculations. Based on the analysis process shown in Figure 1, we divide the alumi-
num alloy simulation calculation process data into two categories: one is static data such 
as key performance, computational simulation methods, and basic simulation elements 
and simulation steps (Figure 2). The other is the input and output data of the software 
that can be changed in the processing flow, which we call dynamic data (Figure 3). The 
static data part mainly reflects the relationship between materials and software and cal-
culation types. The active data part mainly records the calculation process data. 

 
Figure 2. Static data, which calculations can be performed for a specific material, what method is 
used for each analysis, and the selection of material parameters used for the calculation. 

 
Figure 3. Schematic diagram of dynamic data, indicating specific simulation experiments based on 
static data of specific materials, what types of calculations are performed in the simulation exper-
iments, and the relevant software and steps required for specific calculations. 

Figure 2. Static data, which calculations can be performed for a specific material, what method is
used for each analysis, and the selection of material parameters used for the calculation.

Materials 2022, 15, x FOR PEER REVIEW 3 of 17 
 

 

obtaining material-oriented related laws and knowledge, and establishing a material 
knowledge graph. The specific implementation process is as follows: mining the input 
factors and result in performance/property sets and their corresponding relationships of 
each link in the material simulation calculation process, constructing the corresponding 
knowledge graph structure according to the association relationship, and filling the ex-
perimental calculation data into the knowledge graph structure through mining analysis 
and processing to form the knowledge graph. Based on the material knowledge graph, 
reasonable input parameter value recommendations can be provided for actual simula-
tion calculations. Based on the analysis process shown in Figure 1, we divide the alumi-
num alloy simulation calculation process data into two categories: one is static data such 
as key performance, computational simulation methods, and basic simulation elements 
and simulation steps (Figure 2). The other is the input and output data of the software 
that can be changed in the processing flow, which we call dynamic data (Figure 3). The 
static data part mainly reflects the relationship between materials and software and cal-
culation types. The active data part mainly records the calculation process data. 

 
Figure 2. Static data, which calculations can be performed for a specific material, what method is 
used for each analysis, and the selection of material parameters used for the calculation. 

 
Figure 3. Schematic diagram of dynamic data, indicating specific simulation experiments based on 
static data of specific materials, what types of calculations are performed in the simulation exper-
iments, and the relevant software and steps required for specific calculations. 

Figure 3. Schematic diagram of dynamic data, indicating specific simulation experiments based
on static data of specific materials, what types of calculations are performed in the simulation
experiments, and the relevant software and steps required for specific calculations.



Materials 2022, 15, 5296 4 of 16

For 6XXX series alloys, the components in the static data are extracted based on the
concerned work hardening to form a complete calculation example process. Starting from
the selection of material parameters, the geometric model is constructed, the calculation
example is prepared, the simulation results are obtained, and the results and parameters
are analyzed. Finally, the parameters are evaluated and a solution for material performance
improvement is obtained. The calculation results of dynamic data will be used to increase
or decrease static data, such as by introducing new methods and strategies, considering
more microstructure information, or discarding unimportant microstructure information.

3. Material Modeling

In this section, the basic framework of micromechanical modeling is introduced in
detail. The described model consists of a geometric description of the grain structure of
polycrystals. The present construction model of plastic deformation in a single grain is
realized by the crystal plasticity method through the user-defined material model (UMAT)
of ABAQUS.

3.1. Representative Volume Elements

When simulating the properties of a material, the results are undoubtedly most accu-
rate if the model constructed covers all the information about the material but requires a
large number of calculations beyond the current level of computer development. The repre-
sentative volume element (RVE) is a unit that is much smaller than the macroscopic system
of the material but is large enough to capture the basic characteristics of the microstructure.
The construction of representative volume cells with various structural features enables
rapid analysis of the effects of material microstructural changes on performance.

There are two main strategies to construct representative volume elements, one is
to use experimental characterization techniques such as electron backscatter diffraction
(EBSD) to obtain real microstructures and thus build geometric models, and the other is to
get microstructures using phase-field simulations, Monte Carlo methods, Voronoi, etc.

The first strategy is mainly used to reveal the relationship between microstructure and
properties of specific materials. Depending on the research problem, it can be either by mod-
eling the high matching of the observed region or by extracting statistical information from
the EBSD observations to construct RVE. Based on the EBSD observations, we can obtain
information about the grain shape, size, orientation, etc. Luo et al. [9,10] targeted the initial
stages of fatigue cracking by constructing RVE directly based on microstructure scans of
material samples in regions of high-stress concentration. This approach, which corresponds
the RVE exactly to the modeled area, is inherently deterministic but requires a large amount
of experimental data and complex preparation, as well as a significant computational
effort, and is therefore only used when exploring specific micromechanical mechanisms.
When studying physical quantities of macroscopic statistical significance, such as yield
stress, tensile strength, and elongation at break at the visible level, information such as
grain features, including orientation, disorientation, and grain size, can be extracted from
microstructural observations to construct RVE. This statistical information-based modeling
approach can be easily implemented by many software programs, such as Neper [11–13],
DREAM.3D [14], and Kanapy [15]. Figure 4 shows two RVE with equiaxed crystal organi-
zation constructed by Neper based on the same seed point. Figure 4a shows the standard
Voronoi polyhedral structure, and Figure 4b shows the stable system with higher grain
sphericity. Figure 4c,d reflects the difference in the size distribution of grain morphology,
with a more concentrated grain size distribution in the Voronoi polyhedral structure.

The second strategy is mainly used to find the correspondence between process
parameters and properties of the material. The microstructures obtained by simulation-
based means are more energy-efficient and faster than preparing alloy samples, and the
uncontrollable factors are significantly reduced. Borukhovich et al. [16] combined the phase
field approach with crystal plasticity theory to simulate the entire machining cycle from
quenching, and over-tempering, to mechanical testing.
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In addition to constructing representative volume cells that match the real microstruc-
ture, it is also possible to explore the influence of material microstructure on properties by
constructing representative volume cells with different characteristics, such as grains of
specific morphology, the spatial distribution of grain size, and chemical composition, etc.
Figure 5a shows the mechanical properties of non-isometric crystals by constructing grains
with different aspect ratios, which correspond to aluminum alloys with elongated grains
after rolling or unidirectional stretching. Figure 5b,c shows the non-uniform distribution of
grains and precipitates composition, respectively.

Materials 2022, 15, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 5. (a) Polycrystalline geometry model of nonequiaxed crystal. (b) Polycrystalline geometric 
model with gradient distribution of crystal size. (c) Polycrystalline geometric model with a gradi-
ent distribution of the number of precipitates. 

In reality, aluminum alloys may not always exhibit such distinct gradient struc-
tures, but setting these structural variations to be obvious in the simulation allows for a 
more intuitive exploration of the effects of such structures. 

By setting the corresponding boundary conditions for representative volume cells, 
the deformation processes of different materials, such as tension, shear, etc., can be 
simulated. The purpose of this work is to study the yielding and work-hardening behav-
ior of the material by simulating the uniaxial stretching of the material. In total, the 
boundary conditions are set on four faces of the RVE, as shown in Figure 6. 

 
Figure 6. Boundary conditions of uniaxial tension. 

3.2. Crystal Plasticity Model 
The material behavior simulated by the finite element method is described by a 

phenomenological crystal plasticity model. In order to address the non-uniform defor-
mation caused by abrupt changes in the mechanical behavior of polycrystalline grain 
boundaries and to consider the effect of crystallographic textures, the single crystal con-
stitutive model proposed by Asaro [17] is used. In this paper, vectors (lowercase letters) 
and second-order tensor matrices (uppercase letters) are indicated in bold. 

The deformation kinematics theory points out that the total deformation gradient 𝑭 
can be decomposed by multiplication and expressed as a combination of 𝑭ୣ and 𝑭୮: 𝑭 =𝑭ୣ𝑭୮. The elastic deformation of the material follows Hooke’s law. Plastic deformation is 
mainly calculated by the plastic strain gradient 𝒍୮, which is a function of the plastic de-
formation gradient 𝑭୮: 𝒍୮ = 𝑭ሶ ୮𝑭୮ିଵ  (1)

Assuming that slip is the only displacement mechanism of plastic deformation, 𝒍୮ 
can be expressed as the sum of the shear rates of all slip systems: 

Figure 5. (a) Polycrystalline geometry model of nonequiaxed crystal. (b) Polycrystalline geometric
model with gradient distribution of crystal size. (c) Polycrystalline geometric model with a gradient
distribution of the number of precipitates.



Materials 2022, 15, 5296 6 of 16

In reality, aluminum alloys may not always exhibit such distinct gradient structures,
but setting these structural variations to be obvious in the simulation allows for a more
intuitive exploration of the effects of such structures.

By setting the corresponding boundary conditions for representative volume cells, the
deformation processes of different materials, such as tension, shear, etc., can be simulated.
The purpose of this work is to study the yielding and work-hardening behavior of the
material by simulating the uniaxial stretching of the material. In total, the boundary
conditions are set on four faces of the RVE, as shown in Figure 6.
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3.2. Crystal Plasticity Model

The material behavior simulated by the finite element method is described by a phe-
nomenological crystal plasticity model. In order to address the non-uniform deformation
caused by abrupt changes in the mechanical behavior of polycrystalline grain boundaries
and to consider the effect of crystallographic textures, the single crystal constitutive model
proposed by Asaro [17] is used. In this paper, vectors (lowercase letters) and second-order
tensor matrices (uppercase letters) are indicated in bold.

The deformation kinematics theory points out that the total deformation gradient F can
be decomposed by multiplication and expressed as a combination of Fe and Fp: F = FeFp.
The elastic deformation of the material follows Hooke’s law. Plastic deformation is mainly
calculated by the plastic strain gradient lp, which is a function of the plastic deformation
gradient Fp:

lp =
.
F

p
Fp−1 (1)

Assuming that slip is the only displacement mechanism of plastic deformation, lp can
be expressed as the sum of the shear rates of all slip systems:

lp = ∑α

.
γ

αs∗α ⊗m∗α, (2)

where
.
γ

α is the plastic shear rate and s∗α ⊗m∗α is the Schmid tensor of the slip system
α, which is obtained by dyadic operation between the slip direction s∗α and the normal
direction of the slip surface m∗α. Aluminum is Face-Centered Cubic (FCC) crystal, the
value of α is 1 to 12. According to the power law model proposed by Asaro et al. [17], the
plastic shear rate of α slip system can be expressed as:

.
γ

α
=

.
γ0

(
|τα|
gα

)1/m
sgn(τα), (3)

where
.
γ0 is the reference shear rate, gα is the plastic deformation resistance, and the resolved

shear stress τα is the projection of the Kirchhoff stress tensor def(F)σ onto the slip surface.
The parameter m controls the sensitivity of the strain rate. Assuming that the density of
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the material remains constant during the deformation process, τα can be expressed by the
stress tensor σ:

τα = m∗α · σ · s∗α (4)

The initial value of gα is initial slip resistance τi, which is assumed to be the same
for all slip systems. Work hardening is introduced by making the resistance to plastic
deformation a function of plastic strain:

.
gα

=
12

∑
β=1

hαβ

∣∣∣ .
γ

β
∣∣∣, (5)

where hαβ is the hardening modulus matrix, hαα denotes the hardening due to the slip of
its own slip system, usually called the self-hardening coefficient, and hαβ(α 6= β) denotes
the hardening due to the slip of other slip systems, usually called the latent hardening
coefficient. q is the ratio of the latent hardening coefficient to the self-hardening coefficient,
1 and 1.4 are the more common values. The hαβ can be expressed as a unified equation:

hαβ = h(α, α)
[
q + (1− q)δαβ

]
=

{
h(α, α) β = α
qh(α, α) β 6= α

(6)

Self-hardening coefficients using the model adopted by Peirce et al. [18]:

h(α, α) = h0sech2
(

h0γ

τs − τi

)
= h0sech2(kγ), (7)

where h0 is the hardening modulus at the beginning of yield, τs is the plastic flow break-
through stress in the first stage of the material, and γ = ∑α

∫ t
0

∣∣∣ .
γ

α
∣∣∣dt is the cumulative shear

strain of each slip system. Noting that h0/(τs − τi) is a constant value, the softening factor
k can be introduced to visualize the effect of γ on the degree of hardening of the material.

The region of large plastic deformation during material deformation may become
the location where cracks sprout, and the location of material failure can be predicted by
introducing accumulated plastic deformation p [19]:

p =
∫ T

0

(
2
3

lp : lp
) 1

2
dt (8)

In addition, the local plastic dissipation energy Ep [20,21] can also provide a prediction
of material damage:

Ep =
∫ T

0
σ : lpdt = ∑

α

∫ T

0
τα .

γ
αdt (9)

From the FE simulation, ABAQUS gives the value of each physical quantity at the
center-of-mass for each element, (·). The black dots in parentheses indicate the homogenized
parameters, i.e., stress and strain, etc. To obtain a global representative value for each time
step, the center-of-mass values of each element are averaged through the element volume.
For example, volume averaging of stresses and strains (σRVE

ij and εRVE
ij ) can be performed

for comparing the stress-strain curves obtained from the tests.

σRVE
ij = 1

VRVE

N
∑

n=1

(
σij
)

n ·Vn

εRVE
ij = 1

VRVE

N
∑

n=1

(
εij
)

n ·Vn

, (10)

where the subscript n represents the value of each unit, and VRVE represents the total
volume of the entire RVE. This averaging strategy can be applied equally to p and Ep to
measure the deformation properties of the material.
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In addition, the Lode stress parameter µσ can be introduced to analyze the stress state
of the material during deformation. Notice that µσ is equal to -1 in uniaxial tension and 0
in pure shear. The Lode stress parameter for an RVE µRVE

σ is the volume average of each
element µσ:

µσ =
σ2 − (σ1 + σ3)/2

(σ1 − σ3)/2
, (11)

where σ1, σ2, σ3 are the three principal stresses (σ1 > σ2 > σ3), which can be obtained from
the stress tensor σ.

3.3. Strength Model

In the crystal plasticity model proposed in the previous section, the most important
parameter is τi. There are many strengthening models [5,22,23] for 6XXX series aluminum
alloys, which aim to relate microstructural parameters, such as grain size, texture, size
distribution of precipitates, type, and content of solid solution phases, to macroscopic yield
strength σy. Contributions are usually linearly additive [5,6]:

σy = σAl + σss + σppt (12)

The intrinsic strength, solid solution contributions, and precipitates to the yield stress
of aluminum are denoted as σAl, σss and σppt, respectively. Similarly, at the single crystal
level, the initial slip resistance τi is determined by various microstructural parameters:

τi = τAl + τppt + τss (13)

τAl stands for intrinsic strength of aluminum, which is numerically equal to 3/1 of the yield
strength of pure aluminum with the same average particle size. Therefore, in this model,
the grain size effect is also considered.

The solid solution strengthening term τss is due to the strain field generated around the
substitutional atoms dissolved in the matrix that can interact with dislocations and impede
their movement, resulting in strengthening. Based on the principle that the contributions of
different solute atoms to the yield strength can be linearly superimposed, the solid solution
strengthening effect of the alloy can generally be expressed as:

τss = ∑i kiC
2/3
i , (14)

where ki is the scaling factor and Ci is the mass fraction (wt.%) of the specific element (Mg,
Si) in the solid solution. The value of Ci is easily known based on the thermodynamics of the
phase diagram or on the quantitative chemical analysis of the alloy structure. According
to the work of Myhr et al. [24], kMg and kSi take the values of 15.0MPa/wt.%2/3 and
33.0MPa/wt.%2/3, respectively.

Unlike τAl and τss, which have clear and unambiguous expressions, modeling τppt
is always extremely difficult. Esmaeili et al. [22] proposed that the reinforcement of the
precipitated phase is related to several microscopic variables, which can be expressed as:

τppt = F (r, f , F, l, S) (15)

where r and f are the average size and volume fraction of the precipitates, respectively, F is
the maximum interaction force between the particle and dislocation with the average radius,
l is the average distance between the particles of the precipitates with obstruction, and S is
a series of microscopic parameters indicating the particle shape of the precipitates and the
dislocation relationship between the particle and the matrix. This idea was widely adopted
and promoted in the following decades [6,23,25,26]. Because the types, morphology and
distribution of the precipitates depend on the processing technology and the composition
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of the raw materials, it is not easy to construct a clear functional relationship F . Therefore,
the τppt can be considered to be determined preferentially by Equation (13):

τppt = τi − τAl − τss (16)

In most studies, the yield stress and the initial slip resistance are considered to satisfy
a linear relationship: σy = Mτi, where M is the Taylor factor, which is the most important
parameter connecting the continuum plasticity theory and the crystal plasticity theory.
For specific materials, the measurement of yield stress σy is very convenient, so τi can be
estimated by Taylor factor M:

τi =
σy

M
(17)

For randomly oriented FCC structured metals, the value of M is 2.2 for the Sachs
model [27] and 3.1 for the Taylor model [28]. The work of Zhang et al. [29] states that the
value of M when using the crystal plasticity finite element model is about 2.7. In fact, M is
closely related to the textures of the material and is an important physical quantity that
characterizes the statistical significance of the crystallographic orientation.

3.4. Parameter Calibration

Although the above model has, as far as possible, covered all the factors most com-
monly considered in the study of the strength of 6XXX series aluminum alloys. However,
due to the complex process conditions, composition ratios, and the complexity of the
real microstructure of the material during production, some of the phenomenological or
structure-sensitive parameters in the model need to be calibrated to the results of material-
specific mechanical properties tests in order to subsequently predict the mechanical re-
sponse of the material when its microstructural characteristics are altered or under more
complex loading conditions. For parameters that are universal and structurally insensitive,
such as elastic constants and power-law hardening parameters, the values in the literature
are directly selected.

The 6XXX series aluminum alloy under under-aged and peak-aged states reported
by Yang et al. [25] was selected for finite element simulation and some key parameters
were compared accurately. The purpose of this work was chosen because the two materials
reported in the paper only have different aging times, the remaining microstructure param-
eters are almost identical to the initial alloy composition, they have similar compositions in
the knowledge graph, and differences in their mechanical properties are also easy to test
whether they can be reflected by specific parameters. Each material is tested for uniaxial
tensile, and multiple sets of test values are selected to average to ensure the effectiveness of
the test. The specimen used for mechanical testing is cut from a randomly selected location
in the casting sample, and the entire specimen is not significantly mechanically processed,
so it can be considered that the orientation of the grains is randomly distributed, without
texture. Considering that the average grain sizes of the two samples are the same, the same
geometric model is constructed as well as the random grain orientation. The RVE is divided
into a total of 39304 elements, 34 elements in each direction. The amount of stretch along
the X direction is 6% of the side length.

In this study, the following parameters are based on the literature: (C11, C12, C44(MPa)) =
(106430, 60350, 28210),

[ .
γ0
(
s−1), m

]
= [0.001, 0.02]. This information exists in the knowl-

edge graph and is used during finite element simulations. Parameters such as [M, h0, k, q]
are the key variables that reflect the differences in the properties of each alloy, reflecting
the characteristics of the material organization and composition, and fundamentally cor-
respond to different production and processing processes. In addition, τi is determined
by Equation (17), where the value is taken from the work of Yang et al. [25], as 273.3 MPa
for peak-aged alloy and 258.6 MPa for under-aged alloy. M and q are highly correlated
with the crystal structure properties and have well-defined intervals, while h0 and k are
closely related to the precipitation phase properties in the alloy and tend to vary over a
wide range, but not by more than one order of magnitude. Based on the trial-and-error
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method, the approximate range of the values of these parameters is obtained, and then the
accurate values are determined by combining the neural network and the genetic algorithm.
Figure 7 shows that the stress-strain curve obtained by the finite element simulation is
basically consistent with the experiment based on the parameters calibrated by the experi-
ment. Finally, the crystal plastic finite element simulation parameters calibrated based on
experiments are summarized in Table 1.
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aluminum alloy stress-strain curves.

Table 1. Calibration of crystal plastic finite element simulation parameters based on
experimental data.

Materials C11,C12,C44(MPa) h0(MPa) τi(MPa) τs(MPa)
.
γ0(s−1) m M k q

Peak-aged 106430, 60350, 28210 27.54 101.81 110.99 0.001 0.02 2.7 3.0 1.4
Under-aged 106430, 60350, 28210 44.25 97.75 110.39 0.001 0.02 2.7 3.5 1.4

4. High-Throughput Computing

The work in the previous chapter has shown that the mechanical behavior of materials
can be accurately predicted based on microstructural modeling and parameter calibration.
The materials under study can be quantified and recorded in the knowledge graph through
physical quantities such as microstructural parameters and mechanical performance param-
eters. When more experimental data are considered in the future, the knowledge graph will
be updated. The background will also continue to become clearer. Another important task
of a knowledge graph is to expand new material information and cognition from existing
material knowledge. For example, what effect will the combination of various microstruc-
ture information have on the performance of the material itself? Which microstructural
information will play a more important role? Based on the goal to be explored, a variety
of numerical examples can be constructed to study the law of the influence of various
parameters on the material properties.

Based on the idea of high-throughput computing, we designed a series of examples to
obtain many computational results by varying the values of some parameters of materi-
als properties and considering different initial polycrystal structures for simulation, and
summarize the influence weights of each parameter to build a comprehensive mechanical
properties-microstructure knowledge graph. The same RVE, Figure 4a, is used for all the
calculations. With the material properties either calculated by multi-scale calculations, or
using existing material data, high-throughput computing is further performed to achieve
efficient screening of composition/organization/performance, etc., to guide the process
optimization issues and to accelerate the development of new materials and significantly
reduce the cost of material development.
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Uniaxial tensile simulations were performed for the model shown in Figure 4a by
assigning the same random grain orientation and different material parameters. Table 2
shows the range of values for each parameter, and when a parameter is varied, the default
values are set for the remaining parameters. In addition, the effect of crystal orientation
on mechanical properties is analyzed by setting different initial textures with constant
material parameters taking default values. Table 3 shows the typical common textures of
FCC structured metals.

Table 2. Range of variation of material parameters.

Parameter Default Value Minimum Maximum

M 2.7 2.2 3.1
h0(MPa) 44.25 20 200

q 1.4 1.0 1.8
k 3.5 1 10

Table 3. Euler angles of typical textures in FCC metals.

Type {hkl} uvw ϕ1 φ ϕ2

Cube 001 100 0◦ 0◦ 0◦

Goss 011 100 0◦ 45◦ 0◦

Copper 112 111 90◦ 35◦ 45◦

Brass 011 211 35◦ 45◦ 0◦

S 123 634 59◦ 37◦ 63◦

Figure 8 shows the tensile simulation results for polycrystalline aggregates with
material parameters [M, h0, k, q] set to the default values in Table 2. From the Mises
stress distribution shown in Figure 8b and the cumulative plastic strain distribution shown
in Figure 8c, it can be seen that there are significant differences in stresses and strains
among grains, and the stress concentrations are mainly found at grain boundaries. The
differences in plastic deformation and stress response between grains are mainly caused
by differences in grain orientation, while the differences within grains are mainly caused
by grain arrangement and their interactions. The highly anisotropic elastic and plastic
behavior of single grains allows the deformation or stress concentration at grain boundaries
to satisfy both stress equilibrium and strain compatibility. Therefore, both stress and strain
tend to occur at grain boundaries.

Figure 9 illustrates the calculated results of the stress-strain curve for a single parameter
varying according to the values taken in Table 2. The calculated results illustrate that the
boundary values of the parameters correspond to the extreme cases of the stress-strain
curve, and the gray area in the figure indicates the position of the stress-strain curve of the
material when the parameters take intermediate values. M affects the yield stress of the
simulation results, h0 reflects the strain hardening capacity of the material, k corresponds to
the degree of strain hardening of the material, and the variation of q does not bring much
difference in the results, thus the correlation between this parameter and the performance
is less sensitive. By comparing the experimental values with the calculated results after
parameter adjustment, the influence characteristics of these independent parameters on the
mechanical properties can be more deeply understood, and the corresponding relationship
between them and the knowledge of materials science can be interpreted. M reflects the
anisotropy of the material and reflects the orientation correlation between the strength
of single crystal and polycrystalline strength. It is more effective to calibrate the initial
slip system yield strength based on M than other parameters. When the initial hardening
modulus varies between orders of magnitude, the stress-strain response has limited changes
in the initial plastic deformation, and then shows a significant difference in work hardening
properties. Therefore, this parameter is effective for the characterization of material work
hardening, and the difficulty of deformation at the initial stage of material work hardening
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will significantly correspond to the change in the value of this parameter. After the other
parameters are calibrated, the two parameters q and k do not significantly affect the stress-
strain response of the material within the common value range, so they may not be suitable
for establishing the relationship between microstructure and performance.

Materials 2022, 15, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 8. Tensile simulation results for polycrystalline aggregates. (a) Grains deformation dia-
gram. (b) Distributions of Von Mises equivalent stress. (c) Distributions of accumulated plastic de-
formation. (d) Distributions of local plastic dissipation energy. 

Figure 9 illustrates the calculated results of the stress-strain curve for a single pa-
rameter varying according to the values taken in Table 2. The calculated results illustrate 
that the boundary values of the parameters correspond to the extreme cases of the stress-
strain curve, and the gray area in the figure indicates the position of the stress-strain 
curve of the material when the parameters take intermediate values. 𝑀 affects the yield 
stress of the simulation results, ℎ଴ reflects the strain hardening capacity of the material, 𝑘 
corresponds to the degree of strain hardening of the material, and the variation of 𝑞 does 
not bring much difference in the results, thus the correlation between this parameter and 
the performance is less sensitive. By comparing the experimental values with the calcu-
lated results after parameter adjustment, the influence characteristics of these independ-
ent parameters on the mechanical properties can be more deeply understood, and the 
corresponding relationship between them and the knowledge of materials science can be 
interpreted. 𝑀 reflects the anisotropy of the material and reflects the orientation correla-
tion between the strength of single crystal and polycrystalline strength. It is more effec-
tive to calibrate the initial slip system yield strength based on 𝑀 than other parameters. 
When the initial hardening modulus varies between orders of magnitude, the stress-
strain response has limited changes in the initial plastic deformation, and then shows a 
significant difference in work hardening properties. Therefore, this parameter is effec-
tive for the characterization of material work hardening, and the difficulty of defor-
mation at the initial stage of material work hardening will significantly correspond to 
the change in the value of this parameter. After the other parameters are calibrated, the 
two parameters 𝑞 and 𝑘 do not significantly affect the stress-strain response of the mate-
rial within the common value range, so they may not be suitable for establishing the re-
lationship between microstructure and performance. 

Figure 8. Tensile simulation results for polycrystalline aggregates. (a) Grains deformation diagram.
(b) Distributions of Von Mises equivalent stress. (c) Distributions of accumulated plastic deformation.
(d) Distributions of local plastic dissipation energy.

Figure 10a shows the results of stress-strain simulations for polycrystalline aggregates
with different initial crystal orientations, where uniaxial stretching corresponds to the
〈100〉 orientation of the material and thus the ease of grain slip initiation differs for different
orientations. This result is consistent with the study of Zhao et al. [30]. Figure 10b shows
the effect of the initial texture on the Lode stress parameter-strain curve. The results show
that the different oriented materials exhibit significant differences in mechanical properties
during deformation in the specified directions.

The rich calculation results obtained by high-throughput calculation provide rich
materials for the construction of an aluminum alloy knowledge graph. Based on the
objective fact that the structure determines the performance, we set different structures and
different material parameters to conduct finite element simulations, and the mechanical
responses of various structures can be obtained. The simulation results are stored in the
knowledge graph. In the subsequent material development, the key influencing parameters
can be located according to the expected mechanical properties, and then key process
schemes or material ratios can be found to achieve the accurate material design.

Finally, the widely used commercial alloys 6061-T4 and 6061-T6 in the 6XXX series
were selected as the research objects, and the materials were selected from the alloy samples
with a mass ratio of Mg to Si of 1.19 in the work of Kim et al. [31]. 6061-T4 is an alloy that is
naturally aged after solution heat treatment. Its yield stress is approximately 122.0 MPa.
This alloy is of average strength but has excellent machinability. The material fails under
20% tensile strain. 6061-T6 is an artificially aged alloy after solution heat treatment. The
yield stress is about 325.0 MPa, but the processing performance is poor, and the tensile strain
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is about 5%. Since the two are obtained from the same batch of alloy samples processed
by different aging processes, and the polycrystalline morphology and orientation of the
material are basically unchanged during the aging process, it is still assumed that M is the
same value, and based on the previous analysis, k and q are also similar. It is considered
that it is not sensitive to the structure, and the same value is approximately taken. The final
simulation result is shown in Figure 11. The simulation parameters determined based on
semi-analytical and semi-experience are as follows. In order to reflect the material analysis
strategy based on high-throughput calculation and knowledge graph. Therefore, methods
such as machine learning are not used, and the simulation results and the parameters used
to reflect the applicability of the previously concluded laws. It also reflects that the initial
yield strength h0 is a key performance index for 6XXX. The crystal plastic constitutive
parameters of the two alloys are listed in Table 4, from which it can be seen that the τs
of the 6061-T4 alloy is about twice that of the τi, indicating that the alloy after natural
aging has better work hardening ability. If the material has an excellent degree of work
hardening at the initial stage of plastic strain, the subsequent deformation performance
will also be guaranteed.
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Figure 9. Stress-strain curves of polycrystalline aggregates with different intrinsic parameters
([M, h0, k, q]). (a) The stress-strain response of the material when M varies from 2.2 to 3.1. (b) The
stress-strain response of the material when h0 varies from 20 MPa to 200 MPa. (c) The stress-strain
response of the material when k varies from 1 to 10. (d) The stress-strain response of the material
when q varies from 1.0 to 1.8.

Table 4. 6061 aluminum alloy crystal plasticity finite element simulation parameters.

Materials C11,C12,C44(MPa) h0(MPa) τi(MPa) τs(MPa)
.
γ0(s−1) m M k q

6061-T4 106430, 60350, 28210 200.0 47.0 87.0 0.001 0.02 2.6 5.0 1.4
6061-T6 106430, 60350, 28210 50.0 125.0 133.33 0.001 0.02 2.6 6.0 1.4



Materials 2022, 15, 5296 14 of 16Materials 2022, 15, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. Stress-strain curves of polycrystalline aggregates with different textures 
(ሾ𝑀, ℎ଴, 𝑘, 𝑞ሿ uses the default values in Table 1). (a) Stress-strain curves. (b) Lode stress pa-
rameter-strain curves. 

The rich calculation results obtained by high-throughput calculation provide rich 
materials for the construction of an aluminum alloy knowledge graph. Based on the ob-
jective fact that the structure determines the performance, we set different structures and 
different material parameters to conduct finite element simulations, and the mechanical 
responses of various structures can be obtained. The simulation results are stored in the 
knowledge graph. In the subsequent material development, the key influencing parame-
ters can be located according to the expected mechanical properties, and then key pro-
cess schemes or material ratios can be found to achieve the accurate material design. 

Finally, the widely used commercial alloys 6061-T4 and 6061-T6 in the 6XXX series 
were selected as the research objects, and the materials were selected from the alloy 
samples with a mass ratio of Mg to Si of 1.19 in the work of Kim et al. [31]. 6061-T4 is an 
alloy that is naturally aged after solution heat treatment. Its yield stress is approximately 
122.0 MPa. This alloy is of average strength but has excellent machinability. The material 
fails under 20% tensile strain. 6061-T6 is an artificially aged alloy after solution heat 
treatment. The yield stress is about 325.0 MPa, but the processing performance is poor, 
and the tensile strain is about 5%. Since the two are obtained from the same batch of al-
loy samples processed by different aging processes, and the polycrystalline morphology 
and orientation of the material are basically unchanged during the aging process, it is 
still assumed that 𝑀 is the same value, and based on the previous analysis, 𝑘 and 𝑞 are 
also similar. It is considered that it is not sensitive to the structure, and the same value is 
approximately taken. The final simulation result is shown in Figure 11. The simulation 
parameters determined based on semi-analytical and semi-experience are as follows. In 
order to reflect the material analysis strategy based on high-throughput calculation and 
knowledge graph. Therefore, methods such as machine learning are not used, and the 
simulation results and the parameters used to reflect the applicability of the previously 
concluded laws. It also reflects that the initial yield strength ℎ଴ is a key performance in-
dex for 6XXX. The crystal plastic constitutive parameters of the two alloys are listed in 
Table 4, from which it can be seen that the 𝜏ୱ of the 6061-T4 alloy is about twice that of 
the 𝜏୧, indicating that the alloy after natural aging has better work hardening ability. If 
the material has an excellent degree of work hardening at the initial stage of plastic 
strain, the subsequent deformation performance will also be guaranteed. 

Figure 10. Stress-strain curves of polycrystalline aggregates with different textures ([M, h0, k, q]
uses the default values in Table 1). (a) Stress-strain curves. (b) Lode stress parameter-strain curves.

Materials 2022, 15, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 11. Experimental and simulation results of the stress-strain curve of 6061 aluminum alloy. 
(a) 6061-T4. (b) 6061-T6. 

Table 4. 6061 aluminum alloy crystal plasticity finite element simulation parameters. 

Materials 𝐶ଵଵ, 𝐶ଵଶ, 𝐶ସସ(MPa) ℎ଴(MPa) 𝜏୧(MPa) 𝜏ୱ(MPa) 𝛾ሶ଴(sିଵ) 𝑚 𝑀 𝑘 𝑞 
6061-T4 106430, 60350, 28210 200.0 47.0 87.0 0.001 0.02 2.6 5.0 1.4 
6061-T6 106430, 60350, 28210 50.0 125.0 133.33 0.001 0.02 2.6 6.0 1.4 

5. Conclusions 
To comprehensively improve the performance of materials and deepen the 

knowledge of materials undoubtedly requires the ability to simultaneously combine 
multiple time scales and space scales in simulation calculations, but there is currently no 
universal method that can cover all time and space scales. Analyzing material properties 
by synthesizing various factors without screening will result in a huge amount of com-
putation. Therefore, building a knowledge network of various microstructure infor-
mation-performance of materials based on knowledge graphs will be a major main-
stream analysis method in the future. 

Integrated computational materials engineering and high-throughput computing 
will change the traditional empirical trial-and-error approach to alloy research and de-
velopment (R&D) and become a fundamental R&D platform for collaborative 
knowledge innovation with the interconnection of multi-scale calculations, experiments, 
and databases. On this platform, as a three-dimensional data network capable of regu-
larly linking information about the microstructure, properties, and computational meth-
ods of materials, the knowledge graph can be used to recommend reasonable input pa-
rameter values and store results, thus assisting high-throughput computation. To sum 
up specifically, for a certain research object, we first summarize and sort out important 
structural components or key performance control parameters based on previous mate-
rials science cognition and experiment-based summary, build a knowledge graph based 
on the performance of interest, and design a set of analysis and simulation process in-
cluding these parameters. Multiple sets of examples were designed to study the influ-
ence weight of each variable on the performance. Comparing the calculated results with 
existing experimental observations can explore the relationship between structure and 
performance on a deeper level, thus reducing the consideration of secondary factors and 
optimizing the R&D strategy. 

6XXX series aluminum alloys are chosen to demonstrate the proposed strategy of 
studying the correlation between microstructure and mechanical properties by high-
throughput computing assisted by a knowledge graph. The simulation results show that 

Figure 11. Experimental and simulation results of the stress-strain curve of 6061 aluminum alloy.
(a) 6061-T4. (b) 6061-T6.

5. Conclusions

To comprehensively improve the performance of materials and deepen the knowledge
of materials undoubtedly requires the ability to simultaneously combine multiple time
scales and space scales in simulation calculations, but there is currently no universal method
that can cover all time and space scales. Analyzing material properties by synthesizing
various factors without screening will result in a huge amount of computation. Therefore,
building a knowledge network of various microstructure information-performance of
materials based on knowledge graphs will be a major mainstream analysis method in
the future.

Integrated computational materials engineering and high-throughput computing
will change the traditional empirical trial-and-error approach to alloy research and devel-
opment (R&D) and become a fundamental R&D platform for collaborative knowledge
innovation with the interconnection of multi-scale calculations, experiments, and databases.
On this platform, as a three-dimensional data network capable of regularly linking in-
formation about the microstructure, properties, and computational methods of materials,
the knowledge graph can be used to recommend reasonable input parameter values and
store results, thus assisting high-throughput computation. To sum up specifically, for a
certain research object, we first summarize and sort out important structural components
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or key performance control parameters based on previous materials science cognition
and experiment-based summary, build a knowledge graph based on the performance of
interest, and design a set of analysis and simulation process including these parameters.
Multiple sets of examples were designed to study the influence weight of each variable on
the performance. Comparing the calculated results with existing experimental observations
can explore the relationship between structure and performance on a deeper level, thus
reducing the consideration of secondary factors and optimizing the R&D strategy.

6XXX series aluminum alloys are chosen to demonstrate the proposed strategy of
studying the correlation between microstructure and mechanical properties by high-
throughput computing assisted by a knowledge graph. The simulation results show
that the orientation distribution and initial hardening modulus of the material are the main
factors affecting its performance, indicating that the previous assumption of isotropy is
not suitable for 6XXX series, and how to improve the hardening ability at the initial stage
of plastic strain is the focus of research. The crystal plasticity finite element method, as
a bridge linking the micro-to-macro to quantitatively describe the relationship between
the microstructure and properties of the alloy, is chosen to perform high-throughput com-
puting with varying the parameters of materials properties and the characteristics of the
structure models. The constructed knowledge graph is divided into two parts: static data
and dynamic data, and can be used to guide material design for 6XXX Al-Mg-Si based
alloys. Static data contains the basic characteristics and the most essential characteristic
parameters of materials. The purpose of continuous generation and adjustment of dynamic
data is to improve the cognition of static data. This research method has universality and
popularization value.
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