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Abstract: Sugarcane is an economically important crop that is used for the production of fuel ethanol.
Diazotrophic bacteria have been isolated from sugarcane tissues, without causing visible plant
anatomical changes or disease symptoms. These bacteria can be beneficial to the plant by promoting
root growth and an increase in plant yield. Different rates of Biological Nitrogen Fixation (BNF) were
observed in different genotypes. The aim of this work was to conduct a comprehensive molecular
and physiological analysis of two model genotypes for contrasting BNF efficiency in order to unravel
plant genes that are differentially regulated during a natural association with diazotrophic bacteria. A
next-generation sequencing of RNA samples from the genotypes SP70-1143 (high-BNF) and Chunee
(low-BNF) was performed. A differential transcriptome analysis showed that several pathways were
differentially regulated among the two BNF-contrasting genotypes, including nitrogen metabolism,
hormone regulation and bacteria recognition. Physiological analyses, such as nitrogenase and
GS activity quantification, bacterial colonization, auxin response and root architecture evaluation,
supported the transcriptome expression analyses. The differences observed between the genotypes
may explain, at least in part, the differences in BNF contributions. Some of the identified genes might
be involved in key regulatory processes for a beneficial association and could be further used as tools
for obtaining more efficient BNF genotypes.

Keywords: endophytic diazotrophic bacteria; nitrogen-fixing bacteria; differential RNA-seq tran-
scriptome; nitrogen metabolism; plant receptors; auxin signaling

1. Introduction

Sugarcane (Saccharum spp.) is an important crop worldwide, being a major source for
the production of sugar and renewable energy sources such as ethanol. It is characterized
by a highly complex polyploid genome, and the cultivated commercial varieties are inter-
species hybrids derived mainly from crosses between the sucrose-accumulating Saccharum
officinarum L. (2n = 8x = 80) and the disease-resistant but low-sucrose-containing Saccharum
spontaneum L. (2n = 5x to 12x = 40–128) [1]. Therefore, genetic regulators and physiological
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processes can differ greatly between sugarcane varieties. Studies on sugarcane have shown
that distinct sugarcane genotypes present different responses to diazotrophic bacteria as-
sociation. The SP70-1143 (SP) variety may obtain up to 72% of their nitrogen needs from
BNF, while the Chunee (CH) genotype can only obtain around 32% of their nitrogen from
BNF [2,3]. During the Brazilian sugarcane crop history, commercial hybrids were selected
for high yields with low inputs of inorganic nitrogen fertilizer [4–7]. This strategy might
have led to the assortment of cultivars with higher contributions of Biological Nitrogen
Fixation (BNF), the ability to grow with low nitrogen fertilizer inputs. Several Brazilian
sugarcane cultivars with significant contributions of N2 fixation have been identified, as
they can obtain up to 72% of the plant nitrogen (N) requirements and over 150 Kg N fixed
ha−1 per year [2,4,8,9]. Efficient BNF has a positive impact on Brazilian agriculture, as
sugarcane cultivation applies one third to one fifth of the amount of N fertilizer used in
other countries [3,10].

Different species of nitrogen-fixing bacteria isolated from sugarcane tissues might be
contributing to the quantified BNF rates, such as Gluconacetobacter diazotrophicus, Herbaspir-
illum seropedicae, Herbaspirillum rubrisubalbicans, Azospirillum brasilense and others [6,11].
The diazotrophic bacteria are classified as associative and/or endophytic, as they colonize
root surfaces or intercellular spaces and vascular tissues of most plant organs, without
causing visible plant anatomical changes or disease symptoms [12–14]. Furthermore, the
plant–bacteria association can be beneficial to sugarcane development, by promoting root
growth and an increase in plant biomass and productivity [15,16]. Bio-inoculants for-
mulated with nitrogen-fixing bacterial species have been successfully used in Brazilian
agriculture; nevertheless, the increase in sugarcane biomass and yield is dependent on
soil conditions and plant genotype. Distinct sugarcane genotypes have different rates of
BNF, and plant genetic factors might regulate the efficiency of the process [2,3,13,17]. An
increasing amount of data on plant genes and physiological pathways that are responsive
to the endophytic and associative bacteria in non-leguminous plants have been generated
in recent years [18–23].

An intriguing question that remains to be elucidated is how the different plant geno-
types perceive environmental and endophytic nitrogen-fixing bacterial signals to activate
proper responses that will finally culminate, or not, in physiological adaptations that are
beneficial to the plant. To address that, in this work a differential transcriptome approach
was used to unravel plant genes that are differentially regulated during a natural associa-
tion with diazotrophic bacteria in germinated root and shoot stalks from two sugarcane
genotypes that are considered models for contrasting BNF efficiency studies. To discrimi-
nate intrinsic differences among the genotypes, RNA-seq data of diazotrophic-free plants,
grown in hydroponics, were also generated. First, a new sugarcane reference transcriptome
database was generated, specific to two sugarcane genotypes that have different contri-
butions from BNF. A differential expression analysis revealed several plant physiological
processes that are differentially regulated between the BNF-contrasting genotypes. Some
gene expression profiles were intrinsic of each genotype, even in the absence of the endo-
phytic nitrogen-fixing bacteria. In parallel, similar expression profiles of genes observed in
naturally colonized stalks were validated in plants inoculated with diazotrophic bacteria,
indicating that they may participate in the regulation of the association with diazotrophic
bacteria. Further physiological and biochemical analyses functionally supported the biolog-
ical involvement of microorganism recognition (plant receptor), nitrogen metabolism and
auxin signaling pathways in the differences among the two contrasting BNF genotypes.
Altogether, the data indicated that some differences among the contrasting BNF genotypes
were genetically intrinsic of each genotype; however, the efficiency of the association with
endophytic diazotrophic bacteria could explain, at least in part, the distinctions in BNF
and growth promotion between the contrasting genotypes. The discovery of these features
could help the management of crops in order to achieve higher levels of productivity.
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2. Results and Discussion
2.1. RNA Sequencing of Sugarcane Genotypes with High and Low BNF Efficiencies

To unravel plant genes that are differentially regulated in two sugarcane BNF-contrasting
genotypes, a differential transcriptome approach was used. Two sugarcane genotypes that
have been considered as models of contrasting BNF efficiencies were characterized: the
commercial cv. SP70-1143, which could obtain up to 72% of its N requirements from BNF,
and the wild non-commercial species Saccharum barberi (Chunee), which obtains low rates
of N fixed by BNF [2]. In the field, sugarcane is mainly propagated vegetatively, through the
germination of roots and shoots from secondary meristems at internodes of the stalks. After
the emergence of stalk roots and shoots, around 15 days after planting, a high increase in
diazotrophic bacterial numbers occurs that might trigger various plant responses to assure
the establishment of an efficient and beneficial association with the novel plant microbiome.
Therefore, root and shoot tissues of stalks of the BNF-contrasting genotypes, at the early
developmental phase (15 days after planting), were used to construct RNA-seq libraries.
To distinguish the differential gene expression that is under genotypic control, rather than
influenced by the colonization by diazotrophic bacteria, plants grown in hydroponic culture
derived from in vitro cultured plantlets free of diazotrophic bacteria were also used for the
construction of RNA-seq libraries. In total, 16 libraries of 8 different plant materials were
constructed and sequenced (Table S1). From each library, between 2 to 14 million reads
were sequenced, and the data sequencing of all libraries represented a total of 110,478,905
reads (Table S1).

First, since public DNA sequences are not available for these two BNF-contrasting
genotypes, a sugarcane reference transcriptome suitable to this study was generated. A
strategy of de novo contigs assembly was applied (Figure 1a) yielding a total of 116,435
unique transcripts that corresponded to 88,970 unique loci. This dataset with the reference
transcriptome was named RT1. The transcript sequences presented an average length of
699 bp, a total length of approximately 81,456 Mb and an N50 of 1405 bp. The sugarcane
transcriptome sequences were evaluated against proteins of the Viridiplantae UNIPROT
database (https://www.uniprot.org/uniprot/?query=viridiplantae&sort=score, accessed
on 15 November 2020) using the BLASTX and an e-value cut-off threshold of ≤ 1 × 10−5. A
total of 53,395 loci (73,389 transcripts) were mapped with plant protein sequences (Figure 1a)
representing 60% of the RT1 loci (63% of the transcripts).

Likewise, the conservation of RT1 sequences was analyzed with proteome databases
of Arabidopsis, rice, maize and sorghum using the BLASTX tool (Table 1). The largest
number of RT1 loci (81.87%) showed significant similarity with sorghum proteins followed
by maize (79.47%) and rice (76.48%). As expected, a lower number of RT1 loci showed
significant similarity with the model dicot Arabidopsis (64.83%) when compared with
monocots (76–81%). To assign putative functional categories, the sugarcane RT1 transcripts
were classified based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. A total of 40,901 loci and 56,363 transcripts were functionally
categorized and putative orthologs of genes involved in various pathways and cellular
processes were found to be conserved in sugarcane (Figure 1b,c).

The Viridiplantae transcripts of RT1 were mapped against the sugarcane genome
sequences available in public databases, using the BLASTN tool with an e-value cut-
off threshold of ≤ 1 × 10−5. A total of 40,964 loci (56,729 transcripts) matched with
sugarcane genome sequences (Figure 1a). A group of 12,673 loci (16,660 transcripts) that
were not mapped on the sugarcane databases were mapped with cDNA data of other plant
species and could represent sugarcane sequences that were not identified in other available
sugarcane sequence databases. Most of these transcripts showed a significant hit with the
protein of Arabidopsis, rice, sorghum and maize (Figure 1a). Among the novel sugarcane
transcripts, the five most representative functionals in the KEGG class B categories were the
global and overview maps, carbohydrate metabolism, translation, amino acid metabolism
and folding, and sorting and degradation (Figure 1b). In addition, the transcripts were
also annotated in several GOs divided into three groups: biological process (BP), molecular

https://www.uniprot.org/uniprot/?query=viridiplantae&sort=score
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function (MF) and cellular component (CC), as shown in Figure 1c. The most represented
GOs were catalytic activity (MF), binding (MF), cellular process (BP), metabolic process
(BP), and cell (CC). There is also a group of 35,575 loci (43,046 transcripts) that did not map
with any plant databases (Figure 1a).
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Figure 1. Pipeline of the construction of the sugarcane reference transcriptome. (a) A total of
16 libraries were analyzed and sequencing results were used to construct a sugarcane reference
transcriptome. Over 130 million reads were used for Velvet-Oases pipeline assembly that resulted in
88,970 loci and 116,435 transcripts. A total of 53,395 loci mapped with plant sequence databases and,
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within these, 40,964 matched with sugarcane genome sequences available in public databases. A
group of 12,673 loci mapped with other plant species databases. A group of 35,575 loci did not map
within Viridiplantae databases. The figure also shows the number of sugarcane transcripts with no
matches in sugarcane ESTs database that presented homologues in Arabidopsis, maize, rice and
sorghum with an e-value cut-off < 10−5, over 70% of identity and best hits. The transcripts were
categorized in (b) KEGG pathway annotation and (c) GO database, using OmicShare tools. Only the
most represented classes in sugarcane reference transcriptome were displayed.

Table 1. Representation of sugarcane transcriptome in other plant databases. Sugarcane transcriptome
loci were mapped against some plant species, and a high percentage of total proteins of these plants
was represented.

Plant Species Total Proteins a Mapped Proteins b Sugarcane loci c % Sugarcane loci d

Arabidopsis 35,386 14,920 34,617 64.83

Rice 49,061 19,639 40,839 76.48

Maize 63,540 23,462 42,438 79.47

Sorghum 29,448 19,545 43,715 81.87
a Total number of proteins annotated in public databases. b Number of proteins that map with sugarcane
transcripts. c Number of sugarcane loci that map with proteins of other plant species. d Percentage of sugarcane
loci that map with other plant species in relation to total number of sugarcane loci.

2.2. Differential Expression Profiles in the Two Sugarcane BNF-Contrasting Genotypes

Differential gene expression profiles between the sugarcane BNF-contrasting geno-
types were generated to identify genes and metabolic pathways that might determine the
establishment of an efficient BNF. A summary of the reads and transcripts mapped in each
generated library is presented in Table S1.

A total of 38,409 transcripts were identified as differentially expressed between SP and
CH in all of the analyzed samples (Figure 2a). Among them, 721 transcripts were found
to be expressed only in one of the genotypes. A list of comparisons and the datasets of
differentially expressed transcripts (DETs) are presented in Table S2. Among the different
pairwise comparisons between genotypes, some DETs were specific to tissues and growth
conditions. A group of 2214 transcripts were only differentially expressed between SP
and CH in samples of roots of germinated stalks, while 4418 transcripts were specifically
regulated between SP and CH only in samples of shoots of germinated stalks (Figure 2b). A
set of 9231 and 3158 transcripts were specifically regulated between SP and CH in samples
of roots and shoots of plants grown in hydroponics, respectively (Figure 2b). As shown in
Figure 2a,b, the number of transcripts that were more expressed in SP is greater than those
in CH, except for DETs from the roots of the hydroponic culture.

To evaluate the plant processes that are differentially regulated in the BNF-contrasting
genotypes naturally colonized with diazotrophic bacteria, functional categories in the
different dataset comparisons were analyzed. In this way, all DETs were subjected to GO
and KEGG enrichment analysis, which were performed using OmicShare tools (www.
omicshare.com/tools, acessed on 15 November 2020). Several GO terms were significantly
enriched (Table S3), including those involved with nitrogen and hormone metabolism
in roots (Figure 2c) and in shoots (Figure 2d) that were selected as a sub-bank for the
transcriptome analysis, as diazotrophic bacteria are mainly known for their ability to
fix atmospheric N and to produce phytohormones. Remarkably, the KEGG enrichment
analysis showed several significantly enriched pathways (Figure S1 and Table S4), and a
greater number of transcripts in plant hormone signal transduction, as well as nitrogen
and amino acid metabolism—three physiological processes that are closely related to plant
association with nitrogen-fixing bacteria—were observed in roots (Figure 2e) and in shoots
(Figure 2f). In addition, most of these genes involved in these specific pathways were
upregulated in SP in comparison with CH. Gene families involved in cell wall biosynthesis
pathways that were differentially expressed between SP and CH were recently reported by

www.omicshare.com/tools
www.omicshare.com/tools
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analyses of the same RNA-seq database generated in the present work [23]. The data show
that the gene expression profile is quite different between the two sugarcane genotypes
naturally colonized with the diazotrophic bacteria, suggesting that regulation of some
pathways in SP and CH might be participating in the control of BNF rates. Some of the
pathways will be discussed in more detail in a further topic.

Plants 2022, 11, x FOR PEER REVIEW 6 of 32 
 

 

the present work [23]. The data show that the gene expression profile is quite different 
between the two sugarcane genotypes naturally colonized with the diazotrophic bacteria, 
suggesting that regulation of some pathways in SP and CH might be participating in the 
control of BNF rates. Some of the pathways will be discussed in more detail in a further 
topic. 

 
Figure 2. Quantitative evaluation of differentially expressed transcripts between BNF-contrasting 
genotypes. (a) The figure shows the number of differentially expressed transcripts that are more 
represented in each genotype for each condition. (b) Venn diagram shows the number of tran-
scripts differentially expressed between SP and CH in each set (tissue and growth conditions). (c,d) 
Gene ontology (GO) enrichment analysis of DET in (c) stalk root and (d) stalk shoot. The first circle: 
the most enriched terms; outside the circle is the coordinated ruler of the number of transcripts. The 
second circle: the classification number in the background. The more transcripts, the longer the bar. 
The third circle: bar graph of the ratio of the DETs; red represents the ratio of the upregulated 
transcripts in SP, and blue represents it in CH. The fourth circle: The Rich Factor value of each 
category (the number of foreground transcripts in the category divided by the number of back-
ground transcripts). (e,f) The circus diagrams represent the KEGG pathway enrichment analysis of 
DETs in stalk root (e) and stalk shoot (f) of SP and CH. The figures show only the most significantly 
enriched GO terms and KEGG pathways that are involved in hormone, nitrogen, and amino acid 
pathways, such as: plant hormone—plant hormone signal transduction; Brassi-
nost—Brassinosteroid biosynthesis; Nitrogen m—Nitrogen metabolism; Glutathione—Glutathione 
metabolism; Cyanoami—Cyanoamino acid metabolism; Arginine a—Arginine and proline metab-
olism; Arginine b—Arginine biosynthesis; beta-Alani—beta-Alanine metabolism; Tyrosine 
m—Tyrosine metabolism; Cysteine a—Cysteine and methionine metabolism; Trypto-
phan—Tryptophan metabolism; Phosphonat—Phosphonate and phosphinate metabolism; Lysine 
deg—Lysine degradation; Phenylalanine—Phenylalanine, tyrosine and tryptophan biosynthesis; 
Phenylalanine m—Phenylalanine metabolism; Selenocomp—Selenocompound metabolism; Lysine 

Figure 2. Quantitative evaluation of differentially expressed transcripts between BNF-contrasting
genotypes. (a) The figure shows the number of differentially expressed transcripts that are more
represented in each genotype for each condition. (b) Venn diagram shows the number of transcripts
differentially expressed between SP and CH in each set (tissue and growth conditions). (c,d) Gene
ontology (GO) enrichment analysis of DET in (c) stalk root and (d) stalk shoot. The first circle: the most
enriched terms; outside the circle is the coordinated ruler of the number of transcripts. The second
circle: the classification number in the background. The more transcripts, the longer the bar. The
third circle: bar graph of the ratio of the DETs; red represents the ratio of the upregulated transcripts
in SP, and blue represents it in CH. The fourth circle: The Rich Factor value of each category (the
number of foreground transcripts in the category divided by the number of background transcripts).
(e,f) The circus diagrams represent the KEGG pathway enrichment analysis of DETs in stalk root
(e) and stalk shoot (f) of SP and CH. The figures show only the most significantly enriched GO
terms and KEGG pathways that are involved in hormone, nitrogen, and amino acid pathways, such
as: plant hormone—plant hormone signal transduction; Brassinost—Brassinosteroid biosynthesis;
Nitrogen m—Nitrogen metabolism; Glutathione—Glutathione metabolism; Cyanoami—Cyanoamino
acid metabolism; Arginine a—Arginine and proline metabolism; Arginine b—Arginine biosynthesis;
beta-Alani—beta-Alanine metabolism; Tyrosine m—Tyrosine metabolism; Cysteine a—Cysteine and
methionine metabolism; Tryptophan —Tryptophan metabolism; Phosphonat—Phosphonate and
phosphinate metabolism; Lysine deg—Lysine degradation; Phenylalanine—Phenylalanine, tyrosine
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and tryptophan biosynthesis; Phenylalanine m—Phenylalanine metabolism; Selenocomp—
Selenocompound metabolism; Lysine bio—Lysine biosynthesis. Red represents the number of
the upregulated transcripts in SP, and blue in CH. The GO and KEGG enrichment analyses were
performed using OmicShare tools.

Some identified DETs could be related to the BNF differences observed between SP and
CH, and others could reflect intrinsic differences among the genotypes, possibly not related
with the diazotrophic bacteria colonization. To address that, DETs from stalk datasets
(naturally colonized with diazotrophic bacteria) were searched in the datasets of plants
grown in hydroponics (diazotrophic-free). A group of 2422 transcripts—1138 transcripts in
roots and 1284 transcripts in shoots—presented the same pattern of differential expression
between SP and CH in the stalks and hydroponics. Their functional categorization in GO
and KEGG are presented in Figure 3. A higher number of upregulated DETs in CH was
observed in the roots (Figure 3a). In contrast, in the shoots, a greater number of upregulated
DETs was observed in SP (Figure 3b). Among the DETs analyzed, there were transcripts
involved in hormone response, nitrogen and amino acid metabolism (Figure 3c,d). The
differential expression of two of them (NBS and NRT1), both in stalk and hydroponics
tissues, were validated by qRT-PCR (Figure 4a and Figure S1).
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transcripts in SP, and blue in CH. (a) shows data of roots and (b) shows data of shoots. (c,d) The
graphs show the KEGG enrichment analysis (c) in roots and (d) in shoots. Only the most represented
classes in the sugarcane reference transcriptome were displayed. KEGG enrichment analysis of DETs
was carried out through OmicShare tools.
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Figure 4. Validation of RNA-seq results by qRT-PCR analysis. Patterns of expression of genes were
analyzed in roots (a) and (b) shoots of the two contrasting BNF-genotypes. Comparison of the pattern
of expression of DETs between SP and CH in stalk tissues, showing log2 values in the transcriptome
libraries and the qRT-PCR analyses. For the expression in the transcriptome libraries, results are
presented as the ratio SP/CH of the RPKM of each transcript. Bars represent mean ± standard
deviation of the relative mRNA expression in two biological replicates. For the qRT-PCR data, results
are presented as the ratio of expression of each transcript (relative to GAPDH and 28S rRNA) in each
sample. Bars represent mean± standard deviation of the relative mRNA expression in three biological
replicates (three plants) and each biological replicate analyzed with three technical replicates.

As shown in Figures 4C, S1 and S2, the RNA-seq data were validated by qRT-PCR
for all transcripts analyzed in roots and shoots. Ten of these validated transcripts are
among the 721 exclusive transcripts of each genotype (Figure S2). Other transcripts are
members of plant–bacteria recognition (1), nitrogen signaling/metabolism (6) and plant
hormone response (6) (Figure 4). These results will be discussed later in the article in each
appropriate section.

Next, to better understand the physiological and molecular differences between the
two BNF-contrasting genotypes, plant pathways that might be critical for the establishment
of a successful endophytic association were analyzed in more detail. These analyses focused
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on mechanisms that could be closely involved in plant responses to a beneficial association
with the nitrogen-fixing bacteria, such as nitrogen metabolism, auxin signaling pathways,
and plant recognition of the beneficial bacteria.

2.3. Plant Receptors Involved in Plant–Bacteria Recognition

BNF beneficial features depend on bacteria establishment in plant tissues that might
be controlled by plant–bacteria recognition pathways that operate during the early stages
of colonization. The bacteria adhesion to the cell wall of the root surface cells might trigger
the appropriate recognition processes to establish a beneficial association [14,24–27]. As
beneficial and pathogenic bacteria share several features of recognition, this process must
be fine-tuned for a proper response. Key regulators of these mechanisms are plant recep-
tors [28]. Therefore, plant receptor families involved in plant–bacteria recognition were
compared between the BNF-contrasting genotypes naturally colonized with diazotrophic
bacteria. A high number of DETs involved in bacteria recognition (68 in stalk roots and 67
in stalk shoots), i.e., plant receptors, were identified (Figure 5a and Table S5). A total of 33
and 23 DETs were upregulated in the SP root and shoot, respectively, while 25 and 44 DETs
were downregulated in the SP root and shoot, respectively. The DETs belonged to different
families of plant receptors and are represented in Figure 5a. The functional annotation
identified several members of Receptor Like Kinases (RLK) families, such as Leucine Rich
Repeat containing Receptor Like Kinases (LRR-RLKs), Wall Associated Kinases (WAKs),
Lectin Receptor Like Kinases (LecRLKs) and Lys-motif receptors (LysMs) as differentially
expressed between SP and CH.
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are represented the transcripts that are more expressed in SP and in blue are represented the ones more
expressed in CH. (b) Relative levels of G. diazotrophicus, H. seropedicae, A. brasilense and B. kururiensis
colonizing sugarcane were measured by qRT-PCR of bacterial 23S rRNA in germinated stalks 15 days
after planting. Bacterial 23S rRNA levels were normalized with plant 28S rRNA and GAPDH levels.
Bars represent mean ± standard deviation of the relative mRNA expression in three biological repli-
cates (three plants) and each biological replicate analyzed with three technical replicates. (c) Relative
levels of G. diazotrophicus colonizing sugarcane were measured by qRT-PCR of bacterial 23S rRNA in
hydroponic cultured plants 10 days after inoculation with G. diazotrophicus. Bacterial 23S rRNA levels
were normalized with plant 28S rRNA and GAPDH levels. Bars represent mean± standard deviation
of the relative mRNA expression in two biological replicates (three plants) and each biological repli-
cate analyzed with three technical replicates. (d) Quantification of bacterial numbers of SP and CH
plants grown in hydroponic culture and inoculated with G. diazotrophicus using MPN assay. Analyses
were performed 0, 3, 7 and 10 days after inoculation. Bars represent mean ± standard error of the
relative mRNA expression in three biological replicates (three plants) and each biological replicate
analyzed with three technical replicates. Asterisk marks statistical significance between SP and CH (*
p < 0.05), performed by statistical t-test.

2.3.1. NBS-LRR Proteins

Fifty-nine DETs within biotic stress members belonged to the family of LRR proteins.
This family of proteins is responsible for the first interaction of plants with pathogens,
regulating the activation of defense responses [29,30]. Many plant resistant genes (R
genes) encode NBS-LRR proteins (nucleotide-binding/leucine-rich repeat domains) [31].
Three DETs were annotated as NBS-LRR-kinase proteins (one for stalk roots and two for
stalk shoots) (Table S5) and they showed higher expression levels in CH roots and shoots
(Figure 5a and Table S5). The RNA-seq differential expression analysis data of one member
of the NBS-LRR family were confirmed in the qRT-PCR analysis (Figure 4a and Table S5).
Remarkably, two of the transcripts encoding NBS-LRR were more expressed both in the
hydroponic and stalk root of CH than of SP; qRT-PCR validation was performed for one of
them (Figures 4a and S1). The data suggest that this expression profile is under genotype
control, independent of the diazotrophic bacteria colonization, and could possibly have a
role in the establishment of an efficient association with the diazotrophic bacteria.

2.3.2. LRR-Kinase Family

Most differentially expressed plant receptors belong to the LRR-kinase family. In this
receptor family, 23 and 10 DETs were upregulated in SP stalk roots and shoots, respectively;
and 10 and 16 DETs were downregulated in SP stalk roots and shoots, respectively (Figure 5a
and Table S5). Among the LRR-kinase proteins, SHR5 is a LRR-RLK that was previously
identified as specifically repressed in sugarcane inoculated with beneficial diazotrophic
bacteria such as G. diazotrophicus, Herbaspirillum spp. and A. brasilense [22]. As observed for
the three NBS-LRR transcripts, SHR5 was more expressed in CH than in SP. On the other
hand, 303 ESTs encoding putative LRR-RLKs were induced in sugarcane inoculated with
G. diazotrophicus and H. rubrisubalbicans [32].

The LRR receptor kinase flagellin-sensitive 2 (FLS2), that acts as a pattern-recognition
receptor for the bacterial PAMPs flagellin and contributes to resistance against bacterial
pathogens [33], was more expressed in the CH stalk shoot samples. Besides its role in
pathogen perception, the FLS2 receptor could also be involved in beneficial association
signaling. In Arabidopsis and Vitis vinifera, Flagellin-Sensitive 2 (FLS2) LRR-RLK that
recognizes and directly binds flg22, the immunogenic epitope of the PAMP flagellin, was
transcriptionally induced in plants inoculated with the plant-growth-promoting bacteria
(PGPB) Burkholderia phytofirmans [34].

Altogether, the results suggest that the genotype with a higher efficiency of association
with diazotrophic bacteria, leading to higher rates of BNF, has lower levels of expression of
members of the LRR receptor family involved in plant defense against pathogens.
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2.3.3. Endophytic Bacterial Colonization

Our data demonstrated the regulation of plant receptors known to be involved in
plant–bacteria recognition. NBS-LRR, FLS2, WAK as well as SHR5 were more expressed
in CH than in SP, and as observed for other models, this regulation could be important
for the proper recognition of diazotrophic bacteria and the establishment of a beneficial
association. An important question to be addressed is if the differences in BNF efficiency
are, in part, a consequence of the efficiency of bacterial colonization inside plant tissues,
which could be controlled by specific plant recognition and/or defense genes. To address
that, bacterial colonization was quantified in the two BNF-contrasting genotypes by qRT-
PCR of diazotrophic bacterial ribosomal RNA, in terms of total RNA from stalk roots and
shoots. Primers amplifying specific regions of 23S or 16S rRNA constitutive genes were
used to identify G. diazotrophicus, H. seropedicae, A. brasilense and Burkholderia kururiensis.
This strategy is widely used to detect microorganisms in plant tissues and in phylogenetic
studies [35–38]. No differences in bacterial colonization were observed between the SP and
CH samples for any of the four bacterial rRNA relative expressions analyzed (Figure 5b).
The result indicates that diazotrophic bacterial numbers might not determine the differences
in BNF efficiencies among genotypes.

Next, to test if the physiological status of beneficial diazotrophic bacteria could be
differentially modulated when colonizing the contrasting genotypes, the growth dynamic
of diazotrophic bacteria recovered from SP and CH plants inoculated with G. diazotrophicus
was evaluated. Hydroponically grown plants, free of diazotrophic bacteria, were inoculated
with G. diazotrophicus, and bacterial colonization was quantified by qRT-PCR (Figure 5c)
and MPN (Figure 5d). The qRT-PCR analysis revealed similar levels of colonization by
G. diazotrophicus in SP and CH (Figure 5c), supporting the data from naturally colonized
germinated stalks. For MPN analysis, seven and ten days after semi-solid medium growth,
the numbers of diazotrophic bacteria recovered from SP and CH were similar (Figure 5d),
corroborating the results of qRT-PCR (Figure 5c). However, three days after growth in
semi-solid medium, there was a significant difference between bacterial numbers recovered
from plant tissues of contrasting genotypes: while SP showed an average of 3 × 106 CFU
g−1 of G. diazotrophicus, this bacterium could not be recovered from CH tissues (Figure 5d).
The longer time necessary for G. diazotrophicus to be recovered from CH plant tissues
could suggest a difference in the physiological status of diazotrophic bacteria colonizing SP
and CH.

In addition to the rates of bacterial colonization in plant tissues, bacteria metabolism
might also be important for the beneficial effects to plants. The growth delay of diazotrophic
bacteria recovered from CH tissues could imply that the two contrasting genotypes might
offer a distinct environment for bacterial growth, as suggested by the differences in several
metabolic and defense pathways found in the transcriptome analyses. As a consequence,
the diazotrophic bacteria could stay in a lower active physiological status when colonizing
CH, compared with SP colonization. This could account, at least in part, for the lower
BNF contributions of the CH genotype. In addition, the activation of defense pathways
could suggest that in an inefficient sugarcane–diazotrophic bacteria association, the plant
seems to fail to recognize the bacteria as beneficial, but rather identifies it as a pathogen.
These data may suggest that an important control of the efficiency of the association,
regulated by both the genotype and the environment, is already set in the early stage of
plant–bacterium recognition.

2.4. Plant N Assimilation and Metabolism and Amino Acid Metabolism Pathways

Much evidence suggests that endophytic diazotrophic bacteria can contribute fixed
N to the plant or can change plant nitrogen metabolism [39]. Therefore, N-assimilation
pathways were compared between the BNF-contrasting genotypes naturally colonized with
diazotrophic bacteria. A total of 99 transcripts related to N assimilation and metabolism
were identified as differentially expressed in the contrasting genotypes: 48 DET were
found in roots and 51 in shoots (Figure 6a,b and Table S6). In addition, several transcripts
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categorized in amino acid metabolism were identified, 468 DET were found in roots and
275 in shoots (Figure 6a,b and Table S6).
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between BNF-contrasting genotypes. Schematic representation of N assimilation and transport,
showing the DETs identified in root (a) and shoot (b) tissues of germinated stalks. In red are
represented the transcripts that are more expressed in SP and in blue are represented the ones more
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expressed in CH. (c) Enzyme activity of GS and nitrogenase was evaluated in 15-day germi-
nated stalks and is represented as relative activity in relation to SP70-1143 values. Bars represent
mean ± standard deviation of five biological replicates. Asterisks (*) represent significant differ-
ences between SP and CH through t-test (p < 0.05). GOGAT—glutamate synthase; GS—glutamine
synthetase; AS—asparagine synthetase; NIA—nitrate reductase; NRT—nitrate transporter protein;
AMT—ammonium transporter; 2-OG—2-oxoglutarate; Gln—glutamine; Glu—glutamate; Asn—
asparagine; NO3

−—nitrate; NH4
+—ammonium; BCA—beta carbonic anhydrase; ACA—alfa car-

bonic anhydrase; AspAT—aspartate aminotransferase; OAA—oxaloacetate.

2.4.1. Nitrate Transporters

The nitrate (NO3
−) transporters (NRTs) were one of the most represented functional

categories related to nitrogen metabolism that were differentially expressed during bene-
ficial associations. A total of 46 DETs were found in the database (Figure 6a,b and Table
S6). In plants, nitrate can be absorbed and translocated through transmembrane proteins,
which mainly consist of NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER
(PTR) family (NPF) and NRT2 [40,41]. Besides nitrate, the NPF family transports several
components as substrates, including dipeptides, glucosinolate and phytohormones [42,43].
By contrast, NRT2 members have only been reported to transport nitrate [42].

SP showed six DETs that were more expressed and annotated as the NPF8 subfamily
(NPF8.1/PTR1 and NPF8.3/PTR2)—four in the shoot and two in the root—which in
Arabidopsis encodes dipeptide transporters [44], as well as two DETs in the shoot annotated
as NPF2.11, which encodes a glucosinolate transporter, the most important secondary
metabolite for plant defense [45]. In addition, two DETs annotated as the NPF2 subfamily
(NPF2.3 and NPF2.6), which encodes a member of the NAXT, three DETs annotated as
NPF3.1, which encodes nitrate or peptide transporters, one DET annotated as NPF4.3,
which encodes an ABA transporter, and two DETs annotated as the NPF6 subfamily
(NPF6.3/NRT1.1 and NPF6.4), which encodes nitrate transporters, were more expressed in
stalk roots of SP.

On the other hand, the CH genotype showed a greater number of more expressed
transcripts (30 DETs) that encode members of the nitrate transporter family, mainly in
shoot tissues (19 DETs) (Figure 6b and Table S6). In CH shoots, the annotated DETs
and the number of transcripts were: NPF2.11 (5); NPF3.1 (1); NRT3.2 (1) that codifies a
high-affinity nitrate transporter [46]. NPF4.5 and NPF4.6, from the NPF4 subfamily (4),
which are known as ABA transporters [47]; NPF5.1–3, from the NPF5 family (1), which
encode dipeptides/ABA influx transporters [48,49]; NPF6.3 and NPF6.4, from the NPF6
subfamily (6); NPF7.3 (1) that encodes a nitrate transporter in the xylem [50]; NPF8.1/PTR1,
NPF8.2/PTR5 and NPF8.3/PTR2, from the NPF8 subfamily (2). In CH roots, the annotated
DETs and the number of transcripts were: NPF4.5 and NPF4.6, from the NPF4 subfamily (2);
NPF5.1–3, from the NPF5 subfamily (2); NPF8.1/PTR1, NPF8.2/PTR5 and NPF8.3/PTR2,
from the NPF8 subfamily (4). Moreover, seven DETs codifying for NRT in CH roots were
more expressed either in stalks or in hydroponics, suggesting that this expression profile
is under genotype control, independent of the colonization with diazotrophic bacteria.
Besides the NRT, one DET annotated as AMT1;2 that encodes an ammonium transporter
was also more expressed in the CH stalk shoot.

Nitrate reductase (NiR) is the key regulatory enzyme of the nitrate-assimilation path-
way, by reducing nitrogen absorbed as nitrate (NO3

−) to nitrite (NO2
−), which is reduced

to ammonium (NH4
+), leading to plant N assimilation [51,52]. In addition to NRT, two NiR

transcripts, the NIA1 and NIA2, also seem to be more active in CH germinated stalks, with
one DET in the root and one DET in the shoot, respectively.

As members of the NPF family can transport diverse components as substrates besides
nitrate, they could participate in diverse biological processes including plant growth, devel-
opment, and adaptation to environmental changes [53]. Several NPF family members that
are more expressed in CH tissues were described to be involved in stress responses in other
plant species, such as NPF5.1–3, NPF4.5, NPF4.6, NPF7.3, NPF 8.2 and NRT3.2. AtNPF5.2 is
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needed for defense against some virulent bacterial pathogens in Arabidopsis [54]. NPF4.5,
NPF4.6, and NPF8.2 could also be involved in stress responses, because they are capable of
transporting ABA in addition to NO3

− [49,55], which is a stress hormone that accumulates
under different abiotic and biotic stresses [56]. In addition, the Atnpf4.6 mutant showed a
reduction in 13N export when soil N availability was low; however, when the N availability
was adequate, the 13N export in the mutants was similar to the wild type. This suggests
that AtNPF4.6 might be induced in low N conditions and support a function in stress
tolerance, as well as low N tolerance [57]. A role for NPF7.3 in stress tolerance has also
been proposed, and downregulation enhanced the tolerance to various stresses [58]. In A.
thaliana, NRT3.2 is involved in stomatal regulation, since it is expressed in guard cells when
in biotic stress [59]; however, the function remains unclear. As beneficial and pathogenic
bacteria share several features of recognition, and NPF family members that were more
expressed in CH were already described to be induced in a pathogen infection, it could
suggest that this process must not be fine-tuned for a proper response in the CH genotype.

Higher mRNA levels of NRT1.1 and ScNIA2 in stalk shoots of CH compared with SP
were confirmed by qRT-PCR, validating the RNA-seq data (Figure 4). The data suggest that
N assimilation as nitrate, through nitrate transporters (NRTs), could be more active in the
CH of germinated stalks.

2.4.2. Amide Amino Acid Metabolic Pathway

Plant assimilation of fixed N can occur via the amide amino acid metabolic path-
way that converts ammonium into nitrogen-transporting amino acids by the glutamine
synthetase (GS)/glutamate synthase (GOGAT) cycle, or by the enzyme glutamate de-
hydrogenase (GDH) [60]. Most of the DETs that were annotated as components of the
ammonium-assimilation pathway were more expressed in SP than in CH, such as almost all
transcripts homologous to GS (with three DETs in the root and seven DET in the shoot) and
to GOGAT (with two DETs in the root and one DET in the shoot) (Figure 6a,b and Table S6).
The enzyme asparagine synthetase (AS) that catalyzes the synthesis of asparagine, an im-
portant nitrogen-transporting amino acid in several plant species, was also more expressed
in SP (with eight DETs in the shoots and six DETs in the roots). The data suggest that
ammonium assimilation in germinated stalks is more activated in the highly efficient BNF
genotype, both in roots and shoots (Figure 6a,b and Table S6).

Higher expression levels of ScGS1a, ScGS1b, ScGS1c and GLT1 in stalk roots and
shoots of SP compared with CH were confirmed by qRT-PCR, validating the RNA-seq
data (Figure 4). In addition, biochemical analyses of enzyme activities were carried out to
functionally validate the transcriptome data. Since GS enzyme activities can be modulated
post-transcriptionally, they were measured in the leaves of germinated stalks. As observed
in Figure 6c, GS activities were higher in the more efficient BNF genotype than in CH
(3.89 ± 0.59 in SP and 3.19 ± 0.54 in CH), functionally validating the expression analysis
data. Bacterial nitrogenase activities were also quantified in the same plant materials and
compared between SP and CH. As observed in Figure 6c, bacterial nitrogenase activities
were also higher in the more efficient BNF genotype than in CH (4.30 ± 1.81 in SP and
1.49 ± 1.33 in CH), corroborating the GS activities observed in the contrasting genotypes.
Previous studies on differential EST expression of the sugarcane SP genotype, free of mi-
croorganisms and in vitro inoculated with endophytic diazotrophic bacteria, have indicated
that N metabolism was activated in SP plants inoculated with the diazotrophic bacteria G.
diazotrophicus and H. seropedicae. mRNA levels of a cytosolic GS (scGS1.b) were higher in SP
than in CH, in mature leaves from field-grown plants [20]. In addition, in the IAC95-5000
sugarcane genotype, which is considered less efficient for diazotrophic bacterial inoculation,
similarly to CH, the activity of glutamine synthetase was unaffected by PGPB [61]. The
enzyme AS, which catalyzes the synthesis of the nitrogen-transporting asparagine, was also
more expressed in SP, further suggesting that N assimilation was more active in SP than in
CH. Similarly, the RB86-7515 sugarcane genotype, which responds better to inoculants with
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diazotrophic bacteria, showed an increase in glutamine and asparagine when inoculated
by a mixed inoculum containing the G. diazotrophicus strain PAL5 and H. seropedicae [62].

2.4.3. Amide Amino Acid Metabolic Pathway

The importance of nitrogen metabolism is highly related to the adaptation of plants to
stress [63]. To grow in adverse conditions, plants have to adapt their physiological processes,
in particular nitrogen metabolism; this requires major changes, including changes in the
associated metabolic networks with amino acids [63–65]. More remarkably, the amino
acid composition is modified when the plant is in a stress condition and is characterized
by a high accumulation of specific amino acids involved in plant stress tolerance [65,66].
Thus, in addition to the important genes involved in nitrogen transport and assimilation,
468 and 275 DETs annotated as genes involved in amino acid metabolism were found in
sugarcane shoots and roots, respectively (Figure 6 and Table S6). They included DETs
annotated as alanine aminotransferase (five in the shoot), alcohol dehydrogenase (three
in the root and six in the shoot), aspartate aminotransferase (three in the root and six in
the shoot), aspartate kinase (two in the root and four in the shoot), glutathione peroxidase
(four in the root and six in the shoot), glutathione reductase (two in the shoot), glutathione
S-transferase (28 in the root and 73 in the shoot), among many others (235 in the root and
366 in the shoot). Most of them were more expressed in SP (173 in the root and 329 in
the shoot). This could suggest that the amino acid pathway was more activated in the
more responsive BNF genotype. In addition, several studies have already been carried
out to investigate many of these genes, showing an important involvement with plant
growth, yield and NUE increase, and stress tolerance [67–75]. Corroborating our data, the
inoculation with beneficial bacteria enhanced the amino acid metabolism and increased
glutamine, asparagine, glutamic acid, serine, proline, threonine, aspartic acid, and other
amino acids in sugarcane [62,76]. In addition, sugarcane plants inoculated with the PGPB
Burkholderia anthina MYSP113 also exhibited regulated amino acid pathways, showing
several upregulated sequences [77].

2.5. Auxin Hormonal Pathway

Plant hormones are key signaling molecules that regulate plant growth and response
to microbial interactions [78]. It has already been observed that some of the diazotrophic
bacteria can produce phytohormones, such as IAA [79,80]. In this work, differential
expression analyses between the contrasting genotypes identified hormone metabolism
among the most represented functional categories (Figure 2c,d). Thus, the differential
regulation of the auxin phytohormone pathway in the BNF-contrasting genotypes was
investigated, by searching for DETs from biosynthesis, signaling and response pathways.

Different auxin biosynthetic routes in plants contribute to the pool of auxin in the
plant tissues, such as Indole-3-acetaldoxime (IAOx), Indol-3-acetamide (IAM), Indol-3-
Pyruvic acid (IPyA) and Indole-3-acetaldehyde (IAAld) pathways [81]. IPyA and IAAld
pathways seem to be more active in SP than in CH roots, since key enzymes of these
pathways—Tryptophan Aminotransferase Related 2 (TAR2, 1 DET) and Abscisic Aldehyde
Oxidase 3 (AAO3, 2 DET)—were more expressed in SP than in CH (Figure 7a and Table S7).
On the other hand, the IAOx pathway seems to be more active in CH, as one transcript
annotated as a Nitrilase 4 (NIT4) was more expressed in this genotype (Figure 7a and
Table S7). Final auxin levels also depend on the balance of the formation of IAA-amino
acid conjugates, which are generally considered inactive, and the activity of hydrolases
that convert the conjugates to free IAA [81]. mRNA levels of either an enzyme involved in
the formation of auxin–amino acid conjugates—GH3; T1 (one DET)—and the IAA-amino
acid hydrolases—ILL6 (one DET)—were higher in the roots of CH than in SP; in contrast,
one transcript annotated as a GH3—T2—was more expressed in the SP roots. Most auxin
transporters showed higher levels of expression in SP than in CH, as observed for Chalcone
and stilbene synthase (TT4, eight DETs), Pin-formed 1 (PIN1, three DETs), ATP-Binding
Cassette B19 (ABCB19, four DETs), ATP-Binding Cassette B1 (ABCB1, two DETs), Auxin
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Resistant 1 (AUX1, one DET), Seven transmembrane MLO family (MLO4, one DET), Like
Auxin Resistant 1 (LAX1, three DETs), like AUX1 3 (LAUX3, one DET), Protein kinase
superfamily (PID, one DET) and Like Auxin Resistant 2 (LAX2, one DET), except for the
ABC transporter family (ABC, two DETs), Transporter associated with antigen processing 2
(TAP2, one DET), MLO4 (one DET) and ABC-2 and Plant PDR ABC-type transporter family
(ABCG36, one DET), which exhibited higher mRNA levels in CH (Figure 7a and Table S7).
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(a) Schematic representation of auxin pathway showing the DET identified related to auxin biosyn-
thesis, auxin transporter and auxin signaling in roots and shoots of germinated stalks. In red
are represented the transcripts more expressed in SP and in blue are represented the ones more
expressed in CH. (b) Evaluation of crown roots in the stalk plants (naturally colonized by endophytes).
(c) Representative photos of germinated stalks 15 days after planting of CH (left) and SP (right)
demonstrate the differences observed in the quantitative analysis. Bars represent mean ± standard
deviation of three biological replicates. Asterisks (*) represent significant difference between SP and
CH at the same time point through t-test (p < 0.05).

Auxin signaling and response depends on its recognition by the intracellular recep-
tor of the Auxin Signaling F-BOX/Transport Inhibitor Response (AFB/TIR) family [82].
Through this interaction, AUX/IAA (Indole-3-acetic acid inducible), a repressor of the
pathway, is led to degradation by ubiquitination, which allows the transcriptional activa-
tion of auxin-responsive genes by ARFs (Auxin Response Factor) [82]. All of the DETs
positively involved in auxin signaling, such as TIR1 (1 DET), ARF2 (1 DET) and ARF3
(1 DET), showed higher levels of expression in SP than in CH (Figure 7a and Table S7).
However, two transcriptional repressors, IAA16 (2 DET) and IAA26 (1 DET), were also
more expressed in SP roots. Possibly, the higher levels of GH3, IAA16 and IAA26 in
SP roots could be related to their function as modulators of auxin signaling, triggering
negative-feedback controls for proper auxin homeostasis [83,84]. Finally, the transcriptional
factor NAC1, which is induced by auxin and is involved in auxin signaling to promote
lateral root development in A. thaliana [85] and in maize [86], was also more expressed in
SP stalk roots than in CH.

The transcriptome data suggest that in the roots of the high-BNF genotype, which was
highly colonized with endophytic diazotrophic bacteria, auxin biosynthesis, transport and
signaling transduction were more active than in the roots of the low-BNF plants. Auxin
regulates almost every aspect of plant growth and development [87,88]. In roots, the most
well characterized auxin-associated phenotypes are the increase in root hair length, the
effect of auxin on primary root growth, the increase in the number of lateral root primordia,
and the response to gravity [89–91]. As shown in Figure 7a, members of auxin signaling
known to be positive regulators of root development, such as TAR2, PIN1, AUX1 and TIR1,
were more expressed in SP. In addition, key regulators of root architecture (ARF2, ARF3,
NAC1) showed expression profiles that were compatible with the greatest root development
observed in SP, which is the most efficient BNF genotype. Differential expression levels of
TAR2, AUX1, ABCB19, TIR1, ARF2 and NAC1 in the stalk roots of SP compared with CH
were confirmed by qRT-PCR, validating the RNA-seq data (Figure 4).

In Arabidopsis, the overexpression of TAR2 increases LR numbers under both high
and low nitrogen conditions [92]. Rice PIN1 plays an important role in auxin-dependent
adventitious root emergence and tillering [93]. Disruption in auxin transport by AUX1 mu-
tation results in altered IAA distribution and consequently the inhibition of LR formation in
Arabidopsis [94]. Auxin receptor mutants, including TIR1, have altered LR phenotypes [95].
Downstream of TIR1, NAC1 acts in lateral root formation [85]. NAC1 sense or antisense
transgenic lines show an increase or reduction in lateral roots, respectively. In addition,
TIR1-induced lateral root development is blocked in the antisense NAC1 transgenic line,
and NAC1 overexpression can restore lateral root formation in the tir1 insertion mutant.
The overexpression of the maize NAC1 ortholog, ZmNAC1, in the heterolog system of
Arabidopsis resulted in an increase in the number of lateral roots in comparison to wild
type plants [86]. However, a functional analysis of the transcription factors ARF2 and ARF3
in Arabidopsis, whose putative homologs were more expressed in SP, demonstrated the
inhibitory effect of these proteins in LR development [96]. Our data did not allow us to as-
sign the sugarcane genes as functional orthologs, and further analysis might be performed.
In addition, SP showed higher levels of expression of some members of the AUX/IAA
family, which were characterized as repressors of the auxin effect on root development of
other plant species, and they could be involved in the fine regulation of the pathway.
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One of the well-known beneficial outcomes of the plant–endophytic diazotrophic
bacteria association is root growth promotion [21,97,98]. To biologically validate the auxin
gene expression profile observed in the transcriptome data, root development during stalk
germination was analyzed in the contrasting BNF genotypes. As shown in Figure 7c, in
germinated stalks naturally colonized with diazotrophic bacteria, the root system in SP was
more developed than in CH. In addition, the SP genotype presented 84% and 51% more
crown roots than CH 15 and 30 days after germination, respectively (Figure 7b).

To investigate root growth modulation due to intrinsic genotype variations, in vitro
micro propagated plantlets free of microorganisms were transferred to hydroponics where
their root development was analyzed. As shown in Figure 8a, the SP root system was
more developed than in CH. Four and seven days after growing in hydroponics, the SP
plants already presented a greater number of crown (Figure 8b) and lateral roots (Figure 8c),
respectively, compared to CH plants. The quantitative evaluation of root development
demonstrated that at these time points SP had 39% more crown roots (Figure 8b) and 284%
more lateral roots than CH (Figure 8c). Up to thirty days after growing in hydroponics, this
difference was still significant. While SP plants had an average of 10 crown roots and 62 lat-
eral roots, CH showed approximately 8 and 53, respectively (Figure 8b,c). The data showed
that in plants free of diazotrophic bacteria, the root system in SP was more developed than
in CH, supporting that genotype-specific genetic factors are involved in the differences in
root development and architecture observed between the BNF-contrasting genotypes.

Next, we analyzed the role of the diazotrophic bacteria association in the root devel-
opment of the two genotypes. In vitro micro propagated plants free of microorganisms
were transferred to cultivation in hydroponics, and then inoculated with G. diazotrophicus.
Time-course analyses of the root development showed root growth promotion after inocu-
lation with diazotrophic bacteria (Figure 8b,c). The CH genotype showed a delay in the
promotion of the growth of crown (Figure 8b) and lateral roots (Figure 8c) compared to
SP in all of the experimental points analyzed. Only 15 and 10 days after inoculation were
significant increases in the number of crown (21%) and lateral (21%) roots, respectively,
observed in the CH plants. The maximum promotion of crown and lateral roots in SP
occurred 30 days after inoculation (25% and 33% respectively). In the inoculation of the CH
genotype, maximum levels of growth promotion of crown (21%) and lateral (21%) roots
were observed 15 and 4 days after inoculation, respectively (Figure 8d,e). As shown in
Figure 8d,e, the promotion of sugarcane root growth by the diazotrophic bacteria was more
pronounced in SP (efficient association) than in CH (inefficient association).

To better understand the dynamics of the expression of auxin pathway genes during
root development and during the association with diazotrophic bacteria, qRT-PCR was
performed to assess the expression of ScTIR1 and ScNAC1 genes (Figure 9). During
development, there was no significant difference in ScTIR1 expression between plants
of the SP and CH genotypes that were free of diazotrophic bacteria (Figure 9a). Both
genotypes showed the maximum point of expression 10 days after transfer to hydroponics.
In plants associated with G. diazotrophicus, the ScTIR1 expression peaked four days after
inoculation in SP, and it was not regulated in CH (Figure 9c). A difference in ScNAC1
expression was observed between the SP and CH genotypes free of diazotrophic bacteria
10 days after transfer to hydroponics (Figure 9b), when ScNAC1 expression peaked in
the SP plants. Inoculation significantly increased ScNAC1 expression after seven days
in SP, afterwards the mRNA levels reduced. The CH genotype did not show significant
regulation of ScNAC1 expression after inoculation with G. diazotrophicus (Figure 9d). The
expression profiles of ScTIR1 and ScNAC1 suggest that diazotrophic bacteria inoculation
anticipated auxin responses in SP roots.
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Figure 8. Analysis of roots between the contrasting genotypes grown in hydroponics. (a) Representa-
tive photos of diazotrophic-free plants grown four days after transfer to hydroponics demonstrate
the differences observed in the quantitative analysis of control plants. Evaluation of crown (b) and (c)
lateral roots, and % of increase in (d) crown and lateral root number (e) in plants inoculated with G.
diazotrophicus. Analyses were performed 0, 4, 7, 10, 15 and 30 days after inoculation. The symbol (*)
indicates significant differences between SP and CH control plants at the same time point. The symbol
(#) indicates significant differences between control and inoculated plants of the same genotype at the
same time point. The (+) sign indicates significant differences between SP and CH inoculated plants
at the same collection point. Bars indicate mean ± standard error of three independent experiments.

Finally, the responsiveness of root development to auxin was evaluated in the BNF-
contrasting genotypes. Time-course analyses of root development showed root growth
promotion after 1-naphthaleneacetic acid (NAA) treatment (Figure 10a–d). The maximum
promotion of crown and lateral roots in SP occurred 15 and 7 days after inoculation (9% and
24% respectively). In the NAA treatment of the CH genotype, it showed maximum levels
of growth promotion of crown (18%) and lateral (15%) roots 15 and 7 days after treatment,
respectively (Figure 10a–d). As shown in Figure 8d,e, the promotion of sugarcane root
growth by the diazotrophic bacteria was more pronounced in SP (efficient association)
than in CH (inefficient association). Both genotypes showed root growth promotion
by NAA treatment. However, the rate of increase was higher in SP plants than in CH
(Figure 10d), suggesting that this genotype is more responsive to auxin, corroborating the
gene expression and phenotypic analysis data.
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Figure 9. Expression of the ScTIR1 and ScNAC1 genes in roots of plants of the SP and CH genotypes
not inoculated and inoculated with diazotrophic bacteria. (a,c) represent the relative expression
by qRT-PCR of the (a) ScTIR1 and (b) ScNAC1 genes in roots of plants free from diazotrophic
bacteria of the BNF-contrasting genotypes. (c,d) represent the relative expression by qRT-PCR of the
(c) ScTIR1 and (d) ScNAC1 genes in roots of control and G. diazotrophicus-inoculated plants of the
BNF-contrasting genotypes. Relative mRNA levels were analyzed by qRT-PCR and were normalized
by the levels of the 28S and GAPDH normalizers and (a) the 0-day point or (b) the uninoculated
control on the same day of collection was used as a reference for the calculation of relative expression.
Each root RNA sample was prepared from a pool of 15 plants, and the figure shows the average
of three biological replicates where technical triplicates of the qRT-PCR reactions were performed.
Statistical analyses were performed by t-test with p < 0.05. The symbol (*) indicates significant
differences in the expression of ScNAC1 in roots of plants free of diazotrophic bacteria between SP
and CH at the same time point. The (#) sign indicates significant differences in expression between
control and inoculated plants of the same genotype and at the same collection point. Bars indicate
mean ± standard deviation of three independent experiments.

Remarkably, the dynamics of expression of auxin signaling genes in the BNF-contrasting
genotypes positively correlated with the timing of their root development, both in inoc-
ulated and non-inoculated plants, as the CH genotype showed a delay in the growth of
crown and lateral roots compared to SP in both conditions. Thus, the regulation of the
expression of auxin pathway genes in SP, such as ScTIR1 and ScNAC1, during association
with diazotrophic bacteria may represent an important molecular mechanism for growth
promotion modulated by the bacterial association. In addition to being involved in lateral
root development, transcription factors that are members of the NAC gene family have
been suggested to be involved in the regulation of the transcriptional reprogramming
associated with plant stress responses [99]. The overexpression of ZmSNAC1 in A. thaliana
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enhanced tolerance to drought and low-temperature stress when compared to the control
plants [100]. In transgenic rice, the overexpression of Os03g60080/SNAC1 increased grain
yield (up to 34%) under drought stress [101].
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Figure 10. Analysis of root growth in the contrasting genotypes treated with 2 mM NAA in hydro-
ponics. Evaluation of (a) crown and (b) lateral roots, and % of increase in (c) crown and (d) lateral
root number in plants treated with 2 mM NAA. Analyses were performed 0, 7 and 15 days after
treatment. The symbol (*) indicates significant differences between SP and CH control plants at the
same time point. The symbol (#) indicates significant differences between control and NAA treated
plants of the same genotype at the same time point. Bars indicate mean ± standard error of three
independent experiments.

Altogether, the data suggest that the contrasting root development and auxin response
pathway profiles between SP and CH might result from two levels of regulation: intrin-
sic genotypic variations between SP and CH, plus the efficiency of the association with
diazotrophic bacteria.

3. Materials and Methods
3.1. Plant Material for Library Construction and RNA Extraction

Stalks of SP70-1143 and Chunee genotypes, kindly provided by Embrapa Agrobiolo-
gia (Seropédica, RJ), were germinated in a mixture of sand and vermiculite in 2:1 ratio,
respectively. Watering was performed twice per week and the temperature was maintained
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between 25 ◦C and 30 ◦C with an irradiance of 60 µmol photons m−2 s−1 for 12 h d−1. Root
and shoot tissue samples were separately collected 15 days after planting.

A hydroponic system was established to generate diazotrophic-bacteria-free plant
material. SP70-1143 and Chunee plantlets obtained from sterile in vitro culture of meristems
(provided by Centro de Tecnologia Canavieira—CTC) were transferred to Hoagland’s
solution [102] and the material was collected 30 days after transferring to hydroponic
culture. Root and shoot tissues were collected separately, and before freezing, samples
were washed in water/alcohol/water (1 min for each).

All 16 collected samples were frozen in liquid nitrogen and stored in a freezer at
−80 ◦C until extraction. For RNA-seq library construction, samples collected from fifteen
plantlets were pooled and total RNA from two pooled samples were extracted from frozen
material according to [103]. Quality and quantification of RNA samples was performed
using Agilent 2100 Bioanalyzer TM (Agilent Technologies, Aplo Alto, CA) and verified by
agarose gel electrophoresis. Total RNA of two biological replicates of each plant material
were used for deep sequencing at Fasteris Life Sciences SA (Plan-les-Ouates, Switzerland).
Abbreviations of all libraries sequenced are summarized in Table S1.

Evaluation of colonization by diazotrophic bacteria in all samples was assessed by
qRT-PCR.

3.2. Plant Material for Experiments in Hydroponic Culture and Root Development Analysis

The hydroponic system was also used to perform hormone treatment and inoculation
experiments. SP and CH plantlets obtained from sterile in vitro meristem culture were
transferred to Hoagland’s solution and submitted to different treatments. For inoculation
experiments, sugarcane plantlets were inoculated with a suspension of G. diazotrophicus
strain PAL5. The control and inoculated plants had their root system analyzed by quan-
tification of crown and lateral roots 0, 4, 7, 10, 15 and 30 days after inoculation (DAI). At
the same time points, roots from 15 plants were collected in three pooled samples and
frozen in liquid nitrogen for further RNA extraction. For hormone treatment experiments,
NAA was added to Hoagland’s solution to a final concentration of 2 mM. The control and
NAA-treated plants had their root system analyzed by quantification of crown and lateral
roots 0, 7, and 15 days after treatment (DAT).

Root architecture of germinated stalks was evaluated. SP and CH stalks were germi-
nated in a mixture of sand and vermiculite in a 2:1 ratio and submitted to quantification of
their number of crown roots 15 and 30 days after planting.

3.3. Bacteria Inoculation and Evaluation of Plant Colonization

To prepare bacterial inoculation suspension, G. diazotrophicus strain PAL5 was grown
on a Petri dish with LGI-P solid medium (sucrose or sugar 100 g/L, K2HPO4 0.2 g/L,
KH2PO4 0.6 g/L, MgSO4.2H2O 0.2 g/L, CaCl2.2H2O 0.02 g/L, Na2Mo4.2H2O 0.002 g/L,
Bromothymol blue 5 mL/L (0.5% solution in KOH 0.2 N), FeCl3.6H2O 0.01 g/L, pH 5.5–6.0).
Bacterial suspensions from one colony were grown in 5 mL liquid DYGS (glucose 2 g/L,
peptone 1.5 g/L, yeast extract 2 g/L, K2HPO4 0.5 g/L, MgSO4.7H2O 0.5 g/L and glutamic
acid 1.5 g/L, pH 6.0) for two days at 28–30 ◦C with agitation (120 rpm) as a pre-inoculum.
A volume of 1 mL from pre-inoculum was added to each 100 mL liquid DYGS and allowed
to grow overnight under agitation at 28–30 ◦C to form the inoculation solution. Bacterial
suspensions with OD600nm equal to one were added to 1x Hoagland’s solution at a pro-
portion of 1:30. The same amount of medium without bacteria was added in Hoagland’s
solution as mock controls. G. diazotrophicus PAL5 was kindly provided by EMBRAPA,
Seropédica, RJ.

To evaluate bacterial colonization, whole plants were washed with sterile water for
one minute, with sterile 70% ethanol for one minute and with sterile water for one minute.
After that, plants were macerated in sterile saline solution (100 g/L, K2HPO4 0.2 g/L,
KH2PO4 0.6 g/L, MgSO4.2H2O 0.2 g/L, CaCl2.2H2O 0.02 g/L, Na2Mo4.2H2O 0.002 g/L)
in the proportion 9 mL of saline solution for 1 g of plant. Homogenate was used for serial
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dilution from 10−1 to 10−9. A sample of 100 uL of all dilutions was inoculated in 5 mL of
LGI-P semi-solid medium (sucrose or sugar 100 g/L, K2HPO4 0.2 g/L, KH2PO4 0.6 g/L,
MgSO4.2H2O 0.2 g/L, CaCl2.2H2O 0.02 g/L, Na2Mo4.2H2O 0.002 g/L, Bromothymol blue
5 mL/L (0.5% solution in KOH 0.2 N), FeCl3.6H2O 0.01 g/L, pH 5.5–6.0). Bacterial growth
was evaluated every day until growth pellicle visualization.

3.4. Library Construction, Sequencing and De Novo Assembly

For construction of mRNA libraries, first-strand cDNA was generated using random
hexamer-primed reverse transcription. After second strand cDNA synthesis and adaptor
ligation, cDNA fragments of approximately 200 bp were isolated by gel electrophoresis.
cDNA fragments were amplified by 15 cycles of PCR and deep sequenced on the Illumina
Genome Analyzer (GA-IIx) system using a single-end 100 cycle protocol, following the
manufacturer’s protocol available at http://www.fasteris.com, accessed on 10 July 2012.
Demultiplexing was used prior to generation of fastq sequence files by separating the
libraries according to their indexes. Raw reads in the fastq format were cleaned using
quality trimming and quality filtering as implemented in the FASTX Toolkit (version 0.0.13,
http://hannonlab.cshl.edu/fastx_toolkit/). For quality trimming, a quality threshold of 30
was used with a minimum read length of 20 nucleotides. For quality filtering, the minimum
quality score was set to 20 in a minimum percent of bases of 90%.

After trimming low-quality sequences (Q30), Illumina sequencing data obtained
from all samples were used for de novo assembly using software tool VELVET (version
1.0.12) [104] in combination with OASES (version 0.1.15) [105]. Different “k-mer” (35–49)
were used to optimize the assembly process, searching for an increase in both contig
contiguity and in transcript diversity, and after that hash size 47 was chosen. The average
insert size was set to 200 bases with a standard deviation of 10%. A minimum size of
100 bases was set for the contigs and the coverage cut-off for contigs was set to 6X. Only
contigs with more than 100 bp were maintained in the final dataset. The OASES tool of
VELVET package was used to solve ambiguities that may have occurred in splicing sites.
The contigs were organized into clusters called loci, and these were fragmented because of
splice variations and partial assemblies.

Therefore, in the reference transcriptome constructed, all loci are detected with possible
transcripts enumerated for each of them. Sequences generated were identified by the locus
ID and transcript number correlated to it, e.g., Locus_1_Transcript_3/4_Confidence_0.429,
where a locus indicates a suspected genomic locus, transcript 3/4 indicates that this is
isoform 3 of 4 identified, and confidence indicates the fraction of reads within this locus
which support this isoform. Only transcripts above 100 bp were considered.

The datasets generated for this study can be found in SRA/NCBI (https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA226750).

3.5. Read Mapping and Differential Expression Analysis

For expression analysis, reads of each library were mapped against the reference
transcriptome and counted at the transcript level using MAQ program [106]. The following
parameters were considered: total alignment of reads with up to 2 mismatches in the first
24 bases of the assembled transcript and extension to other bases.

To select differentially expressed transcripts, read counts were normalized as RPKM
(read per million fragments per kilobase), by multiplying the total number of reads by
1 billion (1-million-time 1000) and dividing by the annotation size (a total read number
multiplying by the transcript length) [107]. This allows comparison between the samples.
A Fisher’s Exact test with a p-value cut-off < 0.05 was performed on every combination
of the 16 libraries with Bonferroni correction. We used a Log2 Fold change (Log2FC) to
create a transcriptomic dataset with comparisons of interest. The fold change is calculated
dividing the RPKMs from a condition of interest by the control. This way we measure the
difference of expression between SP and CH samples.

http://www.fasteris.com
http://hannonlab.cshl.edu/fastx_toolkit/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA226750
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA226750
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For exclusively expressed sequence evaluation, transcripts that were covered by at
least 1 read in 5 CH samples, and never covered by any SP samples that were considered
as exclusively expressed in Chunee and vice versa.

3.6. Functional Annotation of Sugarcane Transcripts

The sugarcane transcriptome sequences were evaluated against proteins of Viridiplan-
tae UNIPROT database (https://www.uniprot.org/uniprot/?query=viridiplantae&sort=
score, accessed on 20 November 2020) using the BLASTX and an e-value cut-off threshold of
≤ 1 × 10−5. The Viridiplantae transcripts of RT1 were mapped against sugarcane genome
sequences available in public databases, using the BLASTN tool with an e-value cut-off
threshold of ≤ 1 × 10−5. Likewise, conservation of RT1 sequences was analyzed with
proteome databases of Arabidopsis, rice, maize and sorghum using the BLASTX tool.

Sugarcane cDNA sequences were retrieved from the Sugarcane genomes Index (https:
//sugarcane-genome.cirad.fr, accessed on 15 July 2018; and https://bioinformatics.psb.ugent.
be/plaza/versions/plaza_v4_5_monocots, accessed on 10 October 2018). The Sorghum bi-
color (Sbicolor_454_v3.1.1, 1 February 2017), Oryza sativa (Osativa_323_v7.0 27 Novem-
ber 2015), Zea mays (Zmays_493_RefGen_V4, 21 October 2017) and Arabidopsis thaliana
(Athaliana_167_TAIR10, 12 January 2014) protein data sets were obtained from Phytozome
(http://www.phytozome.net, accessed on 10 October 2020).

All the transcripts were subjected to Gene Ontology and Kyoto Encyclopedia of Genes
and Genomes analysis. For the enrichment analysis of functional categories, DEGs were
classified according to Gene Ontology terms and KEGG pathway using OmicShare tools
(http://www.omicshare.com/tools, accessed on 15 November 2020). The significance levels
of the GO terms in the three functional categories—biological process, molecular function,
and cellular component. A GO term or KEGG pathway was considered significantly
enriched if the p-value < 0.05.

Genes encoding proteins involved in auxin biosynthesis, receptor, signaling, and trans-
porter were identified using the Arabidopsis Hormone Database v.2 [108]. Genes encoding
proteins involved in nitrogen metabolism and amino acid metabolism were identified
using KEGG annotation. Genes related to plant receptor (microorganism recognition) were
identified using MAPMAN [109].

3.7. RNA Expression by qRT-PCR

Total RNA of three biological replicates of each plant material were used for qRT-
PCR. Total RNA isolated from roots and shoots were treated with DNAse I (Biolabs).
Reverse transcription was made using Taqman First Strand cDNA Synthesis Kit (Ap-
plied) using random hexamers as primers, following manufacturer’s instructions. To
analyze gene expression profile, qRT-PCR reactions were performed with SYBR Green PCR
Master Mix (Applied Biosystems). To each well, 2.5 µL of 3x diluted first strand cDNA,
5 µL of SYBR Green solution, 1 µL of the forward primer (10 µM) and 1 µL of reverse
primer (10 µM) were added, along with 0.5 µL of sterile, ultrapure water to bring the
final volume to 10 µL in each well. qRT-PCR reactions were performed using Applied
Biosystems 7500 Real-Time PCR Systems, under standard conditions. The constitutive
plant genes 28S ribosomal RNA (28S rRNA) and GAPDH were used as internal control: 5′-
GCGAAGCCAGAGGAAACT-3′ (28S rRNA forward), 5′-GACGAACGATTTGCACGTC-3′

(28S rRNA reverse), 5′-CACGGCCACTGGAAGCA-3′ (GAPDH forward) and 5′-TCCTCAG
GGTTCCTGATGCC-3′ (GAPDH reverse). To validate the expression pattern of DET iden-
tified from RNA-seq analysis, 29 specific primers were designed with Primer Express
software (Table S8). The sequence for primer design for each selected transcript was care-
fully selected in order to be specific to each putative transcript. The results of qRT-PCR
were analyzed using ∆Ct quantitative method according to [110]. Statistical analyses were
performed using t-test.

https://www.uniprot.org/uniprot/?query=viridiplantae&sort=score
https://www.uniprot.org/uniprot/?query=viridiplantae&sort=score
https://sugarcane-genome.cirad.fr
https://sugarcane-genome.cirad.fr
https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots
https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots
http://www.phytozome.net
http://www.omicshare.com/tools
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3.8. Glutamine Synthetase and Nitrogenase Activity

Enzyme activity of GS and nitrogenase was evaluated in 15-day germinated stalks.
The GS activity was measured as described by [111]. Briefly, samples of fresh leaves were
collected from 5 plants, from each genotype, macerated with liquid nitrogen to produce a
fine powder to which 1.5 mL of extraction buffer was added. The mixture was centrifuged
at 14,000 rpm in a refrigerated centrifuge at −4 ◦C for 30 min. The total protein content
was determined by absorbance measurement using a spectrophotometer at 540 nm and
with bovine serum albumin (Sigma) as a standard. Protein extracts were used to quantify
the GS activity (GSa). The absorbance was measured at 540 nm using an Anthos Zenyth
200 ST microplate reader (Biochrom) with standard γ-glutamyl monohydroxamate (Sigma).
GSa was expressed in µmol of γ-glutamyl monohydroxamate min−1 µg−1 protein. The
nitrogenase activity was measured by the acetylene reduction assay as described by [112].

4. Conclusions

Several Brazilian sugarcane cultivars show high contributions of Biological Nitrogen
Fixation, with the ability to grow with low nitrogen fertilizer inputs. The use of bio-
inoculants formulated with endophytic and associative nitrogen-fixing bacteria appears
to be a promising practice to improve this already successful association. However, the
effectiveness of this natural fertilization is heavily dependent on soil conditions and plant
genotype. The understanding of how genetic controls in different plant varieties are
coordinated with the colonizing nitrogen-fixing bacteria can provide tools to improve the
use of bio-inoculants in order to achieve higher levels of productivity.

In this work, differential transcriptome, physiological and biochemical approaches
were used to unravel plant genes and pathways that are differentially regulated in sugar-
cane BNF-contrasting genotypes, during a natural association with diazotrophic bacteria.
Two sugarcane genotypes were studied: the commercial cv. SP70-1143 with high rates of
BNF and the wild non-commercial species Saccharum barberi (Chunee), with low rates of
N fixed by BNF [3]. To simulate field conditions, where sugarcane is mainly propagated
through plantlets germinated from stalks that become highly colonized by diazotrophic
bacteria, root and shoot tissues of stalks, 15 days after germination, were used to construct
RNA-seq libraries. A reference transcriptome of sugarcane of high quality was generated
from Illumina RNA-seq libraries of two BNF-contrasting genotypes, both in the presence
and absence of diazotrophic bacteria, which is available to the entire scientific community.

In addition, several differential transcriptomes were generated, which unveil impor-
tant physiological features intrinsic to each genotype and those that could be related to the
efficiency of the association with the diazotrophic bacteria. Physiological and biochemical
analyses functionally supported the biological involvement of microorganism recognition
(plant receptors), nitrogen metabolism and auxin signaling in the differences between
the two sugarcane genotypes. Possibly, BNF-contrasting genotypes might offer a distinct
environment for bacterial growth, and the diazotrophic bacteria could stay in a lower active
physiological status when colonizing genotypes with lower BNF contributions. In addition,
the diazotrophic bacterial colonization might differentially modulate nitrogen metabolism
in each plant genotype, impacting how much it will benefit from the bacteria. Finally, the
modulation of auxin response appears to be a key mechanism regulating the efficiency of
the association in promoting plant development.

One of the major outputs of the studies on sugarcane association with diazotrophic
bacteria is the development of tools to help to obtain novel plant varieties more respon-
sive to N2-fixing bacteria. The molecular analysis of the association reveals sugarcane
genetic controls involved in the first step of plant response to diazotrophic bacteria col-
onization [20,22,32,113]. Our results showed transcriptional differences between BNF-
contrasting genotypes that may explain, at least in part, the differences in response to the
association with diazotrophic bacteria that lead to diverse contributions of BNF for each
plant genotype. A follow-up of these studies is important in order to increase knowledge
on how the plant genotype controls the efficiency of the association in conditions closer
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to the natural environment of crop growth. Several of the genetic controls revealed for
sugarcane might possibly be translated to other plant species. They could be used for
the development of tools for optimization of plant growth and response to bio-inoculants,
presenting a sustainable alternative to the use of chemical fertilizers, with positive economic
and environmental impacts on agriculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11151971/s1. Figure S1. KEGG pathway enrichment
analysis. Genes were categorized according to the number of genes in each pathway in roots
(a) and in shoots (b). The annotation within each category was performed using the OmicShare tool.
Figure S2. Pattern of expression of DETs between SP and CH in hydroponics roots. Results are
presented as the ratio of the pattern of expression of DET between SP and CH, showing log2 values
in the transcriptome libraries and the qRT-PCR analyses. For the expression in the transcriptome
libraries, results are presented as the ratio SP/CH of the RPKM of each transcript. Bars represent
mean ± standard deviation of the relative mRNA expression in two biological replicates. For the
qRT-PCR data, results are presented as the ratio of expression of each transcript (relative to GAPDH
and 28S rRNA) in each sample. Bars represent mean ± standard deviation of the relative mRNA
expression in three biological replicates (3 plants) and each biological replicate analyzed with three
technical replicates. Figure S3. Exclusive transcripts identified in BNF contrasting genotypes. Patterns
of expression of exclusive transcripts of SP or CH were evaluated by qRT-PCR in all 16 samples
used in transcriptome sequencing analysis. The transcripts levels were normalized with plant rRNA
and GAPDH in each sample. Each sample was representative of three plants, with three technical
replicates and three biological replicates were evaluated. Table S1. Summary of the codes of all the
libraries sequenced and representation of sequence results of the different libraries of sugarcane
transcriptome. Table S2. Functional annotation of differentially expressed transcripts from sugarcane
datasets and commonly expressed in both stalk and hydroponic datasets. In gray are represented the
exclusive transcripts. Table S3. Gene ontology (GO) enrichment analysis of differentially expressed
transcripts in roots and shoots. In gray are the GO terms represented in the Figure 2. Table S4. KEGG
pathway enrichment analysis of DET, performed using Omicshare tools. Table S5. Annotated DET
between SP and CH in germinated stalk tissues belonging to the Receptors function category. Table
S6. Annotated DET between SP and CH germinated stalk tissues belonging to the N-metabolism
and amino acid metabolism functional category. Table S7. Differentially expressed transcripts (DET)
from sugarcane involved in plant hormone metabolism as identified by homology analysis with
Arabidopsis thaliana hormone database (Jiang et al., 2010). Log2 fold changes of DET in stalk root and
shoot and in root and shoot of plants cultivated in hydroponic, both from sugarcane BNF-contrasting
genotypes. Table S8. Summary of specific primers designed for qRT-PCR analysis.
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