Skip to main content
. 2022 Jul 24;22(15):5517. doi: 10.3390/s22155517

Table 2.

Comparative analysis of IoMT security schemes (centralized methods).

Author Year Objective Technique Used Type of Data Framework Pros Cons
Deebak et al. [84] 2020 Data security and anonymity PKI Medical records SSA Solves Chiou et al.’s work [83] Computational cost is high
Park et al. [85] 2020 To solve issues of MAKA scheme PKI Medical IoT data LAKS-NVT Does not require a server verification table Traceable
Kumar et al. [87] 2020 Secure and efficient cloud-centric IoMT-enabled smart healthcare system PKI PHI file EF-IDASC Low energy consumption DoS, reply attack
Limaye et al. [88] 2018 Facilitate research into new microarchitectures and optimizations PKI Healthcare data HERMIT Efficient processors for IoMT applications Basic security
Lu et al. [89] 2020 TPM deployed in non-TPM protected embedded device via network PKI Sensor data xTSeH Does not discard request due to increased traffic Security improvement required
Hsu et al. [90] 2020 Remove storing credentials and secure communication PKI eHealth data UCSSO No storage and central authority Service could be interrupted
Chen et al. [91] 2021 Reduce energy consumption, achieve privacy and security PKI & Chaotic map Health data - Group authentication Server impersonation
Li et al. [93] 2021 Reduce complexity and secure communication PKI Medical data PSL-MAAKA Lightweight scheme Much time and storage required
Zhang et al. [94] 2020 Protect personal health records ABE PHR file PHR sharing framework Support offline and online MITM, DoS, etc., security
Liu et al. [97] 2018 Enhance privacy preserving and efficient data structure CP-ABE Biomedical data - Server impersonation attack Lot of storage and computation
Hwang et al. [95] 2020 Improve CP-ABE based scheme CP-ABE PHI file - Resolves key abuse problem PHI leakage
Huang et al. [98] 2019 Protection from unauthorized entity ECG PHR file - Remove noise, light algorithm No anonymous identity
Xu et al. [9] 2019 Secure data sharing MAC PHI file - Multi-keyword search Device to gateway security
Siddiqi et al. [99] 2020 Security protocol for IMD ecosystem MAC Medical data IMDfence 7% energy consumption No user anonymity
Hahn et al. [96] 2020 Attack MAC-based scheme and countermeasure Commitment (MAC) Medical data - Low verification time DoS, server impersonation
Li et al. [103] 2019 Enhance security of previous work ECC Medical data 3FUAP Vulnerability and countermeasure Computational cost
Almog- ren et al. [104] 2020 Fake node detection and deactivation ECC eHealth data FTM Double filter Mainly focused on Sybil attack
Ying et al. [105] 2021 Secure communication ECC Medical data - Low computational time High communication overhead
Liu et al. [106] 2021 Achieve data SNP preservation ECC EHR file - Major decryption on server side Complex
Wang et al. [107] 2020 Ensure data privacy Machine learning Medical data EPoSVM Efficiency Significant time required
Awan et al. [108] 2020 Maintains a robust network by predicting and eliminating malicious nodes Supervised learning and ECC Health data NeuroTrust Lightweight encryption Needs focus on attacks
Ding et al. [109] 2020 To preserve the privacy or security of the patient Deep learning DeepEDN Image Fast Needs robustness and server verification
Yanambaka et al. [111] 2019 Secure communication PUF Medical data Pmsec Lightweight ML attack
Gope et al. [112] 2020 Secure and efficient authentication PUF Healthcare monitoring - Less computation at server Two CRPs per transaction
Alladi et al. [78] 2020 To achieve physical security PUF Health data HARCI Low time in computation Unstable CRP can cause failure