
Citation: Yang, Z.; Liu, L.; Li, N.;

Tian, J. Time Series Forecasting of

Motor Bearing Vibration Based on

Informer. Sensors 2022, 22, 5858.

https://doi.org/10.3390/s22155858

Academic Editor: Steven Chatterton

Received: 15 July 2022

Accepted: 31 July 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Time Series Forecasting of Motor Bearing Vibration Based
on Informer
Zhengqiang Yang 1, Linyue Liu 1, Ning Li 2,* and Junwei Tian 3

1 School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
2 School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
3 School of Mechatronic Engineering , Xi’an Technological University, Xi’an 710021, China
* Correspondence: lining83@xaut.edu.cn; Tel.: +86-137-7202-3927

Abstract: Electric energy, as an economical and clean energy, plays a significant role in the develop-
ment of science and technology and the economy. The motor is the core equipment of the power
station; therefore, monitoring the motor vibration and predicting time series of the bearing vibration
can effectively avoid hazards such as bearing heating and reduce energy consumption. Time series
forecasting methods of motor bearing vibration based on sliding window forecasting, such as CNN,
LSTM, etc., have the problem of error accumulation, and the longer the time-series forecasting, the
larger the error. In order to solve the problem of error accumulation caused by the conventional
methods of time series forecasting of motor bearing vibration, this paper innovatively introduces
Informer into time series forecasting of motor bearing vibration. Based on Transformer, Informer
introduces ProbSparse self-attention and self-attention distilling, and applies random search to opti-
mize the model parameters to reduce the error accumulation in forecasting, achieve the optimization
of time and space complexity and improve the model forecasting. Comparing the forecasting results
of Informer and those of other forecasting models in three publicly available datasets, it is verified
that Informer has excellent performance in time series forecasting of motor bearing vibration and the
forecasting results reach 10−2∼10−6.

Keywords: motor bearing vibration; time series forecasting; Informer; Transformer; random search

1. Introduction

Electric energy plays an essential role in human life and technological development.
The motor is the core equipment of the power station; therefore, monitoring the motor
conditions can effectively avoid the occurrence of hazards and improve the safety. In recent
years, there have been many bearing health monitoring technologies, such as noise mon-
itoring, temperature monitoring, current detection and vibration monitoring, etc. [1–5].
Among them, vibration monitoring can detect, locate and distinguish faults before serious
failures of bearings occur. For the research of bearing fault diagnosis and bearing remaining
useful life (RUL) prediction, time series forecasting of motor bearing vibration is a crucial
prerequisite step. Therefore, it is of great significance to study the vibration prediction
of motor bearings. The vibration signal of the motor bearing obtained by the sensor can
reflect the fault characteristics [6–8]. Different fault types will produce different frequencies,
amplitudes and corresponding vibrations in different parts of the apparatus [9]. The fault
prediction based on motor bearing vibration data, which is applied to the monitoring of
the sensing technology, can effectively avoid hazards such as bearing heating, thus saving
maintenance costs [10].

Time series forecasting of motor bearing vibration is to determine the possibility of
future failure by analyzing the historical data of its components. Conventional methods
can be broadly classified into three main categories: classical time series forecasting and
its optimization methods, forecasting methods based on sliding window and forecasting
methods based on encoder–decoder structure.
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Classical time series forecasting methods [11,12] achieve forecasting mainly through
fixed time dependence and the single factor. The time series analysis method proposed
by Box et al. [13] predicted the subsequence data series based on the known data series.
Nikovski et al. [14] verified by experiments that classical time series forecasting methods
have some advantages in the single factor short-term forecasting. Classical time series
forecasting methods rely on linear relationships and do not include complex nonlinear
dynamic models. This property makes the learning ability and expression ability of such
methods inadequate and the forecasting results are poor in the face of complex and weak
periodic motor bearing vibration data.

Time series forecasting methods of motor bearing vibration based on sliding win-
dow forecasting, such as CNN [15], RNN [16], LSTM [17] and other algorithms, were
able to forecast nonlinear functions and dynamic dependency [18,19], which brought
new results for complex time series forecasting containing multiple covariate inputs.
Time series forecasting based on CNN and their improved models have been widely used.
Shao et al. [20] used a light-weight 1D-CNN model combined with an auto-encoder struc-
ture and adopted a correlation alignment (CORAL) method to reduce domain offset.
Luo et al. [21] used the conditional mutual information method to filter variables and
the Pair-Copula model by incorporating the kernel density estimation method to address
the limitation that the traditional Copula model can only handle two-dimensional variables
and finally chose to combine with SVM and BP neural network to realize the data prediction.
Carroll et al. [22] used artificial neural networks, SVM and logistic regression methods to
demonstrate that the prediction of gearbox failures can be achieved using vibration data
training models. Rahmoune et al. [23] applied the residual neural network model to a
gas turbine system to predict the vibration frequency of the bearing through the vibration
frequency data obtained by the sensor at the bearing. As a model specializing in forecasting
series applied to time series forecasting, RNN has its advantages. Senjyu et al. [24] used
RNNs, obtaining the input and output data of the network by differential calculations,
to better predict the power variation of wind turbine bearings. Liu et al. [25] used RNN
in the form of auto-encoders to diagnose bearing faults and forecast the rolling bearing
data from the previous cycle to the next cycle through a GRU-based nonlinear predictive
denoising auto-encoder (GRU-NP-DAE). Che et al. [26] proposed a fault prediction model
based on the RNN variant model, Gate recurrent unit (GRU) and hybrid auto-encoder fault
prediction model, which introduced the original signals into a multi-layer gate recurrent
unit model to achieve time series forecasting and then achieved fault detection by the
variational auto-encoders and stacked denoising auto-encoders. The effectiveness of this
method was verified by the bearing dataset of Case Western Reserve University. The LSTM
model solved the long-term dependence problem of general RNN models and further
improved the time series forecasting. Ma et al. [27] proposed a model based on optimizing
maximum correlation kurtosis deconvolution (MCKD) and LSTM network for time series
forecasting of motor bearing vibration to realize early bearing fault warnings. Liu et al. [28]
proposed a multilayer long short-term memory-isolation forest model (MLSTM-iForest) to
predict the bearing temperature in the future and then input the calculated deviation index
of the predicted bearing temperature into iForest to realize bearing fault early warning.
ElSaid et al. [29] proposed to improve the LSTM cell structure using the ant colony opti-
mization algorithm (ACO) for forecasting engine data and the new model presented an
improvement of 1.35%. Fu et al. [30] used CNN to extract features and then used LSTM
for gearbox bearing forecasting to achieve bearing high speed-side monitoring and super
high temperature warning. Based on the sliding window forecasting methods, there was
an error accumulation problem in time series forecasting. If these models were then used in
combination with other methods, the training time would become longer, so timely forecasting
of motor bearing vibration could not be achieved. Some of the above methods are suitable for
small datasets and the forecasting results are not satisfactory for big data.

Time series forecasting methods of motor bearing vibration based on encoder–decoder
structure, such as the Transformer model [31], used the attention mechanism to improve
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model training speed, which was suitable for parallelized calculation and higher than
RNN in accuracy and performance. The unique output mechanism of the Transformer
model can largely reduce the error accumulation during forecasting. Tang et al. [32]
used discrete wavelet transform (DWT) and continuous wavelet transform (CWT) to
convert vibration signals into a time-frequency representation (TFR) map and performed
preliminary prediction analysis of TFR map by multiple individual ViT models [33] which
had better results compared with integrated CNN and individual ViT. Zhang et al. [34]
proposed a self-attention-based perception and prediction framework based on Transformer,
called DeepHealth. Xu et al. [35] proposed a prediction model (HNCPM) that combines
encoder, GRU regression module and decoder, through which the prediction of vibration
data is realized. This model deploys an enhanced attention mechanism to capture global
dependency from vibrational signals to forecast future signals and predict facility health.
However, the training time of time series forecasting methods of motor bearing vibration based
on encoder–decoder structure was long; what is more, these above research methods used a
single dataset, which could not well illustrate the robustness of the proposed methods.

Based on the above problems and analysis, in this paper, the Informer model [36] is
innovatively introduced into the prediction of motor bearing vibration and a time series
forecasting method of motor bearing vibration based on random search [37] to optimize
the Informer model is proposed. In this paper, we mainly focus on solving the problems
of error accumulation, time and space complexity, optimization of model parameters and
singleness of the dataset. Three publicly available datasets are selected and divided to form
ten new datasets to compare the robustness of different models. The structure of Informer
is improved for time series forecasting of motor bearing vibration and the parameters
of Informer are optimized by random search. The main contributions of this paper are
summarized as follows: (1) Informer is innovatively introduced into time series forecasting
of motor bearing vibration. (2) For time series forecasting of motor bearing vibration,
Informer is optimized and random search is used to optimize the model parameters to
improve the model prediction effect.

The rest of this paper is organized as follows. Section 2 describes CNN, Deep RNNs,
LSTM and Transformer and illustrates the problems of applying the above four models
to time series forecasting of motor bearing vibration. Section 3 introduces Informer and
its model optimization. Section 4 presents three publicly available datasets, compares the
forecasting results of Informer with the other four models, illustrates the experimental
results and conducts analyses. Section 5 presents the conclusion.

2. Conventional Methods Applied to Time Series Forecasting of Motor Bearing Vibration

This section introduces four models (CNN, Deep RNNs, LSTM and Transformer)
applied to time series forecasting of motor bearing vibration and analyzes their limitations.

2.1. Convolutional Neural Networks (CNN)

The nonlinear mapping through the activation function solves the problems that
classical time series prediction methods cannot incorporate exogenous variables and they
rely on linear relationships. The motor bearing vibration data contains positive and negative
values and the values fluctuate around 0. According to the characteristics of this motor
bearing vibration data, this paper selects the tanh function as the activation function of
CNN, which maps the input values to the range (−1, 1). The equation is as follows:

tanh(x) =
ex − e−x

ex + e−x (1)

There are some common activation functions: The softmax function is as follows:

so f tmax(xi) =
exi

C
∑

i=1
exi

(2)
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where C is the length of the input sequence and xi (0 ≤ i ≤ C) is the i-th element in the
input sequence.

The ELU function is as follows:

ELU(x) =
{

x, x > 0
a(ex − 1), x ≤ 0

(3)

where a is a positive decimal close to 0.

2.2. Deep Recurrent Neural Networks (Deep RNNs)

Deep RNNs [38,39] as a model specially dealing with series, in view of the long se-
quence and big data characteristics of motor bearing vibration data, this paper selects an in-
put window of 100 to verify the long sequence forecasting effect of this model. According to
the motor bearing vibration data characteristics described in Section 2.1, the tanh function
(Equation (1)) is selected as the activation function of Deep RNNs. The input data of the
cell at the i-th layer and t-th time come from two directions, one is the output hi−1

t from the
(i− 1)-th layer and its equation is as follows:

hi−1
t = f (Wi−1hi−1

t−1 + Ui−1hl−2
t ) (4)

The other comes from the i-th layer and (t− 1)-th time memory data and its equation
is as follows:

hi
t−1 = f (Wihi

t−2 + Uihl−1
t−1) (5)

The equation of the output hi
t of the cell is as follows:

hi
t = f (Wihi

t−1 + Uihl−1
t ) (6)

2.3. Long Short-Term Memory (LSTM)

Generally, the frequency of collecting motor bearing vibration data is relatively large
and some values of the adjacent data collected in a very short period of time are very small,
resulting in data redundancy in the process of learning. LSTM selects and discards part of
the information through the forget gate and determines how much historical information
enters, i.e., filters extremely similar adjacent motor bearing vibration data while preserving
the trend of the original motor bearing vibration data. The forget gate will read ht−1 and xi
and output a value between 0 and 1 to each number in the cell state Ci−1. The equation is
as follows:

ft = σ(W f × [ht−1, xt] + b f ) (7)

where ht−1 is the output of the previous cell; xt is the input of the current cell; σ is the tanh
function (Equation (1)). Update the old cell state with the following equation:

it = σ(Wi × [ht−1, xt] + bi) (8)

C̃t = tanh(WC × [ht−1, xt] + bC) (9)

The result is output through the output gate and the equation is as follows:

ot = σ(Wo × [ht−1, xt] + bo) (10)

ht = ot × tanh(Ct) (11)

2.4. Transformer

Motor bearings are extremely delicate components in machines; for various reasons,
only a small fraction of them can reach their design life [40,41]. Therefore, it is important
to perform long-term vibration detection of motor bearings as well as to record recent
abnormal vibrations. Transformer model based on Multi-head self-attention has the ability
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to simultaneously model long-term and short-term time series features, which is applicable
to long-term motor bearing vibration data while learning short-term vibration features.
This paper selects an input window of 100 to verify the Transformer’s ability to model time
series data. The equation of the multi-head self-attention mechanism is as follows:

MultiHead(Q, K, V) = Concat(head1, ..., headn)Wo (12)

where headi = Attention(QWQ
i , KWK

i , VWV
i ), WQ

i , WK
i and WV

i are the parameters that can
be learned. The attention method is as follows:

Attention(Q, k, V) = so f tmax(
QKT
√

dk
)V (13)

where the softmax function is shown in Equation (2). K is the key matrix, Q is the query
matrix and V is the value matrix. The equation of layer normalization is as follows:

LayerNorm = (x + SubLayer(x)) (14)

In order to ensure that the decoder cannot see those inputs after the current moment,
Transformer uses an attention mechanism with a mask to ensure consistent behavior
during training and forecasting. To solve the problem that the relative position of the
input is disrupted, Transformer adds the position encoding of the input information to
the input information at the Positional Encoding layer before sending the input into the
self-attention layer. The specific calculation equation is as follows:

PE(pos, 2i) = sin(
pos

2L
2i
d
) (15)

PE(pos, 2i + 1) = cos(
pos

2L
2i
d
) (16)

where pos is the position of the current word in the whole input sequence. i is the dimension
of the current calculated value (maximum is d). d is the dimension of the input sequence.
L is the length of the sequence.

2.5. Insufficiency of Conventional Methods Applied to Time Series Forecasting of Motor Bearing Vibration
2.5.1. Insufficiency of Sliding Window Forecasting

There are some defects in the forecasting method of motor bearing vibration time series
based on sliding window mechanism model [42]. The commonly used sliding window
leads to spatial and temporal deviations in the feature map or the feature sequence. This
deviation leads to ambiguity and offset in the feature sequence. The commonly used
sliding window is applied to the motor vibration data with long sequence and big data
characteristics, which will cause the error to accumulate continuously, the sliding window
mechanism, as shown in Figure 1. Real bearing vibration data [43] is chosen for illustration,
as shown in Figure 2.

Figure 1. Sliding window mechanism.
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(a)

(b)

Figure 2. Deviations caused by sliding window: (a) Deviations lead to ambiguity of feature series;
(b) Deviations lead to offset of feature series.

Meanwhile, time series forecasting methods based on CNN, Deep RNNs and LSTM
of motor bearing vibration also have their own insufficiency. The time series forecasting
method based on CNN captures short-term local dependency; thus, its forecasting effect
depends on the degree of correlation of the short-term data. Normal bearing vibrations
have a certain periodicity in the short term, but this model could not forecast abnormal
vibrations without regularity. Although the Deep RNNs can enhance its expression ability,
this model is calculationally intensive and the training process is time-consuming and is
unable to give timely forecasting results when facing new data, i.e., it cannot give ideal
forecasting results for future abnormal vibrations. In addition, as the scale and depth
of the Deep RNN model increase, learning will become more difficult. Therefore, when
faced with motor bearing vibration data with big data characteristics, building a matching
Deep RNN is still a problem that needs to be solved. LSTM also has the problem of
calculational time consumption and the disadvantage of parallel processing. LSTM is
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not able to give reasonable prediction results because of the poor correlation between the
abnormal vibration data and the previous data.

2.5.2. Insufficiency of Transformer

Position encoding is an important part of Transformer, which is divided into absolute
position encoding and relative position encoding. Currently, relative position encoding
operates on the attention matrix before softmax, which has a theoretical drawback [44,45].
The attention matrix with relative location information is a probability matrix with each row
summed equal to 1. For Transformer, self-attention implements the interaction between
tokens and the same input indicates that each vt−1 is the same. According to the description
in Section 2.3, some values of the motor bearing vibration data collected in a very short
period of time differed very little. That is, the output results for each location of the model
are always the same or extremely similar data due to the accuracy problem resulting in the
same output results.

oi = ∑
j

ai,jvj = ∑
j

ai,jv = (∑
j

ai,j)v = v (17)

where oi is the output value; ai,j is the softmax value (shown in Equation (2)); ∑
j

ai,j = 1

causes the sum of each row of the attention matrix to be 1; vj is the value.
Transformer also has the defects of large amount of calculation and long training time.

Compared with CNN and RNN, Transformer has a weaker ability to acquire local information.

3. Informer Applied to Time Series Forecasting of Motor Bearing Vibration

This section introduces Informer applied to time series forecasting of motor bearing
vibration, describes the insufficiency of using Informer directly and optimizes Informer.
Informer structure, as shown in Figure 3.

Figure 3. Informer structure [36].

3.1. Informer Introduction

Informer adds positional encoding to the data input to ensure that the model can
capture the correct order of the input sequence. The location encoding is divided into Local
Time Stamp and Global Time Stamp. The equation of the Local Time Stamp is shown in
Equations (15) and (16).
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After the encoding steps, the input data into the encoder layer can be obtained, as
shown below:

xt
i = αut

i + PE(L×(t−1)+i) + ∑
P
[SE(L×(t−1)+i)]P (18)

where ui is the original data sequence, i ∈ [1, 2, ..., L]; L is the length of the data sequence;
t is the number of series; α is a factor to balance the size between the mapping vector and the
position encoding and is taken as 1 in the case that the input sequence has been standardized.

Informer introduces ProbSparse self-attention, which first calculates the KL divergence
of the i-th query and the uniformly distributed query to obtain the difference degree and
then calculates the sparsity score. The formula for calculating KL divergence is as follows:

KL(q||p) =
LK

∑
j=1

1
LK

ln
1

LK
k(qi ,kj)

∑
l

k(qi ,kl)

= log
LK

∑
l=1

e
qikT

l√
d − 1

LK

LK

∑
j=1

qikT
j√
d
− logLK (19)

where p(k j|qi) is the probability distribution of the attention query for all keys; q(k j|qi)= 1
LK

is the uniform distribution; d is the dimension of the input sequence after mapping; LK is
the sequence length; k(qi, k j) is the intermediate value of the i-th query and the j-th key
when performing the softmax (Equation (2)) calculation. The sparsity score metric of the
i-th query is as follows:

M(qi, K) = log
LK

∑
l=1

e
qikT

l√
d − 1

LK

LK

∑
j=1

qikT
j√
d

(20)

Based on the above metrics, each key focuses on only u dominant queries, namely
ProbSparse self-attention:

Attention(Q, K, V) = so f tmax(
Q̄KT
√

d
)V (21)

where Q̄ is a sparse matrix with the same shape as Q, which contains only the first u queries
under the sparsity measure M(qi, K), which has the following properties of the upper and
lower bounds:

log LK < M(qi, K) < max
j
{

qikT
j√
d
} − 1

LK

LK

∑
j=1

qikT
j√
d
+ log LK (22)

where max
j
{

qikT
j√
d
} replaces log

LK
∑

l=1
e

qikT
l√
d in the original equation to obtain the approximation

result of M, shown as follows:

M̄(qi, K) = max
j
{

qikT
j√
d
} − 1

LK

LK

∑
j=1

qikT
j√
d

(23)

Informer introduces the self-attention distilling, as shown in Figure 4, which adds
convolution, activation and maximum pooling operations between each encoder and
decoder layer to reduce the length of the input sequence of the previous layer by half, thus
solving the problem of occupying too much memory when the input sequence is long. The
equation is as follows:

Xt
j+1 = MaxPool(ELU(Conv1d([Xt

j ]AB))) (24)
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where Xt
j+1 is the output of the multi-headed ProbSparse self-attention layer in this layer;

[Xt
j ]AB is the calculation result of the multi-headed ProbSparse self-attention layer in the

previous layer; ELU (Equation (3)) is used as the activation function.

Figure 4. Self-attention distilling [36].

Informer model uses batch generation forecasting to directly output multi-step forecasting
results, thus improving the speed of long series forecasting. The equation is as follows:

X f eedt
decoder

= Condat(Xt
token, Xt

0) ∈ R(Ltoken+Ly)×dmodel (25)

where Xt
0 is the placeholder (predicted value); Xt

token ∈ RLtoken×dmode is the start token;
Ltoken is the length of the sequence of start tokens; Ly is the length of the predicted sequence;
dmodel is the model dimension.

3.2. Informer Optimization

Informer forms sparse attention through query and key in ProbSparse self-attention to
reduce the computational complexity of motor vibration feature learning. In Equation (23),
LQ = LK = L, so that the total time complexity and space complexity are O(L ln L).
In self-attention distilling, the input of the cascade layer is halved to deal with the super-
long input sequence and alleviate the accumulative error problem of the classical neural
network model. Zhou et al. [36] predicted results of long-series based on ETT, ECL and
ELU activation function to be 10−1, which did not meet the requirements of time series
forecasting of motor bearing vibration results. This paper optimizes the Informer model
based on the vibration data of motor bearings. Time series forecasting methods of motor
bearing vibration based on Informer, as shown in Figure 5.

The motor bearing vibration data contain positive and negative values and the values
fluctuate around 0. According to the GELU activation function image and its corresponding
derivative image, it can be seen that, compared with the ELU activation function, the GELU
activation function is more consistent with the motor bearing vibration data characteristics.
Therefore, GELU is chosen as the activation function of Informer in this paper. The GELU
activation function image and its corresponding derivative image is shown in Figure 6.
The equation of the GELU activation function is as follows:

GELU(x) = xP(X ≤ x) = xΦ(x) ≈ 0.5x(1 + tanh[

√
2
π
(x + 0.044715x3)]) (26)

The three datasets used in this paper have high sampling frequency. For this feature,
the time feature code was selected as hour, which can realize the training and prediction of
the model for long-sequence data. The verification prediction length has 500 sample points
and the results showed that the model was able to process and forecast the data series
with long series and big data characteristics. After several tests, Informer converged at
epoch 10 for all three datasets. According to the characteristics of motor bearing vibration
data, the conventional method cannot complete the model training quickly when facing the
newly generated data. Therefore, under the premise of ensuring the accuracy of prediction,
this paper reduces the model size and the model calculation running time and selects two
encoder layers and one decoder layer.
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Figure 5. Time series forecasting methods of motor bearing vibration based on Informer.

(a)
(b)

Figure 6. (a) GELU activation function image; (b) The corresponding derivative image of GELU
activation function.

In this paper, the hyper parameter λ of Informer was optimized for time series fore-
casting of motor bearing vibration data. Usually the ultimate goal of the learning algorithm
is to find a function that satisfies the minimum loss function and the so-called learning of
the algorithm is the learning of the hyper parameter. In this paper, random search was
used to optimize the hyper parameter λ to determine a better model [34,46–48]. The hyper
parameter λ is as follows:

λ(∗) = argminEx∼Gx [L(x;Aλ(Xtrain))], λ ∈ Λ (27)

λ(∗) ≈ argminmeanL(x;Aλ(Xtrain)), λ ∈ Λ, x ∈ Xvalid (28)

≡ argminΨ(λ), λ ∈ Λ (29)

≈ argminΨ(λ) ≡ λ̂, λ ∈ {λ(1)...λ(S)} (30)
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where Ψ is the hyper parametric response function. {λ(1)...λ(S)} is the experimental set.

Ψvalid(λ) = meanx∈XvalidL(x;Aλ(Xtrain)) (31)

Ψtest(λ) = meanx∈XtestL(x;Aλ(Xtrain)) (32)

where Ψvalid denotes the performance of the validation set; Ψtest denotes the performance
of the testing set.

The equation of the estimated variance of the mean is as follows:

Vvalid(λ) =
Ψvalid(λ)(1−Ψvalid(λ))

|Xvalid| − 1
(33)

Vtest(λ) =
Ψtest(λ)(1−Ψtest(λ))

|Xtest| − 1
(34)

When multiple parameter values are close to optimal and do not differ significantly,
they are determined by weighting the best probability in their particular λ(S). In [34], it
was proposed that Xvalid is a finite sample of Gx; thus, the testing set score of the best model
in λ(1)...λ(S) is a random number Z which is modeled by a Gaussian mixture model with
µS = Ψtest(λS) (the mean of S) and σ2

S = Vtest(λS) (the variance of S). The weights are:

wS = P(ZS < ZS
′
, ∀S

′ 6= S), Zi ∼ N (Ψvalid(λi),Vvalid(λi)) (35)

The mean and standard error of Z in the optimal model are:

µZ =
S

∑
S=1

wSµS (36)

σ2
Z =

S

∑
S=1

wS(µS + σ2
S)− µ2

Z (37)

By the above method, the hypothesis validation score ZS is continuously extracted from
the normal distribution, its testing score is calculated, the optimal estimate value is selected and
the optimal parameters are determined. In the face of time series forecasting of motor bearing
vibration, the best forecasting result is obtained when the batch size is 16 and the learning
rate is 0.0001 in Informer. When the learning rate is too large, the model will oscillate near
the optimal solution, and when it is too small, the model will converge too slowly. The choice
of dropout is related to whether the model excessively considers the data correlation and
noise data. In order to prevent the model from being over-fitted which leads to the reduction of
the model robustness, the best result is obtained when dropout is selected as 0.02 after the test.
The parameters of Informer used in this paper are shown in Table 1.

Table 1. Network model parameters.

Batch Size 16 Epochs 10

Activation Function GELU Learning Rate 0.0001

Encoder Input Size 7 Decoder Input Size 7

Encoder Layer 2 Decoder Layer 1

Time Feature
Encoding hour Dropout 0.02

Loss Function mse Forecasting Length 500
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4. Experiments and Results
4.1. Dataset Introduction
4.1.1. Case Western Reserve University Bearing Dataset

This paper uses a publicly available bearing dataset from the Bearing Data Center
at Case Western Reserve University (CWRU) in the United States [49]. The experimental
rig used to acquire this dataset consisted of a 2 hp motor, a torque transducer/encoder,
a dynamometer and control electronics. An accelerometer was placed above the bearing
seat of the motor drive side and the fan side and a 16-channel DAT recorder was used
to collect vibration signals. Speed and horsepower data were collected using the torque
transducer/encoder and were recorded by hand. The bearing specification data used on
the drive side and fan side are shown in Table 2.

Table 2. The bearing specification data used in the dataset.

Bearing
Position

Bearing
Type

Inner Race
Diameter

(mm)

Outer Race
Diameter

(mm)

Thickness
(mm)

Rolling
Element
Diameter

(mm)

Pitch
Diameter

(mm)

Sampling
Frequency

Drive Side

6205-2RS
JEM SKF

Deep Groove
Ball Bearings

25 52 15 7.94 39.04 12 kHz
48 kHz

Fan Side

6203-2RS
JEM SKF

Deep Groove
Ball Bearings

17 40 12 6.7462 28.4988 12 kHz

4.1.2. University of Cincinnati IMS Bearing Dataset

This dataset [43] is the life cycle data of bearings and there is a vertical and horizontal
accelerometer on the housing of each bearing. There are three datasets, each containing the
vibration data of four bearings. The bearing specifications used in this paper are shown
in Table 3. The data information is shown in Table 4.

Table 3. The bearing specification data used in dataset.

Bearing Type Static Load (lbs) Contact Angle
Number of

Scrolling Bodies
per Row

Rolling Element
Diameter (mm)

Pitch Diameter
(mm)

Rexnord ZA-2115 6000 15.17◦ 16 8.4 71.5

Table 4. Dataset Description.

Number of
Signal

Channels
Bearing 1 Bearing 2 Bearing 3 Bearing 4 Sampling

Frequency Abnormal

8 Channel 1 and
Channel 2

Channel 3 and
Channel 4

Channel 5 and
Channel 6

Channel 7 and
Channel 8

Once every
10 m (the first

43 files
collected every

5 m)

Damaged inner
race of bearing
3 and damaged
rolling elements

of bearing 4

4 Channel 1 Channel 2 Channel 3 Channel 4 Once every
10 m

Damaged outer
race of bearing 1

4 Channel 1 Channel 2 Channel 3 Channel 4 Once every
10 m

Damaged outer
race of bearing 3
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4.1.3. v43hmbwxpm Dataset

The data come from Taihua University and the experiments were performed on the
SpectraQuest Mechanical Failure Simulator (MFS-PK5M) and the data consisted of vibra-
tion signals collected from bearings with different health conditions under time-varying
rotational speed conditions [50]. Data were acquired by an NI data acquisition board
(NI USB-6212 BNC) for a total of 36 datasets. For each dataset, there were two experimental
setups: bearing health condition and variable speed condition. The bearing health con-
ditions included (i) healthy, (ii) inner race damage, (iii) outer race damage, (iv) rolling
element damage and (v) a combination of inner race damage, outer race damage and rolling
element damage. The operating speed conditions were (i) increasing speed, (ii) decreasing
speed, (iii) increasing then decreasing speed and (iv) decreasing then increasing speed.
Thus, there were 20 different cases for the setup. The bearing parameters are shown
in Table 5. Some of the bearing failure information is shown in Table 6.

Table 5. Bearing parameters.

Bearing
Type

Pitch
Diameter

(mm)

Ball
Diameter

(mm)

Number
of Balls BPFI ( fr) BPFO ( fr) Sampling

Frequency

ER16K 38.52 7.94 9 5.43 3.57 200 kHz

Table 6. Bearing damaged information.

Bearing Condition Increasing Speed Decreasing Speed

Damaged inner race I-I
I-I-1

I-D
I-D-1

I-I-2 I-D-2
I-I-3 I-D-3

Damaged outer race O-I
O-I-1

O-D
O-D-1

O-I-2 O-D-2
O-I-3 O-D-3

Damaged rolling element R-I
R-I-1

R-D
R-D-1

R-I-2 R-D-2
R-I-3 R-D-3

4.2. Dataset Selection and Division

Select 20,000 sample points from the DE side and FE side of the CWRU dataset,
respectively, to form a new dataset, the CWRU_DF dataset. In IMS data, 20,000 sample
points were selected respectively from channels 5 and 7 of the datasets, sets 1–8, to form the
new dataset set 1; select the 1st to 20,000th sample points and 100,001st to 200,000th sample
points from channel 1 of the sets 2–4 to form the new dataset set 2; select the 1st to 20,000th
sample points and 30,001st to 50,000th sample points from channel 3 of the sets 3 and 4
dataset to form a new dataset set 3. In the v43hmbwxpm data, 20,000 sample points were
selected, respectively, from I-I-1 and I-I-2 of the I-I dataset to form a new dataset; other new
datasets were formed in the same way. The selection of the datasets, as shown in Figure 7.
The above ten datasets were divided into the training set, the validation set and the testing
set in the ratio of 7:1:2, respectively.
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Figure 7. Datasets selection and division.

4.3. Experiment and Analysis

Because the epoch times of the five models used in the experiments of this paper
varies widely, other convergence properties such as the speed of loss convergence of the
five models trained under the dataset are not compared.

Each network model in this paper is implemented based on Python 3.9. The operating
system is a 64-bit Windows operating system with 16.00 GB of RAM and a 12th Gen Intel(R)
Core(TM) i7-12700KF 3.60 GHz processor.

4.3.1. Time Series Forecasting of Motor Bearing Vibration Based on Case Western Reserve
University Bearing Dataset

CWRU data were selected to test the time series forecasting effects of CNN, Deep
RNNs, LSTM, Transformer and Informer on data on the DE side and FE side. The data
from different ends were tested to enhance the experimental results to be more accurate
and convincing.

After the training and forecasting of the above five models, the MAE, MSE and RMSE
of the above models were calculated. It was concluded that the Informer model has the best
forecasting performance compared with other models, with MAE lower by 1.711× 10−3,
6.692× 10−3, 6.343× 10−3 and 3.361× 10−3, respectively; with MSE lower by 1.147× 10−4,
5.069× 10−4, 3.887× 10−4 and 2.084× 10−4, respectively; with RMSE lower by 2.511× 10−3,
9.605 × 10−3, 7.649 × 10−3 and 4.383 × 10−3, respectively, which is shown in Table 7.
The forecasting diagrams are shown in Figure 8. It can be seen from the forecasting
diagrams that the five models can forecast the next 500 sample points well on the DE
and FE sides, but CNN and Deep RNNs were worse and LSTM was better in forecasting
extreme values. The Informer not only fitted the trend of the data correctly, but also forecast
the extreme values correctly to the maximum extent, with less offset than other models and
fitted the original data best among five models.
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Figure 8. Comparison of forecasting data with real data: (a) Forecasting results based on CNN;
(b) Forecasting results based on Deep RNNs; (c) Forecasting results based on LSTM; (d) Forecasting
results based on Transformer; (e) Forecasting results based on Informer.

Table 7. Time series forecasting results for CWRU datasets.

Metric CNN [15] Deep RNNs [38] LSTM [17] Transformer [31] Informer

MAE 1.8874× 10−2 2.3855× 10−2 2.3506× 10−2 2.0524× 10−2 1.7163× 10−2

MSE 5.8046× 10−4 9.7260× 10−4 8.5439× 10−4 6.7416× 10−4 4.6574× 10−4

RMSE 2.4092× 10−2 3.1186× 10−2 2.9230× 10−2 2.5964× 10−2 2.1581× 10−2

Running Time (s) 480 600 500 5726 162

4.3.2. Time Series Forecasting of Motor Bearing Vibration Based on University of Cincinnati
IMS Bearing Dataset

The IMS data were selected to test the time series forecasting effect of the five mod-
els when different structures fail. Further comprehensive experiments were conducted
by testing the data at the outer race of the bearing, the inner race of the bearing and
the rolling element of the bearing to illustrate the forecasting ability of each model at
different structures. The forecasting results of the five models used in this paper are worse
under the IMS-based dataset compared to the CWRU-based dataset. The reason was that the
IMS dataset has a large oscillation in the process of collecting data, which makes the collected
data fluctuate more in amplitude and frequency. This problem will be the next research goal.

After training and forecasting of CNN, Deep RNNs, LSTM, Transformer and In-
former, the MAE, MSE and RMSE of the above models were calculated. Compared with
other models, the Informer had the best prediction performance, with MAE lower by
1.280× 10−4, 1.896× 10−3, 4.38× 10−3 and 1.245× 10−3 for set 1, respectively; with MSE
lower by 9.900× 10−6, 3.243× 10−4, 7.720× 10−4 and 2.032× 10−4, respectively; with RMSE
lower by 7.200× 10−5, 2.306× 10−3, 5.372× 10−3 and 1.454× 10−3, respectively, as shown
in Table 8. The forecasting diagrams are shown in Figure 9. CNN and LSTM had the
worst forecasting results with the damaged inner race of bearing 3 and the damaged rolling
element of bearing 4 and they could not forecast the trend and extreme values well. It was
able to forecast most of the extreme values with the damaged rolling element of bearing 4.
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Figure 9. Comparison of forecasting data with real data with the damaged inner race of bearing 3
and the damaged rolling element of bearing 4: (a) Forecasting results based on CNN; (b) Forecasting
results based on Deep RNNs; (c) Forecasting results based on LSTM; (d) Forecasting results based on
Transformer; (e) Forecasting results based on Informer.

Table 8. Time series forecasting results for IMS datasets.

Dataset Metric CNN [15] Deep RNNs [38] LSTM [17] Transformer [31] Informer

Set1

MAE 5.2431× 10−2 5.4199× 10−2 5.6683× 10−2 5.3548× 10−2 5.2303× 10−2

MSE 4.7943× 10−3 5.1087× 10−3 5.5564× 10−3 4.9876× 10−3 4.7844× 10−3

RMSE 6.9241× 10−2 7.1475× 10−2 7.4541× 10−2 7.0623× 10−2 6.9169× 10−2

Running Time (s) 480 600 400 4451 176

Set2

MAE 4.8317× 10−2 4.9114× 10−2 5.3561× 10−2 5.1860× 10−2 4.8588× 10−2

MSE 3.8702× 10−3 3.9699× 10−3 4.7065× 10−3 4.4446× 10−3 3.9107× 10−3

RMSE 6.2211× 10−2 6.3007× 10−2 6.8604× 10−2 6.6669× 10−2 6.2536× 10−2

Running Time (s) 480 750 800 5999 177

Set3

MAE 4.8944× 10−2 5.2173× 10−2 5.0191× 10−2 5.0256× 10−2 4.7281× 10−2

MSE 3.8858× 10−3 4.4246× 10−3 4.0997× 10−3 4.0718× 10−3 3.9268× 10−3

RMSE 6.2336× 10−2 6.6518× 10−2 6.4029× 10−2 6.3811× 10−2 6.2664× 10−2

Running Time (s) 480 825 800 5578 164

The MAE, MSE and RMSE of the Informer were slightly worse than those of CNN
for set 2, with a difference of 2.710× 10−4 for MAE, 4.050× 10−4 for MSE and 3.25× 10−4

for RMSE. The MAE was 4.847× 10−3, 4.973× 10−3 and 3.272× 10−3 lower than the other
models, respectively. The RMSE was 5.745× 10−3, 6.068× 10−3 and 4.133× 10−3 lower than
the other models. The calculation results of MAE, MSE and RMSE for set 3 were the best in
terms of forecasting performance compared with other models. The results are shown in
Table 8. By comparing the forecasting results of the five models in Figures 10 and 11, it can
be seen that Deep RNNs, LSTM and Transformer do not have good forecasting results in
the case of damaged outer race of bearing 1 and outer race of bearing 3. The results of the
Informer comparing MAE, MSE and RMSE under set 2 were not as good as those of CNN.
However, it can be seen from Figure 10 that CNN did not forecast the trend and extreme
values well in the first testing set of set 2, although it was improved in the second testing
set, but based on these two testing sets, Informer performed better, not only forecasting
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the trend of the data series better but also forecasting some of the extreme values. It can be
seen from Figures 10 and 11 that the five models can forecast the basic trend of the data
series, but the forecasting of the extreme values is poor.

Figure 10. Comparison of forecasting data with real data with the damaged outer race of bearing 1:
(a) Forecasting results based on CNN; (b) Forecasting results based on Deep RNNs; (c) Forecasting results
based on LSTM; (d) Forecasting results based on Transformer; (e) Forecasting results based on Informer.

Figure 11. Comparison between forecasting data with real data with the damaged outer race of
bearing 3: (a) Forecasting results based on CNN; (b) Forecasting results based on Deep RNNs;
(c) Forecasting results based on LSTM; (d) Forecasting results based on Transformer; (e) Forecasting
results based on Informer.

4.3.3. Time Series Forecasting of Motor Bearing Vibration Based on v43hmbwxpm Dataset

In this paper, the v43hmbwxpm data are selected in order to investigate the time series
forecasting capability of the five models under six different conditions. These data contain
data collected from the inner race, outer race and rolling element of the bearing in the
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accelerated condition and data collected from the inner race, outer race and rolling element
of the bearing in the decelerated condition. These data were selected to complement the
time series forecasting based on multiple conditions for different structures. The robustness
of each model was further compared by training and testing the data to provide a strong
experimental illustration for the findings of this paper.

After the training and forecasting of CNN, Deep RNNs, LSTM, Transformer and
Informer, the MAE, MSE and RMSE of the above models were calculated. For datasets
of inner race damage (I-I), outer race damage (O-I) and rolling element damage (B-I)
under accelerated conditions, compared with other models, the Informer achieved the
best forecasting results, as shown in Table 9. The forecasting diagrams are shown in
Figures 12 and 13. The forecasting diagrams show that Transformer has poor forecasting
results, while CNN, Deep RNNs and LSTM are able to forecast the data transformation
trends and some of the extreme values, but their forecasting results had a certain offset.
Compared with the other models, Informer had the best forecasting results, which can not
only forecast the trend of data series transformation and extreme values better, but also
has less offset. The forecasting diagrams of the dataset (B-I) with damaged rolling element
forecast under the accelerated condition are shown in Figure 14. CNN, Deep RNNs and
LSTM are able to forecast the trend of data series, but they are not better than Transformer,
which is not specifically designed for the time series forecasting. Informer was closest to the
real data in terms of trend and also forecast most of the extreme values with minimal offset.

Table 9. Time series forecasting results under accelerated conditions.

Dataset Metric CNN [15] Deep RNNs [38] LSTM [17] Transformer [31] Informer

I-I

MAE 4.9994× 10−3 4.9735× 10−3 5.2031× 10−3 6.1465× 10−3 4.9413× 10−3

MSE 5.2178× 10−5 5.9317× 10−5 5.1365× 10−5 6.9594× 10−5 4.5778× 10−5

RMSE 7.2234× 10−3 7.7017× 10−3 7.1670× 10−3 8.3423× 10−3 6.7659× 10−3

Running Time (s) 480 2475 400 4252 155

O-I

MAE 2.2311× 10−3 2.1050× 10−3 2.3986× 10−3 2.1532× 10−3 1.7147× 10−3

MSE 9.5604× 10−6 9.5604× 10−6 1.0922× 10−5 8.9571× 10−6 6.2589× 10−6

RMSE 3.0920× 10−3 3.0825× 10−3 3.3048× 10−3 2.9928× 10−3 2.5018× 10−3

Running Time (s) 480 2625 400 4344 166

R-I

MAE 2.9234× 10−3 3.2357× 10−3 2.8091× 10−3 2.6975× 10−3 2.1812× 10−3

MSE 1.5228× 10−5 1.8761× 10−5 1.3894× 10−5 1.3384× 10−5 9.5485× 10−6

RMSE 3.9023× 10−3 4.3314× 10−3 3.7274× 10−3 3.6584× 10−3 3.0901× 10−3

Running Time (s) 480 2775 400 4293 158

Figure 12. Comparison of forecasting data with real data with the damaged inner race under
accelerated conditions.
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Figure 13. Comparison of forecasting data with real data with the damaged outer race under
accelerated conditions.

Figure 14. Comparison of forecasting data with real data with the damaged rolling element under
accelerated conditions.

The prediction results for the inner race damage dataset (I-D) under decelerated
conditions and the outer race damage (O-D) dataset under decelerated conditions showed
that Informer achieved the best forecasting results compared to the other models, which is
shown in Table 10. The forecasting diagrams are shown in Figures 15 and 16. It can be seen
from Figure 15 that the Transformer model has a better forecasting effect of the data series
trend, but there is an overall upward shift. CNN, Deep RNNs and LSTM are found to have
poorer forecasting results for the trend and extreme values of the data series, compared
with Informer which has a better fit with the real data.
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Figure 15. Comparison of forecasting data with real data with the damaged inner race under
decelerated conditions.

Figure 16. Comparison of forecasting data with real data with the damaged outer race under
decelerated conditions.

Table 10. Time series forecasting results under decelerated conditions.

Dataset Metric CNN [15] Deep RNNs [38] LSTM [17] Transformer [31] Informer

I-D

MAE 2.1981× 10−2 1.8724× 10−2 2.1514× 10−2 2.2651× 10−2 1.4192× 10−2

MSE 1.1893× 10−3 9.2163× 10−4 1.3191× 10−3 1.0206× 10−3 5.2582× 10−4

RMSE 3.4487× 10−2 3.0358× 10−2 3.6320× 10−2 3.1947× 10−2 2.2931× 10−2

Running Time (s) 480 2700 400 4295 169

O-D

MAE 3.6730× 10−3 3.9415× 10−3 3.6925× 10−3 3.9617× 10−3 2.8098× 10−3

MSE 2.7954× 10−5 3.5443× 10−5 2.5712× 10−5 3.3534× 10−5 2.0841× 10−5

RMSE 5.2872× 10−3 5.9534× 10−3 5.0708× 10−3 5.7908× 10−3 4.5652× 10−3

Running Time (s) 480 2550 400 4344 171

R-D

MAE 4.2048× 10−3 5.8855× 10−3 6.1152× 10−3 4.1870× 10−3 5.4478× 10−3

MSE 2.9625× 10−5 5.9285× 10−5 6.0482× 10−5 3.0447× 10−5 4.9924× 10−5

RMSE 5.4429× 10−3 7.6997× 10−3 7.7770× 10−3 5.5179× 10−3 7.0657× 10−3

Running Time (s) 480 2475 400 4451 182
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The MAE, MSE and RMSE of Informer based on the rolling element damage (B-D)
dataset under decelerated conditions were slightly worse than those of CNN and Trans-
former; the difference of MAE is 1.243× 10−3 and 1.261× 10−3, respectively; the difference
of MSE is 2.030 × 10−3 and 1.948 × 10−3, respectively; and the difference of RMSE is
1.623× 10−3 and 1.548× 10−3, respectively. Compared with Deep RNNs and LSTM, the
MAE of the forecasting results are lower by 4.377× 10−4 and 6.674× 10−4, respectively;
the MSE lower by 9.361× 10−6 and 1.056× 10−5, respectively; and the RMSE lower by
6.340× 10−3 and 7.113× 10−3, respectively, as shown in Table 10. The forecasting dia-
grams are shown in Figure 17, from which it can be seen that Deep RNNs and LSTM have
offsets in the data sequence forecasting and some extreme values are not well forecasted.
Compared with CNN and Transformer, Informer has a small difference in the forecasting
of the change trend of the data series and the offset of its own forecasting results is small.
The offset of individual extreme value forecasting is relatively large, so the calculation
results of MAE, MSE and RMSE are not as good as these two models.

Figure 17. Comparison of forecasting data with real data with the damaged rolling element under
decelerated conditions.

5. Conclusions

The motor is the core equipment of the power station and time series forecasting of
motor bearing vibration is a crucial step in bearing fault diagnosis, bearing remaining
service life prediction, etc. Therefore, we specialize in research on time series forecasting
of motor bearing vibration. In this paper, Informer is innovatively introduced into time
series forecasting of motor bearing vibration and the model structure is optimized and the
parameters of Informer are optimized by applying random search. The datasets CWRU,
IMS and v43hmbwxpm were used for time series forecasting of motor bearing vibration and
the experimental results were analyzed. The analysis showed that, compared to the existing
work, Informer is able to forecast the future time series quickly and accurately when
facing inner race damage, outer race damage and rolling element damage. Superior results
can still be obtained for damage under accelerated or decelerated conditions, with better
forecasting results for data-series trends and extreme values of data. It had excellent
performance in evaluation indexes such as MAE, MSE and RMSE and the forecasting results.
The forecasting of conventional models is prone to certain offset, while the forecasting
results of the method proposed in this paper were more closely matched to the real data
and this method reduced the error accumulation in forecasting and improved the model
forecasting performance. It can be used for sensing technology monitoring.



Sensors 2022, 22, 5858 22 of 24

In the future, we will conduct study and research concerning time series
forecasting methods. Deeper research on data with oscillation, fluctuation amplitude and
fluctuation frequency will be carried out and the impact of this problem on the forecasting
operation will be solved. Self-testing data will be added in future experiments to further
improve the persuasiveness of the model. Bearing fault diagnosis or bearing remaining
useful life prediction will be taken as the next directions of research.
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