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Abstract: Improving the temperature prediction accuracy for subgrades in seasonally frozen regions
will greatly help improve the understanding of subgrades’ thermal states. Due to the nonlinearity and
non-stationarity of the temperature time series of subgrades, it is difficult for a single general neural
network to accurately capture these two characteristics. Many hybrid models have been proposed to
more accurately forecast the temperature time series. Among these hybrid models, the CEEMDAN-
LSTM model is promising, thanks to the advantages of the long short-term memory (LSTM) artificial
neural network, which is good at handling complex time series data, and its combination with
the broad applicability of the complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) in the field of signal decomposition. In this study, by performing empirical
mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and CEEMDAN on
temperature time series, respectively, a hybrid dataset is formed with the corresponding time series
of volumetric water content and frost heave, and finally, the CEEMDAN-LSTM model is created for
prediction purposes. The results of the performance comparisons between multiple models show that
the CEEMDAN-LSTM model has the best prediction performance compared to other decomposed
LSTM models because the composition of the hybrid dataset improves predictive ability, and thus, it
can better handle the nonlinearity and non-stationarity of the temperature time series data.

Keywords: seasonal frozen subgrade; temperature prediction; complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN); long short-term memory (LSTM)

1. Introduction

Frozen ground occurs when the ground contains water, and the temperature of the
ground is at or below 0 ◦C. Frozen ground can be divided into permafrost, seasonal frozen
ground, and intermittently frozen ground. Permafrost usually remains at or below 0 ◦C for
at least two years, while a layer of soil that freezes for more than 15 days per year is defined
as seasonally frozen ground, and a layer of soil that freezes between one and 15 days a year
is defined as intermittently frozen ground. China has the third largest permafrost area in
the world, with seasonal frozen ground and permafrost accounting for 53.5% and 21.5% of
China’s land area, respectively [1]. Seasonal frozen ground in China is distributed in the
regions to the west of the Helan Mountain–Ailaoshan Mountain line, and the regions to the
east of this line and to the north of the Qinling Mountains–Huaihe River line [2].

China’s One Belt One Road initiative has increased infrastructure development in the
seasonal frozen region of Qinghai-Tibet, where several highway projects are planned [3–5].
The main hazard for subgrades in a seasonal frozen region is freeze-thaw damage, which is
directly affected by the soil’s internal temperature. Therefore, the prediction of seasonal
frozen soil temperatures has become a key issue and has received continuous attention
from the academic community. Essentially, the temperature prediction problem belongs
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to time series forecasting. A time series is a data sequence arranged according to the
chronological order of its occurrence. The main purpose of time series analysis is to fore-
cast the future based on existing historical data. There are many classical time series
analysis models, such as the autoregressive (AR) model, autoregressive moving average
(ARMA) model, autoregressive conditional heteroskedasticity (ARCH) model, and the
generalized autoregressive conditional heteroskedasticity (GARCH) model, and some
improved algorithms have been widely used for prediction purposes [6–10]. However,
these methods are often limited to linear and stationary time series forecasting. With the
rapid development of information technology and the huge improvement of computer
performance in the past two decades, many machine learning methods have been applied
to the field of time series analysis, such as random forests (RF) [11], support vector ma-
chines (SVM) [12], Bayesian [13], extreme learning machines (ELM) [14], and Elman neural
networks (ENN) [15]. Lin et al. [16] proposed a random forest-based model for extreme
learning machine integration. Santamaría-Bonfil et al. [17] proposed a hybrid method for
wind speed time series prediction based on support vector regression (SVR). Chen et al. [18]
proposed a time series forecasting method based on a weighed least-squares support vector
machine (LSSVM). Ticknor et al. [19] proposed a new Bayesian-regularized artificial neural
network (BR-ANN) prediction method. Khellal et al. [20] proposed a method used to
learn neural network features based entirely on an extreme learning machine (ELM). These
aforementioned methods perform an essential role in time series forecasting with small and
uniform data. However, when the data are large, nonstationary, or nonlinear, the prediction
results are far from satisfactory [21].

In recent years, the research of artificial neural networks has made breakthrough
progress. Deep learning models can handle many of the practical problems that are not
easily solved by traditional methods. It has been shown that deep learning models can
approximate nonlinear functions with arbitrary precision, as long as enough neurons are
available. The recurrent neural network (RNN) model is one of the deep learning models
with time series processing capability, which is often used for predictions of various time
series. However, when using RNN models to solve long sequence problems, the issues
of gradient disappearance and gradient explosion are prone to occur. To address this
problem, Hochreiter and Schmidhuber [22] proposed long short-term memory (LSTM) as a
variant of RNN. Since LSTM can learn the long-term dependence of data, it is widely used
in natural language processing [23], image recognition [24], speech recognition [25], time
series prediction [26], and other fields. Ma et al. [27] proposed a short-time traffic prediction
model that effectively captures nonlinear traffic dynamics through an improved LSTM
model. Hao et al. [28] improved the LSTM model for predicting the trajectory of walkers.
Li et al. [29] proposed an air pollutant concentration prediction model that inherently
considers spatiotemporal correlation using an improved LSTM model. However, there are
few reports on the temperature time series prediction of seasonal frozen subgrades.

Due to the complex nonlinearity and non-stationarity of time series, a single prediction
model sometimes gets stuck in local minima, resulting in suboptimal results. Therefore,
more and more hybrid models have been proposed to obtain more accurate time series
forecasting results. To maximize the use of the information contained in the history of time
series, hybrid models are emerging, which generally combine two or more methods (mod-
ular unit). The mainstream hybrid models focus on the combination of data decomposition
methods and forecasting models, where decomposition methods are an important prepro-
cessing step in building these hybrid models. Empirical mode decomposition (EMD) is an
adaptive decomposition algorithm for nonlinear nonstationary time series [30]. However,
EMD cannot effectively decompose a nonstationary time series without sufficient extreme
value points. In order to solve the mode mixing problem of EMD, Wu and Huang [31]
proposed a white-noise-assisted data analysis method called ensemble empirical pattern
decomposition (EEMD). Compared to EMD, EEMD eliminates the effect of mode mixing
but still retains some noise in the intrinsic mode function (IMF). Therefore, a complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm
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is proposed by adding positive and negative auxiliary white noise pairs to the original
time series data and introducing adaptive noise components, which not only maintains
the ability to eliminate mode mixing and residual noise, but also has higher convergence
performance with lower iterative cost [32].

Sha et al. [33] demonstrated that the input data pre-processed by CEEMDAN method
can effectively improve the prediction performance of deep learning models. Hybrid mod-
els that combine these data decomposition methods with prediction models are widely used
for time series analysis, such as the EEMD-ENN hybrid model used to predict annual runoff
time series proposed by Zhang et al. [34]. Zheng et al. [35] proposed a hybrid SD-EMD-
LSTM model for forecasting electrical loads. Lei et al. [36] proposed a hybrid model of EMD-
SVR for predicting liquid level. Zhang et al. [37] proposed and validated the EEMD-LSTM
hybrid model as a suitable model for temperature forecasting. Jiang et al. [38] proposed a
CEEMDAN-FE-BILSTM hybrid model to predict PM2.5 concentration. Lin et al. [39] pro-
posed a hybrid method combining CEEMDAN and ML-GRU (multi-layer gated recurrent
unit) to accurately predict crude oil prices. Zhou et al. [40] proposed a hybrid model based
on CEEMDAN, DL (deep learning), and ARIMA to predict short-term building energy
consumption. Lin et al. [41] proposed a CEEMDAN-MLSTM hybrid model for reducing
exchange rate risk in international trade.

This paper aims to more accurately predict the temperature of seasonal frozen stratifica-
tion through the proposed CEEMDAN-LSTM model with a hybrid dataset. The prediction
performance of the proposed model is compared with that of the other models through
experimental results. The results show that the CEEMDAN decomposition method can
better handle the nonlinearity and non-stationarity of temperature time series data, thus
improving the prediction performance of neural network models. The models using hybrid
datasets significantly improve the prediction performance compared to the models using
single datasets, and the proposed CEEMDAN-LSTM model using hybrid datasets in all
models has the best prediction performance. More details about the proposed method will
be presented in the following sections.

2. Material and Methods
2.1. Case Study Area and Data Acquisition

The subgrade section to be researched in this paper was taken from the Golmud-Naqu
highway, which is a part of China National Highway G109 connecting Beijing and Lhasa.
It is located in Xiangmao Township (31◦02′ N, 91◦68′ E), Seni District, Naqu City, pile No.
K3588 + 100, and the subgrade soil is mainly sandy soil. The location of section K3588 + 100
is shown in Figure 1. The area belongs to the plateau sub-cold semi-arid monsoon climate
zone, with high terrain in the west and low terrain in the east. The elevation is between
3800–4500 m, with an average of about 4100 m. As a result of its high altitude, it suffers
from a lack of heat and a harsh, arid climate. The annual average temperature is −2.2 ◦C,
the annual relative humidity is 49%, the annual precipitation is 380 mm, and the annual
sunshine hours are more than 2852 h.

The time series data were acquired through temperature sensors, volumetric water
content sensors, and frost heave sensors deployed in the study area, the detailed study
section layout is shown in Figure 2. In Figure 2, 1©– 5© are shown as the left foot of slope,
left shoulder, roadbed median, right shoulder, and right foot of slope of the study section,
respectively. The data duration is from 1 January 2020 to 31 December 2021, and the
variation of temperature time-history at different depths of the right shoulder of section
K3588 + 100 is shown in Figure 3.
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2.2. Methods
2.2.1. EMD and EEMD

Empirical mode decomposition (EMD) was proposed by Huang et al. in 1998 [30],
Its main purpose is to decompose complex time series into a high-frequency part (i.e., the
intrinsic mode function (IMF)) and a low-frequency part (i.e., the residual (R)). The decom-
posed IMF contains the features of the original time series at different time scales, and any
time series can be decomposed into a finite number of IMF components with the residual.
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The screening process for EMD is as follows:
Step 1: Find all local maxima and local minima of the original time series S(t), and

then fit the upper envelope U(t) and lower envelope L(t) of the S(t) with the cubic spline
interpolation function. The average of its upper and lower envelopes is M(t), as shown in
Equation (1).

M(t) =
U(t) + L(t)

2
, (1)

Step 2: Then, a new sequence H(t) is obtained by subtracting M(t) from the original
time series S(t), as shown in Equation (2).

H(t) = S(t)−M(t), (2)

Step 3: If M(t) and H(t) satisfy termination criteria, then the first IMF as c1(t) = M(t),
and the first residual R as r1(t) = H(t) are obtained. The termination criteria are: (i) M(t)
approaches zero, (ii) the number of extreme points and zero crossing points in the H(t)
differs by no more than 1.

Step 4: If the termination criteria are not satisfied, repeat steps 1 to 3 above for H(t)
until c1(t) and r1(t) are obtained.

Step 5: Repeat steps 1 to 4 above for r1(t) until all IMFs and the residual are obtained.
Thus, the original time series S(t) are decomposed as Equation (3):

S(t) = ∑k
i=1 ci(t) + rk(t), (3)

One of the shortcomings of EMD is mode mixing. When mode mixing occurs, a single
IMF consists of different features of a time series signal, or features of a similar time series
signal mixed in different IMFs. To alleviate this shortcoming, Huang et al. [31] proposed an
improved algorithm called ensemble empirical modal decomposition (EEMD). It solves the
mode-mixing problem in EMD by adding Gaussian white noise to the original time series
signal. The specific steps are shown below:

Step 1: Add Gaussian white noise to the original time series, then obtain a new
time series.

Step 2: Decompose the new time series to obtain each IMF component.
Step 3: Repeat steps 1 and 2 continuously, but each time using a different Gaussian

white noise.
Step 4: Take the ensemble means of corresponding IMFs of the decompositions as the

final result.

2.2.2. CEEMDAN

Although EEMD overcomes the problem of mode mixing, the Gaussian white noise
added to EEMD needs to be repeatedly averaged before it can be eliminated, which will
take a large amount of computing time. Moreover, the reconstruction data still contains
residual noise, and different realization of noise added to the time series could yield differ-
ent numbers of modes. To solve the shortcomings of EEMD, Torres et al. [32] proposed a
new decomposition method for time series signals, namely, complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN). By adding positive and nega-
tive auxiliary white noise pairs to the original time series data and introducing adaptive
noise components, the CEEMDAN algorithm not only maintains the capability of elimi-
nating mode mixing and residual noise, but also has a lower cost for iterations and higher
convergence performance. The specific decomposition algorithm is described as follows:

S(t) is the original time series, IMFk(t) is the kth IMF obtained by CEEMDAN decom-
position, EMDj( ) represents the jth IMF obtained by EMD, εk is a scalar coefficient to set
the signal-to-noise ratio at each stage, and thus, to determine the standard deviation of the
Gaussian white noise, ωi(t) is the Gaussian white noise that meets the standard normal
distribution. In this part of the calculation, S(t), IMFk(t), ωi(t), and r(t) represent a long
vector of time series.



Sensors 2022, 22, 5742 6 of 17

Step 1: By adding a white noise ωi(t)(i = 1, 2, . . . . . . n) with signal-to-noise ratio
ε0 to the original time series Si(t), the S(t) obtained is used for the first decomposition, as
shown in Equation (4). Where t represents the different time points, i represents the ith
addition of white noise, and n represents the total number of added white noise.

Si(t) = S(t) + ε0ωi(t), (4)

Step 2: Use EMD to decompose Si(t) n times, and then obtain IMFi
1(t). The average

value is then calculated according to Equation (5) to obtain the first IMF of CEEMDAN, the
first residual R1(t) is obtained using Equation (6), and EMD1( ) represents the first IMF
obtained through EMD. In theory, since the average value of white noise is zero, the effect
of white noise can be eliminated by calculating the average value.

IMF1(t) =
1
n ∑n

i=1 IMFi
1(t) =

1
n

EMD1(Si(t)), (5)

R1(t) = S(t)− IMF1(t), (6)

Step 3: The adaptive noise term is the first IMF obtained by EMD with the addition
of white noise ωi(t) with signal-to-noise ratio ε1. Then the adaptive noise term is added
to the first residual R1(t), obtaining a new time series. Subsequently, a new time series
is decomposed to obtain the second IMF of CEEMDAN using Equation (7), the second
residual R2(t) is obtained according Equation (8).

IMF2(t) =
1
n ∑n

i=1 EMD1

(
R1(t) + ε1EMD1

(
ωi(t)

))
, (7)

R2(t) = R1(t)− IMF2(t), (8)

Step 4: Repeat Step 3, the new time series is obtained by adding the new adaptive
noise term to the residual term. Then decompose it to obtain the kth IMF of CEEMDAN,
where ωi(t), (i = 1, 2, . . . n), εk, (k = 2 , 3, . . . K). The specific Equations (9) and (10) are
as follows:

IMFk(t) =
1
n ∑n

i=1 EMD1

(
Rk−1(t) + εk−1EMDk−1

(
ωi(t)

))
, (9)

Rk(t) = Rk−1(t)− IMFk(t), (10)

Step 5: Finally, the CEEMDAN algorithm terminates when the residual term cannot
continue the decomposition as it does not exceed two extreme points. At that time, the
final residual R(t) is a distinct trend term. The full IMF and R(t) obtained are related to the
original time series by the following Equation (11).

S(t) = ∑K
k=1 IMFk(t) + R(t), (11)

2.2.3. LSTM

Long short-term memory (LSTM) network is a special variant of recurrent neural
networks (RNN) [22]. In traditional feedforward neural networks, information can only
flow from the input layer to the hidden layer, and finally from one direction to the output
layer. The main distinction between RNNs and feedforward neural networks is that RNNs
have a recurrent cell to store the historical state of all past elements in the sequence [42,43].
However, when training an RNN model with the gradient descent method (usually used to
train feedforward neural networks), the gradient may increase or decrease exponentially,
which can cause the gradient to vanish or explode. If the gradient vanishes during the
training process, the weights cannot be updated, which eventually leads to training failure.
On the contrary, exploding gradients that are too large will drastically update network
parameters, and, in extreme cases, can lead to erroneous results [44]. LSTM improved RNN
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by introducing the concepts of gates, and of applying memory cells to filter and process
historical states and information instead of the recurrent cells of RNN. The basic structure
of an unfolded single memory cell of an LSTM is shown in Figure 4. Each memory cell
contains an input gate (it), a forget gate ( ft), and an output gate (Ot) to control the flow
of information.
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The input gate (it) determines how much input data needs to be stored in the cell state
at the current moment (t) and the intermediate value (ut) is used to update the cell state in
the process of Equations (12) and (13).

it = σ(Wi · [ht−1, xt] + bi), (12)

ut = tanh(Wc · [ht−1, xt] + bC), (13)

The forget gate ( ft) determines how many cell states need to be retained from the
previous moment (t− 1) to the current moment (t), as shown in Equation (14).

ft = σ
(

W f · [ht−1, xt] + b f

)
, (14)

The cell state is updated from Ct−1 to Ct by removing some of the old information and
adding the filtered intermediate value (ut), as shown in Equation (15).

Ct = ft ∗ Ct−1 + it ∗ ut, (15)

The output gate (Ot) controls how much of the current cell state needs to be output to
the new hidden state, as shown in Equations (16) and (17).

Ot = σ(WO · [ht−1, xt] + bO), (16)

ht = Ot ∗ tanh(Ct), (17)

where in Equations (12)–(17), xt is the input at time t; Ct and Ct−1 are the model output
states at time t− 1 and t, respectively; ht−1 and ht are the outputs of the hidden layer at
time t− 1 and t, respectively; ut is the cell input state at time t. ft, it and Ot are the outputs
of the forget gate, input gate, and output gate at time t, respectively; W f , Wi, WO, and Wc
are the weights connecting ht−1 and xt to the forget gate, input gate, output gate, and cell
input, respectively; b f , bi, bO, and bC are their corresponding bias terms.

In this study, the Adam optimization algorithm, which is a gradient descent method,
was used. Because it has the good property of adjusting the learning rate adaptively, it is
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often used to calculate a weight matrix [45]. Adam combines the advantages of AdaGrad
and RMSProp optimization algorithms with simple implementation, high computational
efficiency, and less computing resources. Since the update of parameters in Adam is not
affected by the gradient transformation, it is suitable for unstable or sparse gradients
in very noisy datasets. Overfitting is a common phenomenon in LSTM, which results
in a trained model with high accuracy on the training set, but low accuracy on the test
set. Therefore, it is essential to prevent overfitting during training. Srivastava et al. [46]
proposed a method, namely dropout, to prevent overfitting by dropping some random
neurons from the network with a certain probability in each training process.

As shown in Figure 5, Figure 5a shows the fully connected network, and Figure 5b
shows the network after applying the dropout method. Dropout can solve the overfitting
problem by ignoring feature detectors to reduce the complex relationships between neurons
and force the neural network model to learn better features.
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and 𝑊௖ are the weights connecting ℎ௧ିଵ and 𝑥௧ to the forget gate, input gate, output gate, 
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on the test set. Therefore, it is essential to prevent overfitting during training. Srivastava 
et al. [46] proposed a method, namely dropout, to prevent overfitting by dropping some 
random neurons from the network with a certain probability in each training process. 

As shown in Figure 5, Figure 5a shows the fully connected network, and Figure 5b 
shows the network after applying the dropout method. Dropout can solve the overfit-
ting problem by ignoring feature detectors to reduce the complex relationships between 
neurons and force the neural network model to learn better features. 

 
(a) (b) 

Figure 5. Flow chart of dropout method (Note: the green circles represent normal neurons, and the 
gray circles represent inactivated neurons). (a) the fully connected network; (b) the network after 
applying Dropout. 

3. Construction of CEEMDAN-LSTM Hybrid Prediction Model 
3.1. Process of Constructing the Hybrid Prediction Model 

Taking the temperature time series at 0.5 m below the subgrade surface of the right 
shoulder of section K3588 + 100 as an example, the IMFs and R (residual) obtained by 
various decomposing methods of EMD, EEND, and CEEMDAN are shown in Figure 6, 
respectively. 

Previously, the process of CEEMDAN-LSTM for general prediction purposes could 
be divided into three steps. First, decompose the time series to be predicted into IMFs 
and a residual using CEEMDAN. Second, put each decomposed IMF as a single input 
vector into the LSTM neural network, and then obtain each corresponding IMF predic-
tion. Third, add all the obtained IMF predictions to the residual term to obtain the final 
prediction value. 

Figure 5. Flow chart of dropout method (Note: the green circles represent normal neurons, and the
gray circles represent inactivated neurons). (a) the fully connected network; (b) the network after
applying Dropout.

3. Construction of CEEMDAN-LSTM Hybrid Prediction Model
3.1. Process of Constructing the Hybrid Prediction Model

Taking the temperature time series at 0.5 m below the subgrade surface of the right
shoulder of section K3588 + 100 as an example, the IMFs and R (residual) obtained by various
decomposing methods of EMD, EEND, and CEEMDAN are shown in Figure 6, respectively.
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IMFs and R obtained after CEEMDAN.
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Previously, the process of CEEMDAN-LSTM for general prediction purposes could be
divided into three steps. First, decompose the time series to be predicted into IMFs and a
residual using CEEMDAN. Second, put each decomposed IMF as a single input vector into
the LSTM neural network, and then obtain each corresponding IMF prediction. Third, add
all the obtained IMF predictions to the residual term to obtain the final prediction value.

Considering that the temperature of the subgrade in the seasonal frozen region is
mainly influenced by the freeze-thaw cycle of the subgrade soils, a new temperature
strategy is proposed in this study. Both the measured volumetric water content and frost
heave at the corresponding location are time series. Combine the three types of values
(i.e., volumetric water content, frost heave, and IMFs) as a vector, and then construct a
composite time series dataset. This dataset is used to train and test the LSTM model, and
the specific steps are shown in Figure 7.
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As shown in Figure 7, the EMD, EEMD, and CEEMDAN methods were used to
decompose the original temperature time series data, respectively, and then the obtained
IMF is combined with the volumetric water content time series (H) and the frost heave
time series (D) to compose a hybrid dataset, respectively. 80% of the hybrid dataset is used
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as the train set and 20% as the test set. The train set is put into the lstm model to train to
get the optimal prediction model, and then the test set is put into the optimal prediction
model to get the IMFs predictions. Finally, all the IMF predictions and the residual term are
added together to get the final prediction.

3.2. LSTM Neural Network Parameter Setting

As shown in Figure 8, ten continuous time series data are used in this study to predict
the next time step data in the future, this means that it is a step ahead of the forecast, with
the length of each time step being 30 min. Other hyperparameters are set as follows: LSTM
with 3 hidden layers, 36 hidden layer neurons, 3 input features, Dropout regularization of
0.1, learning rate of 0.001, the final output layer is a linear layer, and the number of training
epochs for each model is 200. The specific dimensional transformation from the data input
to the predicted output is shown in Figure 8.
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3.3. Model Evaluation Metrics

In this study, three evaluation metrics, namely root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2), were used to evaluate the
relevant models. RMSE (for which a smaller value is better) is considered the most widely
used error assessment method in point forecasting, and is generally more sensitive to large
deviations between measured (actual) and predicted values. MAE (for which a smaller
value is better) avoids the problem of errors canceling each other out, thus accurately
reflecting the actual magnitude of forecast errors, while R2 (for which a bigger value is
better) is used to estimate the degree of conformity between predicted and actual values.
The specific formulas are as shown in Equations (18)–(20).

RMSE =

√
1
n ∑n

i=1(ŷ(i)− y(i))2, (18)

MAE =
1
n ∑n

i=1|ŷ(i)− y(i)|, (19)

R2(y, ŷ) = 1− ∑n
i=1(ŷ(i)− y(i))2

∑n
i=1(ŷ(i)− y)2 , (20)

where ŷ(i) is the predicted value, y(i) is the actual value, y represents the average of the
actual value, and n is the total number of time series samples.
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4. Results
4.1. Performance Comparison of Models Predictions before and after Decomposition

This study compares the prediction performance of the models before and after tem-
perature time series decomposition to verify whether the effort of decomposition has a
practical improvement on the prediction performance of the model. The EMD, EEMD,
and CEEMDAN models are used as pre-processing to decompose the temperature time
series, respectively, combined with an LSTM neural network to form three hybrid models
(i.e., EMD-LSTM, EEMD-LSTM, and CEEMDAN-LSTM). The reconstructed hybrid datasets
after the decomposition of temperature time series outperformed the undecomposed LSTM
neural network model in prediction performance. The comparison of prediction perfor-
mance of different models is shown in Table 1. The prediction accuracy of the EMD-LSTM,
EEMD-LSTM, and CEEMDAN-LSTM models compared to the LSTM model improved by
57%, 9%, and 80% on RMSE, 59%, 18%, and 84% on MAE, and 8%, 4%, and 11% on R2, re-
spectively. Compared to the LSTM, EMD-LSTM, and EEMD-LSTM models, the prediction
accuracy of the CEEMDAN-LSTM model is 80%, 54%, and 78% improved over RMSE, 84%,
60%, and 80% improved over MAE, and 10%, 2%, and 7% improved over R2, respectively.
These results show that the prediction performance after any decomposition by EMD,
EEMD, or CEEMDAN is higher than that of the LSTM model without decomposition,
indicating that the temperature time series is better predicted after decomposition. Among
these models, the CEEMDAN-LSTM model obtains the highest prediction accuracy and
performed significantly better than other models. A comparison of the prediction results of
different models for 0.5 m under the right shoulder of the subgrade is shown in Figure 9.

Table 1. Comparison of prediction performance of different models.

Predictive Performance LSTM EMD-LSTM EMD-LSTM CEEMDAN-LSTM

RMSE (smaller is better) 0.210335 0.090355 0.191001 0.041966
MAE (smaller is better) 0.192146 0.079020 0.156670 0.031439

R2 (bigger is better) 0.893138 0.966392 0.925871 0.989248
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4.2. Comparison of Prediction Results of LSTM Models for Single and Hybrid Datasets

In this study, the ability of the hybrid dataset to improve the model prediction per-
formance was validated by comparing the prediction results of the single dataset and the
hybrid dataset. The single dataset of the ith IMF obtained by EMD, EEMD, and CEEM-
DAN, respectively, was reconstructed into a hybrid dataset with volumetric water content
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time series (H) and frost heave time series (D) at corresponding depth. Subsequently,
the hybrid dataset and single dataset were respectively input into the LSTM model for
prediction. The prediction performances were compared in Table 2. To distinguish the
names of each model, the following decomposed single-variable LSTM models are named
d-EMD-LSTM, d-EEMD-LSTM, and d-CEEMDAN-LSTM. It can be seen that the LSTM
prediction models that use the hybrid dataset are better than those LSTM prediction models
that use the single variable dataset for all metrics. For example, the EMD-LSTM model
improves the prediction accuracy of RMSE, MAE, and R2 by 65%, 65%, and 10%, compared
to the d-EMD-LSTM model; the EEMD-LSTM model improves the prediction accuracy of
RMSE, MAE, and R2 by 30%, 32%, and 3%, compared to the d-EEMD-LSTM model; and the
CEEMDAN-LSTM improves the prediction accuracy of RMSE, MAE, and R2 by 75%, 77%,
and 4%, compared to the d-CEEMDAN-LSTM model, respectively. Moreover, when the
different decomposition methods are compared on different datasets, it can be seen that the
prediction accuracy is the highest after CEEMDAN processing, and the CEEMDAN-LSTM
model outperforms all the other models in terms of prediction accuracy. A Comparison of
the prediction results of models with a single dataset and with a hybrid dataset is shown in
Figure 10.

Table 2. Comparison of prediction performance of models with single dataset and hybrid dataset.

Predictive Performance d-EMD-
LSTM

d-EEMD-
LSTM

d-CEEMDAN-
LSTM EMD-LSTM EEMD-LSTM CEEMDAN-

LSTM

RMSE (smaller is better) 0.286758 0.274303 0.168228 0.090355 0.191001 0.041966
MAE (smaller is better) 0.226918 0.230845 0.134943 0.079020 0.156670 0.031439

R2 (bigger is better) 0.876900 0.900513 0.955218 0.966392 0.925871 0.989248
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Figure 10. Comparison of prediction results of models with single dataset and hybrid dataset.
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(d) Comparison of prediction results of all models.

4.3. Comparison of Different Depth Prediction Models

The data previously used in Sections 4.1 and 4.2 is at a subgrade depth of 0.5 m. In
order to verify the predictive performance of the CEEMDAN-LSTM model at different
subgrade depths, and then to determine whether it can be applied to different depths of the
subgrade, the monitored temperature time series at different depths were decomposed into
EMD, EEMD, and CEEMDAN, then reconstructed into a hybrid dataset with the volumetric
water content time series (H) and frost heave time series (D) at their corresponding depths,
then put into the LSTM model for training and finally for prediction. Due to paper space
limitations, only the figures of CEEMDAN decomposition are shown in Figure 11.

The temperature time series were processed by EMD, EEMD, and CEEMDAN, respec-
tively, then reconstructed into a hybrid dataset that contains the volumetric water content
time series (H) and frost heave time series (D) of the corresponding depths. After that, the
hybrid dataset was put into the LSTM model training, to get the optimal model, and to
then make predictions. The specific prediction results are shown in Figure 12.

As shown in Figure 12, it can be seen that the prediction performance of the CEEMDAN-
LSTM model is higher than that of the EMD-LSTM and EEMD-LSTM models at different
subgrade depths, and the CEEMDAN-LSTM model does not decrease its prediction per-
formance with the change of depth. However, as the depth of the stratum continues to
increase, the temperature no longer changes significantly, and the temperature time se-
ries curve trend is nearly a smooth curve at this time. Then, the decomposition by EMD,
EEMD, and CEEMDAN will no longer yield significant accuracy gains. This confirms that
EMD-like methods are more suitable for time series with complex changes to obtain better
decomposition. The detailed different performances are shown in Table 3.
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Table 3. Comparison of prediction performance at different subgrade depths.

Depth under Subgrade Predictive Performance EMD-LSTM EEMD-LSTM CEEMDAN-LSTM

0.5 m
RMSE 0.090355 0.191001 0.041966
MAE 0.079020 0.156670 0.031439

R2 0.966392 0.925871 0.989248

1.5 m
RMSE 0.245341 0.274970 0.086217
MAE 0.229630 0.233995 0.064258

R2 0.947074 0.934600 0.964736

2.9 m
RMSE 0.102413 0.139584 0.047771
MAE 0.092721 0.127279 0.038470

R2 0.925463 0.936328 0.960552

As shown in Table 3, the prediction accuracy of the CEEMDAN-LSTM model at
subgrade depth of 0.5 m is improved by 54% and 78% in RMSE, 60% and 80% in MAE, and
2% and 7% in R2, respectively, compared to the EMD-LSTM and EEMD-LSTM models. The
prediction accuracy of the CEEMDAN-LSTM model at subgrade depth of 1.5 m is improved
by 65% and 69% in RMSE, 72% and 73% in MAE, and 2% and 3% in R2, respectively,
compared to the EMD-LSTM and EEMD-LSTM models. The prediction accuracy of the
CEEMDAN-LSTM model at subgrade depth of 2.9 m is improved by 54% and 66% in RMSE,
59% and 70% in MAE, and 4% and 2% in R2, respectively, compared to the EMD-LSTM and
EEMD-LSTM models.

5. Conclusions

Subgrade temperature prediction is of great significance for analyzing the thermal state
of subgrades in seasonal frozen regions. In order to more accurately predict the subgrade
temperature changes, a CEEMDAN-LSTM hybrid prediction model suitable for hybrid
datasets is proposed. For various model comparison purposes, the original temperature
time series were processed by EMD, EEMD, and CEEMDAN, respectively, and each IMF
component was reconstructed into a hybrid dataset with the corresponding volumetric water
content time series (H) and frost heave time series (D), and then the hybrid data were put
into the LSTM neural network for training and prediction. Finally, the prediction results of
different models were compared and analyzed, and the specific conclusions are as follows:

(1) By comparing the prediction performance of the original temperature time series
model without decomposition and the models with different decompositions, it
was found that the CEEMDAN-LSTM model among the hybrid models (i.e., EMD-
LSTM, EEMD-LSTM, and CEEMDAN-LSTM) had the best prediction performance.
Specifically, the prediction accuracy of the CEEMDAN-LSTM model was improved
by 80%, 54%, and 78% in RMSE compared with the LSTM, EMD-LSTM, and EEMD-
LSTM models, respectively. This means that the CEEMDAN decomposition method
can better handle the nonlinearity and non-stationarity of the temperature time series
data under the subgrade of seasonal frozen regions.

(2) Hybrid datasets significantly improved the prediction performance over single datasets,
which is attributed to the strong extraction ability of LSTM neural networks for mul-
tidimensional features. It was found that models using hybrid datasets all outper-
formed models using single datasets, among which the CEEMDAN-LSTM model
using hybrid datasets had the best prediction performance.

(3) In order to evaluate the prediction performance of models for different depths of the
subgrade, predictions were applied to locations at subgrade depths of 0.5 m, 1.5 m,
and 2.9 m. It was found that the CEEDMAN-LSTM model had the best prediction
performance at all subgrade depths, and the performance did not decrease with
depth. This means that the model can accurately predict the temperature inside the
subgrade in seasonal frozen regions, which can provide reference and guidance for
related research.
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